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Abstract: The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY) with an electrophilic
ethylene linked to triazole and ferrocene units has been studied within the Molecular Electron
Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. The topology of the electron localization
function (ELF) of this AY allows classifying it as a pseudo(mono)radical species characterized by the
presence of two monosynaptic basins, integrating a total of 0.76 e, at the C1 carbon. While the
ferrocene ethylene has a strong electrophilic character, the AY is a supernucleophile, suggesting that
the corresponding 32CA reaction has a high polar character and a low activation energy. The most
favorable ortho/endo reaction path presents an activation enthalpy of 8.7 kcal·mol−1, with the 32CA
reaction being exergonic by −42.1 kcal·mol−1. This reaction presents a total endo stereoselectivity
and a total ortho regioselectivity. Analysis of the global electron density transfer (GEDT) at the most
favorable TS-on (0.23 e) accounts for the high polar character of this 32CA reaction, classified as
forward electron density flux (FEDF). The formation of two intermolecular hydrogen bonds between
the two interacting frameworks at the most favorable TS-on accounts for the unexpected ortho
regioselectivity experimentally observed.

Keywords: Molecular Electron Density Theory (MEDT); [3+2] cycloaddition (32CA); azomethine
ylide (AY); spirooxindoles; ferrocene; triazole

1. Introduction

The construction of enantiomerically pure compounds has experienced a significant
progress during recent decades by asymmetric reactions using organocatalysis, chiral
susbtrates/auxiliaries, and reagents able to control the stereochemistry of desired enan-
tioselective molecules. To synthesize pharmacologically active chiral molecules for specific
receptors or proteins, the establishment of structure−function relationships and mechanis-
tic studies are indispensable. The [3+2] cycloaddition (32CA) reactions, which have proved
to be highly selective, efficient, environment-friendly and atom-economical, are among the
most efficient asymmetric reactions to construct pharmacologically active chiral molecules
in a regio- and/or stereoselective fashion [1–4].

Organic chemists have been extensively made great efforts to understand the electronic
structure of three-atom-components (TACs) generated in situ as intermediates in 32CA
reactions. Based on the recently proposed Molecular Electron Density Theory (MEDT) [5],
four different types of TACs, namely zwitterionic (zw), carbenoid (cb), pseudo(mono)radical
(pmr), and pseudodiradical (pdr) TACs, and their reactivity towards ethylene have been
characterized [6]. Notably, pseudo(mono)radical and pseudodiradical TACs are very reactive
due to their instability. These electronic structures and the corresponding reactivities can
be modified by substitution.
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Pyrrolidines are five-membered heterocyclic compounds used as pharmacologically
relevant scaffolds in drug design [7–9], which can be easily constructed by 32CA reaction
of AYs with olefins (see Scheme 1). On the other hand, the introduction of a spiro-ring in
heterocyclic compounds is a widely used strategy in drug design to provide additional
conformational restriction. Thus, the 32CA reaction of exocyclic AY 4 generated from
isatin, i.e., a dicarbonyl compound, yields spirooxindoles 6, which possesses significant
pharmacological properties [10–14].
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MEDT studies of the 32CA reactions of the simplest AY 7, CH2-NH-CH2 [15], and
carbonyl ylide 8, CH2-O-CH2 [16], have shown that the presence of a pseudoradical center at
each one of the two methylene carbons of these TACs causes the corresponding pdr-type
32CA reactions with non-activated ethylenes to have an unappreciable activation energy,
lower than 1.0 kcal·mol−1. However, the presence of an electron-releasing phenyl group and
electron-withdrawing (EW) carboxyl –CO2R or nitrile –CN groups at the two methylenes of
the simplest AY 7, just as AY 1, stabilizes its pseudodiradical electronic structure, modifying
the experimental reactivity of these substituted AYs to that of pseudo(mono)diradical [17],
carbenoid [18], or even zwitterionic TACs [19].

Recently, Barakat and co-workers experimentally studied the synthesis of spirooxin-
doles 11 and 12 via 32CA reactions of AYs 9, generated from substituted isatins and
secondary amines, with disubstituted olefins, in excellent regio- and stereoselectivity (see
Scheme 2) [20–22]. The plausible reaction mechanism was suggested to take place via an
endo stereoisomeric path in which the substitution of the olefin derivatives 10 plays a crucial
role in the regioselective formation of the products 11 or 12.
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Thus, the 32CA reaction of AY 13 with phenyl vinyl sulphone 14 yields the spirooxin-
dole 15 with total meta regio- and endo stereoselectivity (see Scheme 3) [23]. A MEDT study
of the 32CA reaction of model AY 16 with phenyl vinyl sulphone 14 [24] showed that
this 32CA reaction takes place via a two-stage one-step [25] mechanism involving a highly
asynchronous transition-state structure (TS), with a high endo stereoselectivity and high
meta regioselectivity. The reaction presents a very low activation enthalpy, 5.7 kcal·mol−1,
as a consequence of the strong polar character of the reaction; the global electron density
transfer (GEDT) [26] at the most favorable meta/endo TS was 0.31 e. This behavior is a
consequence of the supernucleophilic character of AY 16 and the strong electrophilic char-
acter of vinyl sulphone 14. The meta regioselectivity was explained by the more favorable
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two-center interaction between the most nucleophilic center of AY 16, the C1 carbon, and
the more electrophilic center of phenyl vinyl sulphone 14, the C4 carbon, anticipated by the
analysis of the Parr functions [27].
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and stereoselectively.

The ferrocene scaffold is an interesting organometallic architecture with a diversity
of applications in medicine, photochemistry, as well as a building block for many organic
synthetic transformations [28–31]. Many synthesized or naturally occurring organic com-
pounds incorporating the ferrocene unit possess pharmacological activity which is sold in
the market or in more advanced preclinical stages. Introducing the ferrocene synthon into
the spirooxindoles scaffold is challenging for experimental chemists.

Triazoles, in particular the 1,2,3-triazole motif, have attracted great deal of attention
due to their biological activities as anti-malarial agents, carbonic anhydrase inhibitors,
agents for the tuberculosis treatment, etc., [32–44]. Introducing another interesting pharma-
cophore such as the 1,2,3-triazole framework into the spirooxindoles in combination with
the ferrocene organometallic unit may lead to particular properties that could be useful
for different applications in varied fields such as supramolecular chemistry, biochemistry,
biosensing probes, or conducting polymer chemistry.

Very recently, Barakat et al. have experimentally reported the 32CA reaction of AY 18
with ethylene derivative 19, in the synthesis of spirooxindoles 20, with high ortho regio-
and endo stereoselectivity (see Scheme 4) [45]. Interestingly, this 32CA shows an opposite
regioselectivity to that shown in the reaction with vinyl sulphone 14 (see Scheme 3).
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and endo stereoselectively.

Herein, the 32CA reaction of AY 21 with ferrocene ethylene 22 yielding spirooxindole
23, as a computational model of the 32CA reaction studied by Barakat et al., is theoretically
studied within the MEDT in order to understand the behavior of the 32CA reactions
involving ferrocene ethylene derivatives (see Scheme 4) and the origin of the unexpected
ortho regioselectivity.

2. Results and Discussion

The present MEDT study has been divided in four sections: (i) first, an ELF topological
analysis at the ground state of AY 21 and ferrocene ethylene derivative 22 is performed;
(ii) in the second part, the conceptual DFT (CDFT) reactivity indices at the ground state of
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the reagents are analyzed; (iii) in the third part, the competitive reaction paths associated
with the 32CA reaction of AY 21 with ferrocene ethylene 22 are studied; and (iv) the origin
of the ortho regioselectivity is finally analyzed.

2.1. ELF Topological Analysis at the Ground State of AY 21 and Ferrocene Ethylene Derivative 22

The topological analysis of the electron localization function (ELF) [46] at the ground
state allows a quantitative and qualitative description of the electronic structure of organic
molecules [47]. Given the structure−reactivity relationship found in TACs [6], an ELF
topological analysis of AY 21 was first performed in order to characterize its electronic
structure and gain some insight about its reactivity. The most significant ELF basin attractor
positions and valence basin populations of AY 21 and ferrocene ethylene 22 are given in
Figure 1.
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Figure 1. ωB97X-D/6-311G(d,p) ELF basin attractor positions together with the most relevant valence
basin populations and ELF-based Lewis-like structures together with natural atomic charges of AY
21 and ferrocene ethylene 22. Valence basin populations and natural atomic charges are given in
average number of electrons, e. Negative charges are colored in red, positive charges in blue, and
negligible charges in green.

The ELF of AY 21 shows the presence of two monosynaptic basins, V(C1) and V’(C1),
integrating a total of 0.77 e, one V(C1,N2) disynaptic basin integrating 2.29 e and one
V(N2,C3) disynaptic basin integrating 3.43 e, characterizing the C1–N2–C3 AY core. While
the V(C1,N2) disynaptic basin is associated with a C1–N2 single bond, the V(N2,C3)
disynaptic basin is associated with a somewhat underpopulated N2–C3 double bond. The
presence of the two monosynaptic basins at the C1 carbon integrating less than 1.0 e, which
are associated with a pseudoradical C1 center [15], allows the classification of AY 21 as a
pseudo(mono)radical TAC participating in pmr-type 32CA reactions [6].

On the other hand, the ELF of ferrocene ethylene derivative 22 shows the presence
of two disynaptic basins, V(C4,C5) and V’(C4,C5) integrating a total of 3.32 e, a V(C5,C6)
disynaptic basin integrating 2.29 e, one V(C6,O7) disynaptic basin integrating 2.25 e, and
two monosynaptic basins, V(O7) and V’(O7) integrating a total of 5.35 e. While the two
V(C4,C5) and V’(C4,C5) disynaptic basins are associated with an underpopulated C4–C5
double bond, the V(C6,O7) disynaptic basin is associated with a carbonyl C6–O7 single
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bond, resulting from a strong polarization of the C6–O7 bonding region towards the
electronegative O7 oxygen, which shows a non-bonding region with a high electron density.

Natural Population Analysis (NPA) [48,49] of the charge distribution shows that the
two reactive carbons of AY 21 are negligibly charged by less than ± 0.08 e while the N2
nitrogen is negatively charged by −0.26 e. Interestingly, the natural charges of ethylene
derivative 22 indicate that the C4 and C5 carbons are negatively charged by −0.32 and
−0.09 e, respectively while the carbonyl C6 carbon is strongly positively charged by 0.53 e
as a consequence of the strong polarization of the carbonyl C6–O7 bonding region towards
the electronegative O7 oxygen, which has a negative charge of −0.60 e.

2.2. CDFT Analysis at the Ground State of the Reagents

The reactivity indices defined within CDFT [50,51] have shown to be powerful tools to
understand the reactivity in polar reactions [52]. The global reactivity indices, namely, the
electronic chemical potential µ, chemical hardness η, electrophilicityω, and nucleophilicity
N indices, of AY 21 and ferrocene ethylene 22 are gathered in Table 1.

Table 1. B3LYP/6-31G(d) electronic chemical potential µ, chemical hardness η, electrophilicity ω,
and nucleophilicity N indices, in eV, of AY 21 and ferrocene ethylene 22.

µ η ω N

ferrocene
ethylene 22 −3.53 3.61 1.72 3.78

AY 21 −2.79 3.33 1.17 4.67

The electronic chemical potential [53] of AY 21 with µ = −2.79 eV is higher than that
of ferrocene ethylene 22 with µ = −3.53 eV, indicating that along a polar 32CA reaction the
GEDT [26] will take place from AY 21 to ferrocene ethylene 22, the corresponding polar
32CA reaction being classified as of forward electron density flux (FEDF) [54].

AY 21 presents an electrophilicityω index [55] of 1.17 eV, being classified as a moderate
electrophile within the electrophilicity scale [51], and a nucleophilicity N index [56] of
4.67 eV, being classified as a strong nucleophile within the nucleophilicity scale [51]. The
strong nucleophilic character of AY 21, higher than 4.0 eV, allows its classification as a
supernucleophile [57]. On the other hand, ferrocene ethylene 22 presents an electrophilicity
ω index of 1.72 eV, being classified as a strong electrophile, and a nucleophilicity N index
of 3.78 eV, being also classified as a strong nucleophile. The supernucleophilic character of
AY 21, together with the strong electrophilic character of ferrocene ethylene 22, indicates
that the corresponding 32CA reaction will have a high polar character, being classified as
FEDF [54].

In a polar 32CA reaction involving non-symmetric species, the most favorable reaction
path is that involving the two-center interaction between the most electrophilic and the
most nucleophilic centers of the two reagents [58]. Many studies have shown that the
electrophilic Pk

+ and nucleophilic Pk
− Parr functions [27], resulting from the excess of

spin electron density gathered via the GEDT, are among the most accurate tools for the
analysis of the local reactivity in polar and ionic processes [52]. Hence, according to
the characteristics of the reagents, the nucleophilic Pk

− Parr functions of AY 21 and the
electrophilic Pk

+ Parr functions of ferrocene ethylene 22 were analyzed (see Figure 2).
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+ Parr
functions of ferrocene ethylene 22.

The two C1 and C3 carbons of AY 21 are nucleophilically activated by Pk
− = 0.38 and

0.32, respectively, with the C1 carbon being the most nucleophilic center of the TAC. Note
that the N2 nitrogen is nucleophilically deactivated (Pk

− = −0.12). On the other hand, the
β-conjugated C4 position of ferrocene ethylene 22 is the most electrophilically activated of
this species (Pk

+ = 0.25).
Based on the analysis of the Parr functions, the meta regioisomer is expected to be

the preferred one as a consequence of the slightly higher nucleophilic activation of the C1
carbon of AY 21 than that of the C3 one.

2.3. Analysis of the Competitive Reaction Paths Associated with the 32CA Reaction of AY 21 with
Ferrocene Ethylene 22

In order to determine the mechanism of this 32CA reaction, the competitive reaction
paths associated with the 32CA reaction of AY 21 with ferrocene ethylene 22 were analyzed.
Due to the non-symmetry of both reagents, two pairs of endo and exo stereoisomeric reaction
paths and two pairs of ortho and meta regioisomeric ones are possible (see Scheme 5). The
analysis of the stationary points found along with these reaction paths indicates that this
32CA reaction takes place through a one-step mechanism. The ωB97X-D/6-311G(d,p)
relative electronic energies, in gas phase and in methanol, are given in Table 2. Total
electronic energies are given in Table S1 in Supplementary Materials.

An exhaustive analysis of the potential energy surface associated with this 32CA
reaction allowed finding a series of molecular complexes (MCs), which are in equilibrium,
in an early stage of the reaction. The most favorable MC-on, which opens the ortho/endo
reaction path, is found to be 25.6 kcal·mol−1 more stable than the separated reagents (see
Scheme 5).
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Table 2. ωB97X-D/6-311G(d,p) relative energies, in kcal·mol−1, in gas phase and in methanol, of the
stationary points involved in the 32CA reaction of AY 21 with ferrocene ethylene 22.

Gas Phase Methanol

MC-on −25.6 −20.6
TS-on −17.1 −11.2
TS-ox −8.8 −6.3
TS-mn −11.8 −7.2
TS-mx −6.7 −2.9

23 −49.9 −45.2
24 −44.2 −39.8
25 −51.9 −46.0
26 −55.1 −49.7

Some appealing conclusions can be obtained from the analysis of the relative energies
of the stationary points involved in this 32CA reaction: (i) the most favorable TS-on is
found to be 17.1 kcal·mol−1 below the separate reagents; (ii) however, when the formation
of MC-on is considered, the activation energy of this 32CA reaction becomes positive
at 8.5 kcal·mol−1; (iii) this 32CA reaction is strongly exothermic by −49.9 kcal·mol−1.
Consequently, the formation of the experimental spirooxindole 23 takes place by kinetic
control. Note that the reaction is strongly exergonic by −22.4 kcal·mol−1 (see later); (iv) this
32CA reaction is completely ortho regioselective, as TS-mn is found to be 5.3 kcal·mol−1
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above TS-on; and (v) this 32CA reaction is completely endo stereoselective, as TS-ox is
found to be 8.3 kcal·mol−1 above TS-on.

Inclusion of solvent effects of methanol stabilizes all species by between 15.3 and
19.7 kcal·mol−1; the reagents are the most stabilized [59]. As a consequence, the relative
energies of the TSs increase by between 2.5 and 5.9 kcal·mol−1. In methanol, the activation
energy increases by 0.9 kcal·mol−1, and the 32CA reaction remains completely regio- and
stereoselective, as TS-mn and TS-ox are found to be 4.0 and 5.0 kcal·mol−1, respectively,
above TS-on. The 32CA reaction remains strongly exothermic by −45.2 kcal·mol−1.

The ωB97X-D/6-311G(d,p) thermodynamic data of the 32CA reaction of AY 21 with
ferrocene ethylene 22 were further analyzed. The relative enthalpies, entropies, and Gibbs
free energies are given in Table 3, while the thermodynamic data are given in Table S2 in
Supplementary Materials.

Table 3. ωB97X-D/6-311G(d,p) relative enthalpies (∆H, kcal·mol−1), entropies (∆S, cal·mol−1·K−1),
and Gibbs free energies (∆G, kcal·mol−1), computed at 65 ◦C in methanol, of the stationary points
involved in the 32CA reaction of AY 21 with ferrocene ethylene 22.

∆H ∆S ∆G

MC-on −18.8 −48.4 −2.5
TS-on −10.1 −59.8 10.1
TS-ox −5.2 −58.1 14.5
TS-mn −6.4 −50.3 10.6
TS-mx −2.1 −47.6 14.0

23 −42.1 −58.2 −22.4
24 −36.6 −59.4 −16.5
25 −42.7 −54.7 −24.2
26 −46.7 −60.2 −26.3

A representation of the enthalpy and Gibbs free energy profiles associated with the
four competitive reaction paths is given in Figure 3. The inclusion of the thermal corrections
to the electronic energies in methanol increases the relative enthalpies only by between 0.8
and 3.4 kcal·mol−1. Indeed, they have a markedly low incidence in the relative enthalpies
of the TSs, which only increase by between 0.8 and 1.1 kcal·mol−1 with respect to the
electronic energies in methanol. Considering the activation enthalpies, TS-ox and TS-mx
are found to be more than 3.7 kcal·mol−1 higher in enthalpy than TS-on. The inclusion
of entropies to enthalpies increases the relative Gibbs free energies by between 16.1 and
20.3 kcal·mol−1 as a consequence of the unfavorable activation entropies associated with
these bimolecular processes, which are found in the range −47.6 and −60.2 cal·mol−1·K−1,
and the temperature of the reaction of 65 ◦C. The formation of MC-on is exergonic by
−2.5 kcal·mol−1. The activation Gibbs free energy associated with this 32CA reaction via
TS-on rises to 12.6 kcal·mol−1, while the formation of spirooxindole 23 is strongly exergonic
by −22.4 kcal·mol−1.
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Figure 3. ωB97X-D/6-311G(d,p) enthalpy ∆H in kcal mol–1 (blue) and Gibbs free energy ∆G in kcal
mol–1 (red) profiles, at 65 ◦C in methanol, for the 32CA reaction of AY 21 with ferrocene ethylene 22.

It is interesting to highlight that while the activation enthalpies suggest that this 32CA
reaction is completely ortho regioselective, in full agreement with the experimental out-
comes [45], the activation Gibbs free energies markedly decrease the ortho regioselectivity
as TS-mn is only 0.5 kcal·mol−1 above TS-on. This behavior is a consequence of the more
unfavorable activation entropy associated with the ortho TSs (see later).

The geometries of MC-on and the four TSs are given in Figures 4 and 5, respectively.
At MC-on, the two interacting frameworks, which are separated by a distance of ca. 3.11 Å,
present a parallel rearrangement (see Figure 4). At the more favorable ortho TSs, the
distances between the two pairs of C3–C4 and C1–C5 interacting carbons are 2.112 and
2.704 Å, respectively, at TS-on and 2.126 and 2.562 Å, respectively, at TS-ox, while at the
meta TSs, the distances between the two pairs of C1–C4 and C3–C5 interacting carbons are:
2.081 and 2.633 Å, respectively, at TS-mn and 2.320 and 2.268 Å, respectively, at TS-mx
(see Figure 5). These distances indicate that while the most favorable TS-on shows a high
geometrical asynchronicity with ∆l = 0.59 Å, the most unfavorable TS-mx shows a very
low geometrical asynchronicity with ∆l = 0.05 Å. The most favorable highly asynchronous
TS-on is associated with a two-center interaction between the C3 carbon of AY 21, the
second most nucleophilic center of this TAC, and the β-conjugated C4 carbon of ferrocene
ethylene 22, the most electrophilic center of this ethylene derivative.
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of AY 21 with ferrocene ethylene 22. Distances are given in angstroms, Å. Distances in methanol are
given in parentheses. HB distances are given in red.

A detailed analysis of the geometry of the most favorable TS-on shows that one of the
hydrogens of the ferrocene framework of ethylene 22 is located at 2.439 Å of the carbonyl
oxygen atom of AY 21, and one hydrogen of the dihydropyrrole ring of AY 21 is located
at 2.418 Å of the carbonyl oxygen atom of ferrocene ethylene 22 (see Figure 5). These
distances suggest the presence of two hydrogen bonds (HBs) between the hydrogen and
oxygen centers. Interestingly, these HBs which are already present at the most stable
MC-on, with H–O distances of 2.341 and 2.377 Å, respectively (see Figure 4), may account
for the ortho and endo selectivity found in this 32CA reaction. The formation of these HBs,
with the first one exhibited by a slight twist of the cyclopentadienyl ring with respect
to the C4–C5 double bond, could be responsible for the lower entropy associated with
TS-on, i.e., 230.2 cal·mol−1·K−1, than that of TS-mn, i.e., 239.7 cal·mol−1·K−1 (see Table S2
in Supplementary Material) and, consequently, for the loss of ortho regioselectivty when
relative Gibbs free energies are considered (see Table 3).

On the other hand, the analysis of the geometry of the regioisomeric TS-mn suggests
the presence of only one HB between the carbonyl O7 oxygen of ferrocene ethylene 22 and
one of the dihydropyrrole hydrogen of AY 21, with a H–O distance of 2.337 Å (see Figure 5).
Thus, the presence of an additional HB at the most favorable TS-on accounts for the change
of regioselectivity in this 32CA reaction.

Finally, the analysis of the GEDT [26] at TS-on permits the assessment of the polar
character of this 32CA reaction. GEDT values lower than 0.05 e correspond to non-polar
processes, while GEDT values higher than 0.20 e correspond to high polar processes. The
GEDT value at the two stereoisomeric ortho TSs is 0.23 e. This high value is a consequence of
the supernucleophilic character of AY 21 and the strong electrophilic character of ferrocene
ethylene 22. The flux of the electron density, which goes from AY 21 to ferrocene ethylene
22, allows classifying this 32CA reaction as FEDF, in clear agreement with the analysis
of the CDFT indices. The high polar character of this 32CA reaction accounts for the fact
that, considering the relative enthalpies, TS-on is located below the separated reagents (see
Table 3) [60].

Figure 6 shows the ELF [46] basin attractor positions of MC-on and TS-on. The ELF of
MC-on presents similar features to those of the separate reagents, i.e., AY 21 and ferrocene
ethylene 22 (see Figure 1). The AY framework of MC-on shows the presence of one V(C1)
monosynaptic basin, integrating 0.33 e, already present at pseudo(mono)radical AY 1, while
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the C4–C5 double bond of the ferrocene ethylene moiety is characterized by the presence of
two disynaptic basins, V(C4,C5) and V’(C4,C5), integrating a total of 3.27 e (see Figures 1
and 6).

Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
 

 

presence of two disynaptic basins, V(C4,C5) and V’(C4,C5), integrating a total of 3.27 e 

(see Figures 1 and 6). 

 

Figure 6. ωB97X-D/6-311G(d,p) ELF basin attractor positions together with the populations of the 

most relevant valence basins of MC-on and TS-on. Valence basin populations are given in average 

number of electrons (e). 

The most relevant feature of TS-on is the creation of a new V(C3) monosynaptic basin 

integrating 0.49 e, while the V(C1) monosynaptic basins present at MC-on is slightly de-

populated to 0.29 e. This new monosynaptic basin, which is created at the second most 

nucleophilic center of AY 21 (see Parr functions in Figure 2), is demanded for the subse-

quent creation of the first new C3–C4 single bond [26]. On the other hand, the two disyn-

aptic basins associated with the C4–C5 partial double bond present at ferrocene ethylene 

22 and MC-on merge into one single V(C4–C5) disynaptic basin at TS-on after losing 0.71 

e from ethylene 22. This ELF analysis of TS-on, which accounts for the non-concerted na-

ture of this one-step 32CA reaction, supports the previous analysis based on the geomet-

rical parameters. 

2.4. Origin of the Ortho/Endo Regioselectivity 

As has been aforementioned, the geometries of the more favorable MC-on and TS-

on suggest the presence of two HBs between the carbonyl oxygen atoms and the ring hy-

drogen atoms, which might be responsible for the unexpected ortho regioselectivity (see 

Figures 4 and 5r). Thus, in order to confirm their presence, a topological analysis of the 

electron density associated with the intermolecular non-covalent interactions (NCI) tak-

ing place at both stationary points was performed by means of the Independent Gradient 

Model [61,62] (IGM). The corresponding isosurfaces are represented in Figure 7. 
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most relevant valence basins of MC-on and TS-on. Valence basin populations are given in average
number of electrons (e).

The most relevant feature of TS-on is the creation of a new V(C3) monosynaptic
basin integrating 0.49 e, while the V(C1) monosynaptic basins present at MC-on is slightly
depopulated to 0.29 e. This new monosynaptic basin, which is created at the second most
nucleophilic center of AY 21 (see Parr functions in Figure 2), is demanded for the subsequent
creation of the first new C3–C4 single bond [26]. On the other hand, the two disynaptic
basins associated with the C4–C5 partial double bond present at ferrocene ethylene 22
and MC-on merge into one single V(C4–C5) disynaptic basin at TS-on after losing 0.71 e
from ethylene 22. This ELF analysis of TS-on, which accounts for the non-concerted nature
of this one-step 32CA reaction, supports the previous analysis based on the geometrical
parameters.

2.4. Origin of the Ortho/Endo Regioselectivity

As has been aforementioned, the geometries of the more favorable MC-on and TS-on
suggest the presence of two HBs between the carbonyl oxygen atoms and the ring hydrogen
atoms, which might be responsible for the unexpected ortho regioselectivity (see Figures 4
and 5). Thus, in order to confirm their presence, a topological analysis of the electron
density associated with the intermolecular non-covalent interactions (NCI) taking place at
both stationary points was performed by means of the Independent Gradient Model [61,62]
(IGM). The corresponding isosurfaces are represented in Figure 7.
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Figure 7. IGM-δginter 0.010 a.u. (MC-on) and 0.018 a.u. (TS-on) isosurfaces, represented with a
blue-green-red color-code in the range of −0.08 < (sign) λ2ρ < 0.08 a.u. The attractive IGM-δginter

surfaces associated with the two HBs are highlighted by a line-dashed green circle.

IGM-δginter at MC-on shows a green surface between the main interacting regions
of both AY and ethylene frameworks and two additional green surfaces involving the
two carbonyl oxygen atoms and one of the cyclopentadienyl or dihydropyrrole hydrogen
atoms. While the more extended surface is related to the non-covalent interactions in
the bond formation region, which turns to a blue-to-red color at TS-on as a consequence
of the higher proximity between the two frameworks and the more advanced C3–C4
bond formation, the two surfaces in the O–H regions are related to weak HBs with δginter
signatures and instrinsic bond strength index (IBSI) [63] values of ca. 0.03 a.u. These
surfaces become smaller, and the respective HBs weaker, at TS-on due to a slight elongation
of the corresponding O–H distances by 0.065 and 0.013 Å. Although their contributions to
the intermolecular interactions [64] are lower than 4%, with the O(Et)–H(AY) interaction
contributing 0.6% more than the O(AY)–H(Et) interaction, their presence seems to outweigh
the more favorable electrophilic/nucleophilic electronic interactions involving the most
nucleophilic C1 pseudoradical center along the meta/endo path [24], thus leading to the
ortho/endo selectivity.

Finally, the IGM-δginter at the regioisomeric TS-mn shows the presence of only one
HB between the carbonyl O7 oxygen of ferrocene ethylene 22 and one of the dihydropy-
rrole hydrogens of AY 21 (see Figure S1 in Supplementary Material). Consequently, the
additional HB present at the most favorable TS-on can explain the fact that this TS is
5.4 kcal·mol−1 more stable than TS-mn, and, consequently, the origin of the unexpected
ortho regioselectivity of this 32CA reaction [45].

3. Materials and Methods

The ωB97X-D [65] functional, together with the standard 6-311G(d,p) basis set [66],
which includes d-type polarization for second-row elements and p-type polarization func-
tions for hydrogen atoms, were used in this MEDT study. The TSs were characterized by
the presence of only one imaginary frequency. The Berny method was used in optimiza-
tions [67,68]. The IRC [69] calculations were performed to establish the unique connection
between the TSs and the corresponding minima [70,71] phase structures at the same compu-
tational level using the polarizable continuum model (PCM) [72,73] in the framework of the
self-consistent reaction field (SCRF) [74–76]. Values of ωB97X-D/6-311G(d,p) enthalpies,
entropies, and Gibbs free energies in methanol were calculated with standard statistical
thermodynamics at 337.8 K and 1 atm [66], by PCM frequency calculations at the solvent
optimized structures.

The GEDT [26] values were computed by using the equation GEDT(f) = Σqf, where
q are the natural charges [48,49] of the atoms belonging to one of the two frameworks (f)
at the TS geometries. Global and local CDFT indices [50,51] were calculated by using the
equations given in reference [51], using the B3LYP/6-31G(d) method, because the original
nucleophilicity and electrophilicity scales were established at that level [51].
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The Gaussian 16 suite of programs was used to perform the calculations [77]. ELF [46]
analyses of the ωB97X-D/6-311G(d,p) monodeterminantal wavefunctions were performed
by using the TopMod [78] package with a cubical grid of step size of 0.1 Bohr. Molecular
geometries and ELF basin attractors were visualized by using the GaussView program [79].
IGM analysis was carried out with the IGMPlot software [62].

4. Conclusions

The 32CA reaction of AY 21, derived from isatin and L-proline, with ferrocene ethylene
22, yielding spirooxindole 23, has been studied within MEDT at the ωB97X-D/6-311G(d,p)
computational level. Analysis of the ELF topology of AY 21 indicated that this TAC has a
pseudo(mono)radical structure characterized by the presence of two monosynaptic basins,
integrating a total of 0.77 e, at the C1 carbon. The analysis of the CDFT reactivity indices
indicated that ferrocene ethylene 22 has a strong electrophilic characteristic, while AY
21 is a supernucleophile, suggesting that the corresponding 32CA reaction has a high
polar character. The most favorable reaction path via the ortho/endo TS-on presents an
activation enthalpy of 8.7 kcal·mol−1, with the 32CA reaction being strongly exothermic by
−42.1 kcal·mol−1. Analysis of the activation enthalpies indicated that this reaction presents
a complete endo stereoselectivity and a complete ortho regioselectivity, in agreement with
the experimental outcomes. Analysis of the GEDT at the most favorable TS-on, 0.23 e,
accounts for the high polar character of this 32CA reaction, classified as FEDF. The presence
of two HBs between the two carbonyl oxygens and the two ring hydrogens at the most
favorable TS-on, which are already present at MC-on, appear to be responsible for the
unexpected ortho regio- and endo stereoselectivity found in this 32CA reaction involving
the pseudo(mono)radical AY 21.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196532/s1. Figure S1: IGM-δginter isosurface of
TS-mn. Table S1: Total electronic energies. Table S2: Thermodynamic data. Cartesian coordinates of
the stationary points involved in the 32CA reaction of AY 21 with ferrocene ethylene 22.
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