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1  | INTRODUC TION

Plant richness in high mountains is one of the most important issues 
in biodiversity conservation, due to global climate change (Bhattarai 
& Vetaas, 2003; Li, Kraft, Yu, & Li, 2015; Trigas, Panitsa, & Tsiftsis, 

2013; Vetaas & Grytnes, 2002). It is well known that species rich-
ness and endemism change along environmental gradients, but the 
associated patterns in the variation of genetic and evolutionary di-
versity have not been adequately addressed. Phylogenetic diversity 
(PD) (i.e., the sum total of branch lengths of the phylogeny linking the 
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Abstract
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic 
gradient in vegetation types that can be observed from low to high elevation zones. 
However, species richness and phylogenetic diversity of this mountain have not been 
well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants 
of this mountain and calculated species richness and phylogenetic diversity across 
seven vegetation zones. We also measured phylogenetic structure using the net re-
latedness index (NRI) and the nearest species index (NTI). Our results show that 
lower montane wet forest has the highest level of species richness, density, and phy-
logenetic diversity of woody plants, while lower montane dry forest has the highest 
level of species richness, density, and phylogenetic diversity in herbaceous plants. In 
total plants, NRI and NTI of four forest zones were smaller than three alpine zones. 
In woody plants, lower montane wet forest and upper montane forest have overdis-
persed phylogenetic structures. In herbaceous plants, NRI of Afro- alpine zone and 
nival zone are smaller than those of bamboo zone, upper montane forest, and heath 
zone. We suggest that compared to open dry forest, humid forest has fewer herba-
ceous plants because of the closed canopy of woody plants. Woody plants may have 
climate- dominated niches, whereas herbaceous plants may have edaphic and 
microhabitat- dominated niches. We also proposed lower and upper montane forests 
with high species richness or overdispersed phylogenetic structures as the priority 
areas in conservation of Mount Kenya and other high mountains in the Eastern 
 Afro- montane biodiversity hotspot regions.
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species in an area; Faith, 1992) is a biodiversity index which quanti-
fies the combined phenotypic or genetic diversity across the spe-
cies (Cadotte & Davies, 2016; Davies et al., 2007; Purvis & Hector, 
2000). Phylogenetic diversity reflects the underlying evolutionary 
history represented by a set of taxa, and it has become a subject of 
interest to both ecologists seeking to understand the influence of 
evolutionary history on species abundance and interactions, and to 
conservation biologists wishing to prioritize evolutionary history for 
conservation purposes (Forest et al., 2007; Li et al., 2015; Sechrest 
et al., 2002; Tucker et al., 2017). There is a positive relationship be-
tween phylogenetic diversity and species richness (Kluge & Kessler, 
2011; Sax et al., 2007), especially along an elevational gradient 
where changes in species richness are apparent (Li et al., 2015).

The relative similarity of species and phylogenetic diversity 
across space is dependent on the underlying environmental condi-
tions and biogeographical history. It could be that species richness 
and phylogenetic diversity are highly congruent due to random or 
even selection of taxa across a phylogeny (Rodrigues, Brooks, & 
Gaston, 2005). Conversely, highly nonrandom patterns, for exam-
ple, phylogenetic signals in environmental tolerances or localized 
speciation events, could create incongruent taxonomic and phylo-
genetic diversity patterns (Devictor et al., 2010; Tucker & Cadotte, 
2013). Given these complexities, both taxonomic and phylogenetic 
diversity should be evaluated for conservation. For example, Li et al. 
(2015) found that compared to other communities, the evergreen 
broad- leaved forests in Dulong Valley in China had the highest levels 
of species richness and phylogenetic diversity, as well as an overdis-
persed phylogenetic structure, and suggest that communities with 
high species richness or an overdispersed phylogenetic signal should 

be the focus for biodiversity conservation, as these areas may help 
maximize the potential of local flora to respond to future global 
change.

When evaluating diversity patterns, it is also important to com-
pare and contrast species belonging to different ecological guilds. 
This is due to the fact that differences in life history traits or mech-
anisms of resource uptake can lead to highly disparate responses to 
outside inputs such as climate. For plants, the distinction between 
woody and herbaceous growth forms is probably the most profound 
contrast in terrestrial ecosystems (FitzJohn et al., 2014). Herbaceous 
and woody taxa are believed to be differentially influenced by envi-
ronmental factors such as precipitation and temperature (Whittaker, 
1965), which are nonrandomly associated with the evolutionary his-
tory of these taxa and their traits (Díaz et al., 2016). Thus, it may be 
that factors resulting in variation in species richness and phyloge-
netic diversity might differ between woody and herbaceous plants, 
and comparisons between these communities may provide better 
insight into the factors influencing the distribution of total plant bio-
diversity (Bhattarai & Vetaas, 2003).

Here, we analyze changes in taxonomic and phylogenetic diver-
sity across different vegetation zones of Mount Kenya, which is the 
largest ancient extinct volcano in the Great Rift Valley area, and the 
second highest peak in Africa (Speck, 1982). It constitutes an im-
portant reservoir for plant diversity, including a substantial number 
of endemic and endangered species. As the publishing of the first 
checklist of about 140 plant species by Hooker and Oliver in 1885, 
numerous studies have studied plant and vegetation diversity in 
Mount Kenya (e.g., Bussmann, 1994; Fries & Fries, 1948; Niemelä & 
Pellikka, 2004; Young & Peacock, 1985). However, plant taxonomic 

F IGURE  1 Vegetation zones of Mount Kenya. (a) The location of Mount Kenya in Kenya. (b) The vegetation zones of Mount Kenya in 
top view (adapted from Niemelä & Pellikka, 2004). (c) The vegetation zones of Mount Kenya from northwest to southeast in lateral view 
(adapted from Coe, 1967 and VECEA Team, 2012)
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and phylogenetic diversity of Mount Kenya have not been thor-
oughly analyzed, and we lack critical knowledge on the evolutionary 
dimension of the biodiversity in this region.

The aim of this study was to quantify the relationship between 
species richness and phylogenetic diversity and to explore com-
munity phylogenetic structure across vegetation zones of Mount 
Kenya, Kenya. We also aim to compare the diversity patterns be-
tween woody and herbaceous plants in order to a get better insight 
into the factors contributing to observed patterns in diversity.

2  | MATERIAL S AND METHODS

2.1 | Study area

Mount Kenya is located in central Kenya, approximately 193 km 
northeast of Nairobi and 480 km from Kenyan coast (0°10′S, 

37°20′E; Figure 1). Elevation ranges from a low of 1,500 m asl to 
a high of 5,192 m asl at the tallest peak. Along this elevation gra-
dient, annual precipitation varies from a low of about 870 mm at 
the base of the mountain to about 1,970 mm at the peak and tem-
perature from about 12°C to about −4°C. This steep climate gra-
dient results in a dramatic change in vegetation cover. The lower 
slopes are composed primarily of montane forest, with some big 
trees being dominant. Above the forest, there are large tracts 
of bamboo forest, particularly on the east and southeast slopes. 
The upper montane forest is dominated by Podocarpus spp. and 
Hagenia abyssinica trees, after which a dominant heath zone is pre-
sent. Above heath zone the vegetation becomes dominated by al-
pine specialists such as Dendrosenecio spp. and Lobelia spp. Above 
4,500 m, asl is largely unvegetated and partially glaciated. We 
classified these changes in vegetation into seven primary zones: 
lower montane wet forest (LMWF), lower montane dry forest 
(LMDF), bamboo zone (BZ), upper montane forest (UMF), heath 

F IGURE  2 Vegetation zones of Mount 
Kenya. (a) Distant overview of Mount 
Kenya; (b) lower montane wet forest 
(LMWF); (c) lower montane dry forest 
(LMDF); (d) bamboo zone (BZ); (e) upper 
montane forest (UMF); (f) heath zone 
(HZ); (g) Afro- alpine zone (AZ); and (h) 
nival zone (NZ). Photograph was taken 
by G.W. Hu (a, c, d, e, f, g and h) and Y.D. 
Zhou (b)

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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zone (HZ), Afro- alpine zone (AZ) and the nival zone (NZ) (Figures 1 
and 2; Table 1) (Coe, 1967; Niemelä & Pellikka, 2004; VECEA team, 
2012).

2.2 | Data sources

We compiled a comprehensive checklist of seed plants based on data 
from various scientific expeditions to Mount Kenya since the 1900s. 
These data sources include published floras and field guides such as 
Flora of Tropical East Africa (FTEA editors, 1952–2012), Upland Kenya 
Wild Flowers and Ferns (Agnew, 2013), Wild Flowers of East Africa 
(Blundell, 1987) and Kenya Trees Shrubs and Lianas (Beentje, 1994), 
data of specimens from East African Herbarium, Nairobi, Kenya (EA) 
and Global Biodiversity Information Facility (GBIF, https://www.
gbif.org/), and data from our own scientific expedition from 2009 
to 2016 (specimens were stored at Herbarium of Wuhan Botanical 
Garden, Wuhan, China, HIB). Species were assigned to vegetation 
zones according to the sampling locations and habitat descriptions 
described in the monographs. Growth forms of species were classi-
fied as either woody or herbaceous plants.

2.3 | Taxonomic metrics

To eliminate the area effect on species richness in zones of different 
sizes, species density (D) for each zone was calculated based on the 
following equation (Li et al., 2015; Vetaas & Grytnes, 2002):

where S is number of species in each zone and A is the area of each 
zone.

2.4 | Phylogeny construction

Our primary goal was to calculate phylogenetic distance metrics 
and we first constructed a phylogenetic tree for all the seed plants 
of Mount Kenya using the Phylomatic program with the stored tree 
from Zanne et al. (2014) (Webb & Donoghue, 2005). The branch 
lengths of the supertree, in millions of years, were used to create a 
distance matrix with cophenetic distances. We also built two phylo-
genetic trees using only woody and herbaceous plants, respectively.

D=S∕ ln (A)

TABLE  1 Elevation ranges, area, annual mean precipitation, and representative species for the seven vegetation zones of Mount Kenya

Zones Elevation (m) Area (km2)
Annual mean 
precipitation/mm Representative species

Lower Montane Wet Forest 
(LMWF)

1,450–3,110 852 1,090–2,170 Newtonia buchananii (Baker) G.C.C. Gilbert & 
Boutique 
Ocotea usambarensis Engl. 
Tabernaemontana stapfiana Britten 
Vitex keniensis Turrill 
Xymalos monospora (Harv.) Baill. ex Warb. 
Zanthoxylum gilletii (De Wild.) P.G. Waterman

Lower Montane Dry Forest 
(LMDF)

1,850–3,030 456 870–1750 Juniperus procera Hochst. ex Endl. 
Olea europaea L.

Bamboo Zone (BZ) 2,140–3,270 400 1,260–1,910 Lobelia bambuseti R.E. Fr. & T.C.E. Fr. 
Sambucus africana Standl. 
Yushania alpina (K. Schum.) W.C. Lin

Upper Montane Forest (UMF) 2,650–3,890 342 1,310–1,800 Hagenia abyssinica J.F. Gmel. 
Hypericum revolutum Vahl 
Podocarpus latifolius (Thunb.) R. Br. ex Mirb.

Heath Zone (HZ) 3,040–4,240 270 1,540–1,860 Alchemilla argyrophylla Oliv. 
Erica arborea L. 
E. trimera subsp. keniensis (S. Moore) Beentje 
Protea caffra subsp. kilimandscharica (Engl.) 
Chisumpa & Brummitt

Afro- alpine Zone (AZ) 3,380–4,790 119 1,720–1,970 Carduus keniensis R.E. Fr. 
Dendrosenecio keniodendron (R.E. Fr. & T.C.E. Fr.) 
B. Nord. 
D. keniensis (Baker f.) Mabb. 
Festuca pilgeri St.- Yves 
Lobelia gregoriana Baker f. 
L. telekii Schweinf.

Nival Zone (NZ) 4,500–5,199 9 1,860–1,970 Arabis alpina L. 
Helichrysum brownei S. Moore 
Senecio purtschelleri Engl. 
Valeriana kilimandscharica Engl.

https://www.gbif.org/
https://www.gbif.org/
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2.5 | Phylogeny metrics

We calculate two diversity measures PD and SES_PD, for total, 
woody, and herbaceous plants of each zones. Faith’s phylogenetic 
diversity (PD) is widely used in several conservation studies, al-
though it is positively correlated with species richness (Li et al., 
2015). A null model to standardize PD measurements and standard 
effect size phylogenetic diversity (SES_PD) was also calculated by 
dividing the difference between the observed and expected PD by 
the standard deviation of the null distribution. Phylogenetic struc-
ture was calculated using the net relatedness index (NRI) and the 
nearest species index (NTI) (Webb, Ackerly, McPeek, & Donoghue, 
2002) as follow:

MPD refers to the average phylogenetic relatedness between 
all possible pairs of taxa in an assemblage. MPDobserved is the 
observed MPD, MPDrandomized is the expected MPD of random-
ized assemblages, and sdMPDrandomized is the standard deviation 
of randomized MPD. Randomization involved shuffling the spe-
cies identities of individuals in the sample. MNTD represents 
the mean phylogenetic relatedness between each species and its 
nearest relative in the assemblage. MNTDobserved is the observed 
MNTD, MNTDrandomized is the expected MNTD of randomized 
assemblages, and sdMNTDrandomized is the standard deviation 
of randomized MNTD. We used 999 randomized communities 
for each analysis to assess the statistical significance of the ob-
served patterns. A two- tailed significance test was used to assess 
whether these NRI/NTI results differed significantly from zero. 
Consequently, positive NRI/NTI values indicate phylogenetic 
clustering that species are more closely related than expected, 
and negative NRI/NTI values indicate phylogenetic overdisper-
sion and species in communities are more distantly related than 
expected (Webb et al., 2002). All the phylogenetic analyses were 
performed in R 3.3.3 software (R Core Team, 2017) with the pi-
cante package (Kembel et al., 2010).

3  | RESULTS

3.1 | Species richness, density, and phylogenetic 
diversity of seed plants

A total of 1335 seed plants of Mount Kenya were compiled across 
all of the vegetation surveys, including subspecies and varieties, 
which belonged to 628 genera and 134 families. There were 429 
woody plants (32% in total, including 146 trees, 238 shrubs, and 
45 lianas) and 906 herbaceous plants (68% in total, including 64 
herbaceous climbers and 842 herbs) (Figure 3). As expected, spe-
cies richness, density, and phylogenetic diversity were found to 
be the highest in low montane dry forest (LMDF) and the lowest 
in nivial zone (NZ), while the SES_PD was found to be the highest 
in low montane wet forest (LMWF) and the lowest in Afro-alpine 
zone (AZ) (Table 2).

There were notable differences between the diversity of herba-
ceous and woody communities. SR, D, and PD of woody plants were 
highest in LMWF, while those of herbaceous plants were highest in 
LMDF. The SES_PD of woody and herbaceous plants was both high-
est in LMWF and LMDF. The lowest SR, D, and PD were found in NZ, 
for both woody and herbaceous plants, while the lowest SES_PD 
was both found in AZ (Table 2).

3.2 | Phylogenetic structure of total, woody, and 
herbaceous plants

When we examined differences between forest zones (LMWF, 
LMDF, BZ, and UMF) and alpine zones (HZ, AZ, and NZ), both NRI 
and NTI showed substantially increased pattern while NRI is not 
significant (P = 0.191) and NTI is significant (P < 0.05; Figure 4). NRI 
and NTI showed different patterns in total, woody, and herbaceous 
plants (Figure 5). For total plants, NRI of LMDF and NTI of LMWF 
were negative, indicating phylogenetic overdispersion in these two 
zones. In contrast, NRI and NTI of other zones were positive, indicat-
ing phylogenetic clustering (Figure 5a,d). For woody plants, all the 
NTI were positive, while NRI in LMWF, LMDF, BZ, and UMF were 
negative, indicating phylogenetic overdispersion in these four zones 
(Figure 5b,e). For herbaceous plants, most of NRI and NTI values 
were positive, indicating phylogenetic clustering, while NRI and NTI 
of LMWF were nonsignificant negative values (Figure 5c,f).

(1)NRI=−1× (MPDobserved−MPDrandomized)∕sdMPDrandomized

(2)NTI=−1× (MNTDobserved−MNTDrandomized)∕sdMNTDrandomized

F IGURE  3 Species richness of woody 
and herbaceous plants in Mount Kenya. 
(a) Species richness of woody and 
herbaceous plants; (b) species richness of 
trees, shrubs, lianas, herbaceous climbers, 
and herbs
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4  | DISCUSSION

The species richness of woody and herbaceous plants of forests is 
expected to be affected by environmental variation, forest canopy, 
and anthropogenic disturbances (Clinton, 2003; Schmitt, Denich, 
Demissew, Friis, & Boehmer, 2010; Zhang, Huang, Wang, Liu, & Du, 
2016). Woody plants are probably more strongly influenced by large- 
scale environmental variations than herbaceous plants, such as the 
changes of moisture, temperature, or altitude (Schmitt et al., 2010). 
That is to say, the difference in humidity between the southeast and 
northwest slopes of Mount Kenya has a stronger influence on species 
richness of woody plants, and lead the LMWF to have the highest level 
of species richness of woody plants. The density of forest canopy could 
influence the light intensity, moisture, and temperature in the under-
story (Clinton, 2003; Whittaker, 1960). There are many big trees found 
in LMWF, such as Newtonia buchananii (Fabaceae), Ocotea usambaren-
sis (Lauraceae), Vitex keniensis (Lamiaceae), Tabernaemontana stapfiana 

(Rubiaceae), and Zanthoxylum gilletii (Rutaceae) (Table 1). These tall 
trees as well as other small trees, shrubs, or lianas form highest level 
of species density of wood plants, which blocks sunshine, leading to 
stunted development of understory herbaceous plants (Table 2). In 
contrast, LMDF is dominated by small trees and shrubs, as well as few 
large trees, such as Juniperus procera (Cupressaceae) and Olea europaea 
(Oleaceae), and this leads to better development of understory herba-
ceous plants due to light availability. In addition, the areas with mod-
erate impacts may have greater environmental heterogeneity, which 
could provide greater opportunities for plants to growth (Pausas & 
Austin, 2001; Zhang et al., 2016). The degree of human disturbance 
on the northwest slope of Mount Kenya is obviously greater than that 
in the southeast slope, for example, the two famous mountaineering 
routes of Mount Kenya, Naromoru Track and Sirimon Track, are both 
located in the west slope of this mountain, which with more tourist 
activities every year. This could lead the LMDF with moderate impacts 
has the highest level of total species richness.

Although NRI and NIT of LMWF have no significant negative 
values, most of these two indices showed positive values in dif-
ferent zones of Mount Kenya and had a generally increasing trend 
as the zones changed, and this indicates that herbaceous plants in 
Mount Kenya have clustering phylogenetic structures, and tend to 
be more phylogenetically clustered at higher elevations (Figure 5e,f). 
Interestingly, the NRI of herbaceous plants of AZ and NZ was smaller 
than those of BZ, UMF, and HZ, and a similar pattern could be found 
in NRI of total plants (Figure 5). This phenomenon was also found in 
areas above 5,500 m asl. in Hengduan Mountains, China, and this 
can be attributed to the fact that in the upper elevation zones, the 
plants were sparsely distributed and this lead to a decrease in in-
terspecific competition (Li, Zhu, Niu, & Sun, 2013). While, in woody 
plants, there are obvious increasing trends of NRI and NTI as the 
zones transition from UMF to NZ (Figure 5). Combining the phy-
logenetic structure patterns of woody and herbaceous plants, we 
strongly support that, large woody plants have climate- dominated 
niches, whereas herbaceous plants have edaphic and microhabitat- 
dominated niches, and the temperature or climate filtering process 
presumably has played a greater role in structuring species into local 
communities for woody plants than for herbaceous plants (Qian, Jin, 
& Ricklefs, 2017; Ricklefs & Latham, 1992).

TABLE  2 Species richness (SR), density (D), phylogenetic diversity (PD), and standard effect size phylogenetic diversity (SES_PD) of total, 
woody, and herbaceous plants among different vegetation zones of Mount Kenya

Zones

Total plants Woody plants Herbaceous plants

SR D PD SES_PD SR D PD SES_PD SR D PD SES_PD

LMWF 832 123.30 39,230.48 2.15 327 48.46 17,930.22 0.65 505 74.84 23,737.65 1.37

LMDF 905 147.82 39,279.75 −3.30 271 44.26 15,077.24 −1.12 634 103.55 26,603.27 −2.99

BZ 354 59.08 17,855.20 −3.29 71 11.85 5,232.94 −0.40 283 47.23 13,887.90 −2.31

UMF 283 48.50 14,921.75 −2.78 50 8.57 4,144.94 0.29 233 39.93 11,802.95 −2.42

HZ 322 57.52 15,332.14 −5.41 46 8.22 3,286.01 −1.66 276 49.30 12,919.84 −4.04

AZ 192 40.17 9,504.18 −5.49 23 4.81 1,722.95 −1.84 169 35.36 8,337.71 −4.37

NZ 65 29.58 3,689.96 −4.52 7 3.19 666.38 −0.80 58 26.40 3344.03 −3.81

F IGURE  4 Comparison of (a) NRI and (b) NTI between forest 
zones (LMWF, LMDF, BZ, and UMF) and alpine zones (HZ, AZ, and 
NZ). Solid black lines in the central of boxes represent quantile 
values. P- values show the significance t tests
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The phylogenetic structure (NRI and NTI) of total plants clus-
ter further as the vegetation change from forest to alpine zones 
(Figure 4), and this result supports that, competition structured 
communities at low elevation areas, while at the high elevation 
areas, the environmental stress acted as a filter on lineages due to 
lower temperatures and unstable climate (Li et al., 2013; Machac, 
Janda, Dunn, & Sanders, 2011; Webb et al., 2002). Our results 
also showed that phylogenetic structures have different patterns 
for different growth forms as the vegetation zones changed. For 
woody plants, NRI and NTI increase as the vegetation zones change 
with a minor peak both in NRI and in NTI at the upper montane for-
est (UMF). A similar phenomenon was reported in central Veracruz, 
Mexico, with a sharp drop of NRI at around 2500 m asl, which is a 
representative of Cloud forest (Gómez- Hernández et al., 2016). In 
Mount Kenya, the upper montane forest is also called Cloud forest 
or Moist forest, although rainfall in this region is lower than in the 
montane rainforest zone, evaporation is also lower, and frequent 
heavy mists contribute to the humidity (Niemelä & Pellikka, 2004). 
It has different characteristics and includes tree species such as 
Hagenia abyssinica (Rosaceae), Hypericum revolutum (Hypericaceae), 
and Juniperus procera (Cupressaceae) (Lange et al., 1997; Niemelä 
& Pellikka, 2004). Our result of phylogenetic structures of woody 
plants suggested the most phylogenetic overdispersed zone in 
Mount Kenya occurred at the ecotone where different zones over-
lapped with equal chances of each dominating (Gómez- Hernández 
et al., 2016).

Recently, several studies explicitly compared biodiversity 
conservation prioritizations based on both species richness and 

phylogenetic diversity criteria to assess the efficacy of each ap-
proach (Forest et al., 2007; Kraft, Baldwin, & Ackerly, 2010; Li 
et al., 2015; Vandergast, Bohonak, Hathaway, Boys, & Fisher, 
2008). These authors suggested that biodiversity conservation is 
maximized by the inclusion of communities and zones with overdis-
persed phylogenetic structure, because such natural areas include 
phylogenetically distantly related lineages (Li et al., 2015). Other 
have suggested that proportional endemism is a more important 
consideration than phylogenetic diversity in developing conser-
vation priorities (Brewer, 2017), but we were not able to assess 
proportional endemism of each vegetation of Mount Kenya in the 
current study. In this case, the two lower montane forest zones 
(LMWF and LMDF) and the upper montane forest (UMF) of Mount 
Kenya should be given as much attention in conservation as the 
alpine zones because these forest zones are the most phylogenet-
ically diverse and also have the highest species richness which is 
the key to the maintenance of biodiversity (Vanleeuve et al., 2003). 
The mountain chains of eastern Africa, which extend from the 
Ethiopian mountains, through east African nations and southwards 
to Mozambique, are formed as the result of an active continental 
rift (Chorowicz, 2005). It contains the Eastern Afromontane bio-
diversity hotspot (EABH), which is the one out of eight biodiver-
sity hotspots of the Afromadagascan region (Mittermeier, Turner, 
Larsen, Brooks, & Gascon, 2011). The kind of degradation experi-
enced in Mount Kenya is similar to that found in the lower mon-
tane forests of most other mountains in EABH (Giliba et al., 2011; 
Lambrechts et al., 2003; Lambrechts, Woodley, Hemp, Hemp, & 
Nnyiti, 2002; Petursson, Vedeld, & Sassen, 2013; Teketay, 1992). 

F IGURE  5 Variation in community phylogenetic relatedness among zones of Mount Kenya. Positive index values indicate phylogenetic 
clustering, and negative values indicate phylogenetic overdispersion. Values with P ≤ 0.05 are depicted as black points, values with 
0.05 > P > 0.95 are depicted as white points, and values with P ≥ 0.95 are depicted as gray points
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Our findings have a profound effect on biodiversity conservation 
across the EABH as the vegetation types in these mountains are 
similar to those of Mount Kenya (Bussmann, 2006). It is important 
that the lower and upper montane forests of EABH should be given 
as much attention in conservation just like Mount Kenya, for they 
also have the highest species richness and most diverse phyloge-
netic lineages, in addition to having the highest evolutionary poten-
tial (Faith, 1992; Forest et al., 2007; Li et al., 2015).
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