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Chinese hamster ovary (CHO) cells are one of the most commonly used

expression systems for the production of recombinant proteins but low

levels of transgene expression and transgene silencing are frequently

encountered. Epigenetic regulatory elements such as the chicken b-globin
locus control region hypersensitive site 4 (HS4) and scaffold/matrix attach-

ment regions (S/MARs) have positive effects on transgene expression. In

this study, a chimeric HS4-SAR was cloned upstream or downstream of an

enhanced green fluorescent protein (eGFP) expression cassette in a eukary-

otic vector, and the resulting vectors were transfected into CHO cells.

eGFP was detected by flow cytometry. Real-time quantitative PCR (qPCR)

was used to determine copy numbers of the stably transfected cells. And

fluorescence in situ hybridization (FISH) was used to detect the status of

vector in the host cell chromosome. The results showed that HS4-SAR

positioned downstream of the expression cassette could enhance eGFP

expression by 4.83-fold compared with the control vector. There may not

be a relationship between transgene copy number and gene expression

level. HS4-SAR did not appear to alter the integration of the transgene

into the host cell chromosome or its position in the chromosome. We

found a synthetic chimeric HS4-SAR positively increased transgene expres-

sion in CHO cells.

Since genetic engineering techniques were first devel-

oped in the 1970s, molecular biology technology has

advanced rapidly. The Chinese hamster ovary (CHO)

cells expression system is one of the most commonly

used expression systems for the production of recombi-

nant proteins, which has many advantages, including

precise post-transcriptional modification function, pro-

duction of proteins resembling native proteins in terms

of molecular structure, high efficiency of recombinant

gene amplification and expression, stable integration of

exogenous genes into the CHO cell chromosome, and

the ability to be cultured under adherent or suspension

conditions [1–3]. However, some limitations leading to

low levels of transgene expression and transgene silenc-

ing have restricted the wide use of the CHO cell

expression system [4,5].

Scaffold/matrix attachment regions (S/MARs) can

block transgene silencing [6–8] and increase transgene

Abbreviations

CHO, Chinese hamster ovary; eGFP, enhanced green fluorescent protein; FISH, fluorescence in situ hybridization; GAPDH, glyceraldehyde

phosphate dehydrogenase; HS4-SAR, hypersensitive site 4–scaffold attachment region; S/MARs, scaffold/matrix attachment regions.

2021FEBS Open Bio 7 (2017) 2021–2030 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



expression levels and stability in host cells [9–15]. In

addition, S/MARs can also reduce variations in trans-

gene expression among different cells to some extent,

and the rate of transgene genomic integration can be

increased [11]. However, some reports have shown that

S/MARs have inconsistent effects on transgene expres-

sion [16–18].
Scaffold/matrix attachment regions play important

roles in defining the structural units of chromatin,

functioning as boundary elements bordering the

regions of a condensed or open chromatin structure

[19]. S/MARs are special DNA sequences that exist in

chromatin of eukaryotic cells and can combine with

the nuclear matrix. S/MARs are AT-rich sequences

that are ~ 300–2000 bp in length and contain an A-

box, T-box, Drosophila topoisomerase II recognition

sites, and curved DNA. The secondary structure of

MARs contains narrow DNA and the small groove,

making the chain easy to curve and melt. Insulators

are cis-acting regulatory sequences that enhance block-

ing activity to prevent the spread of heterochromatin

and silencing of genes [20]. The chicken hypersensitive

site 4 (cHS4) is one of most commonly used and best

characterized insulators and possesses both enhancer-

blocking and barrier activity [21,22]. Some reports

have described the effects of cHS4 and MARs on

transgene expression; however, how the combination

of the two elements elevates transgene expression is

unclear. In a previous study, a chimeric hypersensitive

site 4–scaffold attachment region (HS4-SAR) insulator

was shown to prevent silencing and enhance the

expression of lentiviral vectors in pluripotent stem cells

[9]. Whether this sequence can affect transgene expres-

sion in CHO cells has not been evaluated.

In this study, a chimeric HS4-SAR was synthesized

and ligated to the upstream or downstream region of

expression cassettes in a eukaryotic vector, and trans-

fected into CHO cells, and further studied the effects

and mechanism of the chimeric HS4-SAR on trans-

gene expression in stably transfected CHO cells.

Materials and methods

HS4-SAR synthesis and vector construction

According to a previously reported sequence [9], an HS4-

SAR DNA fragment was synthesized by General Biosys-

tems (Chuzhou, China). The synthetic HS4-SAR DNA

fragment was cloned into upstream or downstream region

of the expression cassette of pIRES-eGFP, which was

obtained via cloning the enhanced green fluorescent protein

(eGFP) from peGFP-C1 (Clontech, New York, NY, USA)

into the pIRES-neo vector (Clontech). The synthetic MAR

was ligated with pIRES-eGFP. All procedures were per-

formed according to the standard methods [23].

Cell culture and transfection

CHO-S cells (Life Technologies # A11557-01; Thermo

Fisher Scientific, New York, NY, USA) were plated at a

density of 2 9 105 cells per well in 24-well plates. The cells

were cultured in protein-free, serum-free, chemically defined

CD CHO medium (Life Technologies # 10743-029) supple-

mented with 8 mM L-glutamine (Life Technologies # 25030-

024) in 125-mL Corning shake flasks (Sigma # 431255; San

Francisco, CA, USA) with 30 mL medium in a humidified

incubator at 37 °C with 5% CO2. On the second day, after

reaching 80% confluence, the cells in each well were trans-

fected with the pIRES-sMAR3, pIRES-MAR5, and pIRES-

eGFP vectors using 1 lL Lipofectamine 3000 Transfection

Reagent per lg vector (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s instructions. At 48 h post-

transfection, G418 (800 lg�mL�1) was added to screen the

transfected cell lines.

Transient expression

At 48 h post-transfection, the transfection efficiency and

transient eGFP expression levels were analyzed by evaluat-

ing the fluorescence intensity in transfected cells by fluores-

cence microscopy (Nikon ECLIPSE Ti, Nikon, Japan). For

visualizing the cells clearly, in this study we set fluorescence

microscopy as follows: The cells were magnified 200 folds.

Moreover, the fluorescence microscopy can acquire an emis-

sion wavelength of 530 nm using a 530/15 bandpass filter

for the green fluorescence. The cells transfected with differ-

ent vectors were collected to detect the eGFP-positive cells

and mean fluorescence intensity (MFI) by flow cytometry.

Screening stability of transfected cells and flow

cytometry analysis

Stably transfected cell lines were selected using G418

(800 lg�mL�1) at 48 h after transfection. Approximately

2 weeks after transfection, stable transfected cell colonies

formed, and the cells were cultured with G418

(500 lg�mL�1). At 20 days post-transfection, when the

cells reached 90% confluence, we collected the cells and

analyzed the expression of eGFP by flow cytometry.

eGFP expression levels were determined by measuring the

MFI.

Real-time quantitative PCR

To assess the relationship between eGFP expression and

gene copy number, the cells were collected 30 days after

transfection, and genomic DNA was extracted for analysis
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by quantitative PCR (qPCR). Primers were designed

according to the sequence of eGFP, as follows: F1,

50-CTACGTCCAGGAGCGCACCATCT-30 and R1,

50-GTTCTTCTGCTTGTCGGCCATGATAT-30. The glyc-

eraldehyde phosphate dehydrogenase (GAPDH) gene was

used as an internal reference, and the primer sequences

were designed as follows: F1, 50-CGACCCCTTCATTGA

CCTC-30 and R1, 50-CTCCACGACATACTCAGCACC-30.
Before qPCR, the DNA for all samples was adjusted to

the same concentration using deionized water. qPCR was

carried out in a final volume of 10 lL containing 4 lL tem-

plate DNA (0.05 lg�lL�1), 5 lL SYBR Green, 0.2 lL of

each of the forward and reverse primers (10 lM each), and

0.6 lL deionized water. The PCR protocol was as follows:

95 °C for 3 min; 30 cycles of 94 °C for 30 s, 50 °C for

30 s, and 72 °C for 30 s; and 60 °C for 5 min. All samples

were evaluated three times. Through qPCR, the Ct value

can be obtained. Moreover, relative eGFP copy numbers

were calculated by the 2�DDCt method.

Fluorescence in situ hybridization (FISH) analysis

The cells were cultured and passaged in medium containing

G418 (500 lg�mL�1). At 30 days post-transfection, the cells

were collected for fluorescence in situ hybridization (FISH)

analysis. The number of fluorescent probes and the pres-

ence of the vector in the chromosomes of CHO cells were

observed under a fluorescence microscope.

Statistical analysis

All data were obtained from at least three independent experi-

ments and were analyzed using SPSS 18.0 software (SPSS

Inc., Chicago, IL, USA). Data are reported as means �
standard deviations. Comparisons between different groups

were analyzed using single factor ANOVA, and

t-tests were performed for pairwise comparisons. Differ-

ences with P values of < 0.05 were considered statistically

significant.

Results

Characteristics of the HS4-SAR sequence

The HS4-SAR sequence was synthesized according to

a previous study (Fig. 1A). The sequence contained

the HS4 insulator sequence, binding sites, interferon-

beta matrix association region, and immunoglobulin

matrix association region. The synthetic MAR was

inserted into the upstream or downstream region of

expression cassettes in the pIRES-eGFP vector. New

vectors were constructed (pIRES-sMAR3 and pIRES-

sMAR5; Fig. 1B), and the pIRES-eGFP vector was

used as a control.

Analysis of transfection efficiency and transient

expression

At 48 h after transfection, the fluorescence intensity

was observed using a fluorescent microscope (Fig. 2A).

Meanwhile, the cells were collected to detect the trans-

fection efficiency and MFI using flow cytometry. The

results showed that the transfection efficiency of

pIRES-sMAR3 was significantly higher than that of

pIRES-eGFP (Fig. 2B). In the meantime, the fluores-

cence intensity of cells transfected with the pIRES-

sMAR3 vector was higher than that of cells trans-

fected with the pIRES-eGFP (2.01 9 106�0.47 9 103

versus 1.2 9 106 � 0.24 9 103) vector. In contrast, the

MFI of cells transfected with the pIRES-sMAR5

(4.3 9 105 � 0.10 9 103) vector was lower than that

of cells transfected with the control vector (Fig. 2C).

Thus, HS4-SAR increased transgene expression when

the synthetic HS4-SAR was inserted into the expres-

sion cassette at the downstream region. However,

when the synthetic HS4-SAR was inserted into the

upstream region, the transgene expression level was

not increased.

Analysis of stably expression

At 48 h after transfection, G418 (800 lg�mL�1) was

used to screen the cells transfected with vectors. When

the cells untransfected with vector were killed, the sta-

bly transfected cell colony appeared. Then, we

observed the fluorescence intensity using a fluorescent

microscope. Additionally, we collected stably trans-

fected CHO cells and measured the fluorescence inten-

sity using a flow cytometry (Fig. 3A). The mean MFI

of the cells transfected with pIRES-sMAR3

(1.41 9 106 � 8.9 9 103) was higher than that of the

cells transfected with control (8.39 9 105 � 1.7 9 103;

Fig. 3B); the fold change of sMAR downstream

expression cassette of the vector on transgene expres-

sion levels was calculated (Fig. 3C). The highest of

eGPF gene expression in the pIRES-sMARs was 4.83-

fold compared with control vector. That suggests that

HS4-SAR could enhance transgene expression when

inserted into the downstream region of the expression

cassette of the vector in stably transfected CHO cells.

Analysis of long-term transgene expression

stability

The stability of transgene expression is an intractable

problem in the production of recombinant proteins. At

90 days after transfection, the cells were collected

again, and the fluorescence intensity was measured
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using flow cytometry (Fig. 4A). The fluorescence inten-

sities of cells transfected with pIRES-sMAR3 and

pIRES-eGFP were 1.27 9 106 � 1.3 9 103 and 7.28

9 105 � 0.64 9 103, respectively (Fig. 4B), demon-

strating that the synthetic HS4-SAR could improve

transgene expression. Additionally, the retention rates

of synthetic HS4-SAR and the control were 63.0%

and 60.0%, respectively, compared with the fluores-

cence intensity at 20 days (Fig. 4C). Accordingly, we

concluded that synthetic HS4-SAR enhanced the

stability of increased transgene expression.

Transgene copy number analysis

Whether there is a relationship between gene copy

number and transgene expression is unclear. Therefore,

we next analyzed the gene copy numbers in cells trans-

fected with the above-mentioned vectors. The mean

relative copy number of the pIRES-sMAR3 vector

was 1.15 � 0.32, as determined by setting the copy

number of the control vector to 1 (Fig. 5). Combined

with our previous analysis of eGFP expression levels,

these data suggested that there may not be a relation-

ship between transgene copy number and gene expres-

sion level.

FISH analysis

Some reports demonstrated that integrated vectors

can improve transgene expression stability. To detect

the state of the vector in the CHO cell chromosome,

we performed FISH analysis on spread chromosomes

Fig. 1. Synthesis of chimeric HS4-SAR sequence and plasmid construction. According to reported chimeric HS4-SAR sequence, HS4-SAR

was synthesized. The yellow (both light and dark) represents HS4 insulator, and the dark yellow is core sequence of HS4 insulator. The

green represents interferon-beta matrix association region. The red represents immunoglobulin matrix association region (A). The synthesis

chimeric HS4-SAR sequence was inserted into the upstream or downstream region of an enhanced green fluorescent protein (eGFP)

expression cassette in pIRES-eGFP to construct the pIRES-sMAR5 and pIRES-sMAR3, respectively (B). CMV, cytomegalovirus major

immediate early; eGFP, enhanced green fluorescent protein; IRES, internal ribosome entry site; sMAR, synthetic matrix attachment region;

SpA, simian virus 40 early polyadenylation signal.
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from CHO cells transfected with pIRES-sMAR3 and

pIRES-eGFP vectors at 30 days after transfection in

the presence of G418 selection pressure. Five

metaphase plates were analyzed by FISH for each

vector. FISH analysis showed that the vector has

two forms in the host cell chromosome, episomal

and integrated. The status of transgene in the chro-

mosome mediated by MAR element showed no sig-

nificant difference, and transgenes did not appear to

be targeted to specific chromosomal locations

(Fig. 6A,B).

Discussion

A recombinant protein produced by a mammalian

expression system has many advantages, including

strong specificity, low toxicity, few side effects, and

clear biological function, compared with micro-

molecules making up chemical medicines. The CHO

cell system is an important mammalian expression sys-

tem [24,25]. However, owing to epigenetic effects, for

example, silencing of transgenes, low efficiency, and

unstable transgene expression limit the wide applica-

tion of the CHO cell system for the production of

recombinant proteins [26,27].

Matrix attachment regions can increase expression

levels of the transgene in stably transfected CHO cells

[6–12]. However, the characteristics and mechanism

of MARs function have not been elucidated, and fur-

ther studies are needed to develop improved methods

for transgene expression. In our study, a synthetic

HS4-SAR sequence (1010 bp in length) was designed.

The results indicated that insertion of the HS4-SAR

sequence into the 30-end of the pIRES-eGFP vector

could increase transgene expression. However, inser-

tion of the MAR sequence into the 50-end of the vec-

tor did not increase transgene expression. The

position of MAR in the vector can affect the trans-

gene expression levels. MAR can increase transgene

expression in CHO cells when inserted upstream of

the promoter and enhancer [28–30]. However, it has

been demonstrated that MAR’s enhancing effect was

significant when downstream of the transgene and

poly A [31]. This may be that MAR acts boundary

elements, but the function needs the synergistic effect

of insulator. If MAR confers the enhancer’s effect,

MAR can increase transgene expression, not the posi-

tion effect. Other MARs did not have the enhancer’s

function, which increases transgene expression only

through boundary elements. They can function when

A
a

b

c

B

C

Fig. 2. Fluorescence microscopy of eGFP gene in transfected CHO cells after 48 h of transfection. (A) Micrograph of cells transfected with

pIRES-sMAR5 vectors (a), pIRES-sMAR3 (b) vectors, and pIRES-eGFP vectors (c). (B) Cell transfection efficiency was detected using eGFP

antibody by flow cytometry. (C) Meanwhile, the transient expression levels of eGFP were obtained (*P < 0.05).

2025FEBS Open Bio 7 (2017) 2021–2030 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

S.-j. Chen et al. MARs and transgene expression



Fig. 3. Analysis of the stable transgene eGFP expression. Cells were collected under G418 screening at day 20 post-transfection. (A)

Micrograph of cells that express different eGFP expression levels and transfected with pIRES-sMAR3 vector (a) and pIRES-eGFP vector (b).

And the cell counts at different eGFP expression levels were compared (c). B) Flow cytometric analysis of transgene eGFP expression.

After 20 days of transfecting vectors, recombinant protein expression stability was tested using flow cytometric analysis. The eGFP

expression level was represented by the MFI. (C) The fold change of eGFP expression levels in cells transfected with pIRES-sMAR3 and

pIRES-eGFP vectors was calculated (*P < 0.05).

Fig. 4. Evaluation of stability of long-term transgene expression. Stably transfected CHO cells were cultured in G418 (500 lg�mL�1), and

the cells were collected again and MFI by flow cytometry at days 90 after transfection. (A) Flow cytometric analysis of transgene eGFP

expression levels. (B) The eGFP expression level was represented by the MFI. (C) Statistical analysis of recombinant protein expression rate

(*P < 0.05).
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MARs are separated by insulator (polyA) elements

downstream of the expression cassette.

There are two forms of expression vector on the

chromosome of host cell, episomal and integration.

Girod et al. [29] found that MAR element did not

reveal a high occurrence of multiple integration events

or of abnormal chromosomal structures. In the present

study, the FISH results showed that the status of

pIRES-sMAR3 and pIRES-eGFP vectors was not sig-

nificantly different; the episomal and integration sta-

tuses exist in MAR-containing vector and the control.

This result indicated that MAR’s enhancing effect had

no influence on the status of vector in the chromosome

of the host cells, which is consistent with the previous

study [29].

In a previous study, X-29 and 1–68 were found to

be optimal MAR sequences for improving transgene

expression [29]. X-29 and 1–68 were 3492 and 3630 bp

in length, respectively. Some epigenetic regulators,

such as special (A + T)-rich binding protein 1

(SATB1), nuclear matrix protein 4 (NMP4), and

CCCTC-binding factor (CTCF), can be bound by

MARs [32,33]. X-29 and 1–68 contain the characteris-

tic motifs of A-box, T-box, Hox, CCAAT enhancer-

binding protein (CEBP), NMP4, and forkhead activin

signal transducer-1 (FAST1). Compared with X-29

and 1–68, the synthetic MAR sequence contains the

characteristic motifs of A-box, T-box, topoisomerase

II, CTCF, upstream regulatory factor (USF), as well

as the HS4 insulator sequence, interferon-beta matrix

association region, and immunoglobulin matrix associ-

ation region. CTCF and USF may bind with the HS4

insulator sequence, interferon-beta matrix association

region, and immunoglobulin matrix association region

to enhance transgene expression through MARs.

MAR’s function can be predicted; more potent MARs

can be used to improve recombinant protein produc-

tion through analysis of the MAR characteristic motif

[29,34]. The stable expression of a transgene requires

that the vectors are integrated into the chromosome of

host cells [35,36]. The source of MARs, the inserted

position of MARs, and the type of host cells may

affect transgene expression by MAR [5,30,37,38].

Moreover, gene copy numbers are related to transgene

expression [39], and the methylation of DNA may

reduce transgene expression [40–42]. Some reports

have demonstrated that MARs improve the expression

of transgenes through the recombination pathway of

synthesis-dependent microhomology-mediated end-

joining (MMEJ) [8,43,44]. However, none of these

studies assessed the effects of the characteristic

sequences of MARs on transgene expression. Only by

elucidation of the structure and mechanisms of MARs

can we better resolve the epigenetic effects of transgene

expression. In this study, the synthetic HS4-SAR was

inserted into different positions in the vector to

Fig. 5. Gene copy number was determined with fluorescent

quantitative PCR. We collected the transfected cells that were

cultured in G418 (500 lg�mL�1) at 30 days post-transfection. The

copy numbers were tested using fluorescent quantitative PCR.

And copy number’s mean values differed between the vectors

containing the HS4-SAR and control (P < 0.05).

A B

Fig. 6. The status of plasmids in transfected CHO cells. At 30 days post-transfection, the cells cultured in G418 (500 lg�mL�1) were

collected and tested by FISH analysis. pIRES-sMAR3 (A), pIRES-eGFP (B). 1: episomal; 2: integrated.
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evaluate the effects of position, characteristic motifs,

and copy numbers on transgene expression. Detection

of eGFP expression by flow cytometry demonstrated

that MARs could increase transgene expression, and

FISH analysis showed that the vector has two forms

in the host cell chromosome, episomal and inte-

grated.

The reporter gene was used as the target gene, and no

therapeutic proteins were studied. The synthetic HS4-

SAR can increase transgene expression level; however,

whether HS4-SAR can function in other expression sys-

tems needs to be explored. In summary, we found that

HS4-SAR could effectively increase and maintain trans-

gene expression when inserted downstream of the trans-

gene and poly A, and the effect may not be caused by

transgene copy numbers increasing and the status of

vector in the chromosome of the host cells. In the fol-

lowing studies, the gene of interest for recombinant pro-

tein production and mechanisms underlying these

effects will be investigated and elucidated.
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