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Maternal dyslipidemia during pregnancy has been associated with suboptimal fetal growth
and increased cardiometabolic diseasse risk in offspring. Altered placental function driven
by placental gene expression is a hypothesized mechanism underlying these associations.
We tested the relationship between maternal plasma lipid concentrations and placental
gene expression. Among 64 pregnant women from the NICHD Fetal Growth
Studies–Singleton cohort with maternal first trimester plasma lipids we extracted RNA-
Seq on placental samples obtained at birth. Placental gene co-expression networks were
validated by regulatory network analysis that integrated transcription factors and gene
expression, and genome-wide transcriptome analysis. Network analysis detected 24 gene
co-expression modules in placenta, of which one module was correlated with total
cholesterol (r � 0.27, P-value � 0.03) and LDL-C (r � 0.31, P-value � 0.01). Genes in
the module (n � 39 genes) were enriched in inflammatory response pathways. Out of the
39 genes in the module, three known lipid-related genes (MPO, PGLYRP1 and LTF) and
MAGEC2 were validated by the regulatory network analysis, and one known lipid-related
gene (ALX4) and two germ-cell development-related genes (MAGEC2 and LUZP4) were
validated by genome-wide transcriptome analysis. Placental gene expression signatures
associated with unfavorable maternal lipid concentrations may be potential pathways
underlying later life offspring cardiometabolic traits.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT00912132.
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INTRODUCTION

Offspring exposed to maternal dyslipidemia during pregnancy may have suboptimal fetal growth,
(Mossayebi et al., 2014; Farias et al., 2017), and may be at higher risk of cardiometabolic diseases in
later life such as dyslipidemia, atherosclerosis, hypertension, obesity and type 2 diabetes. (Curhan
et al., 1996; Pettitt and Jovanovic, 2001; Samaras et al., 2003). The concept of fetal programming of
cardiometabolic diseases is well documented, (Barker, 1998), however the mechanisms are not
clearly understood. As the key organ of the maternal-fetal exchange and lipid radicals transfer, the
placenta can play a role in this programming. (Myatt, 2006). Maternal dyslipidemia may impact
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placental growth and function, (Zhang et al., 2017), and has been
shown to modify placental epigenome, (Shrestha et al., 2019;
Ouidir et al., 2020), where some of these modification may alter
gene expression in metabolism-related genes. (Kerr et al., 2018).
Studies have reported modifications of placental expression of
genes related to lipids in obese compared to lean pregnant women
(Hirschmugl et al., 2017) and in rabbits with type-1-diabetes.
(Rousseau-Ralliard et al., 2019). Furthermore, some studies have
highlighted the impact of a maternal high-fat/obesogenic diet on
placental transcriptome among rats (Lin et al., 2019) and mice;
(King et al., 2013); however, to our knowledge there has been no
study on the impact of maternal lipid concentrations on placental
gene expression.

Leveraging differences in gene expression can highlight
biological pathways implicated in the influence of maternal
dyslipidemia on offspring future health. It is increasingly
recognized that the genes that have the greatest difference in
expression may not directly drive the phenotype. Therefore,
integration of the expression profiles of a group of genes using
network analysis (network of correlated gene expressions) could
provide novel insights about biological pathways and clinical
intervention targets. Gene co-expression networks detect gene
modules (groups of co-expressed genes), giving a more robust
understanding of the underlying regulatory mechanism. (Hecker
et al., 2009). Moreover, genes that are co-expressed are co-
regulated by a shared regulatory factor; hence, integrating
transcription factors in co-expression networks provides novel
insights into shared gene regulatory pathways. (Hartemink et al.,
2002). This approach has been successfully used in studies of
cancer (Mantini et al., 2020) and obesity (Joseph et al., 2019), but
has not been used in lipid-related studies.

Our goal was to investigate the relationship between maternal
plasma lipid concentrations (i.e., total cholesterol, high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), and triglycerides) and placental gene co-
expression among healthy non-obese pregnant women
(Supplementary Figure S1). Specifically, we 1) built placental
gene co-expression modules, 2) tested the correlations between
the gene co-expression modules and maternal lipid traits, and 3)
validated our findings using integrative network analysis and
genome-wide gene-expression analysis.

MATERIALS AND METHODS

Study Population
This study involved 64 pregnant women from the Eunice
Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) Fetal Growth
Studies–Singleton cohort who had plasma lipid concentrations
measured at enrollment and provided placenta samples at
delivery from which RNA was extracted. The overall cohort
included 2,334 non-obese pregnant women enrolled between
8 weeks and 6 days and 13 weeks and 6 days between July
2009 and January 2013 from 12 clinic sites within the US.
(Grewal et al., 2018) To be enrolled, women had to have no
past adverse pregnancy outcomes or self-reported behavioral risk

factors such as use of cigarettes, illicit drugs or alcohol in the
months prior to pregnancy. The study was approved by
institutional review boards at NICHD, each participating
clinical site and data coordinating centers. This study has been
performed in accordance with the principles of the Declaration of
Helsinki.

Maternal Blood Lipid Concentration
Measurements
Total cholesterol, HDL-C and triglyceride concentrations in
plasma were measured using maternal non-fasting blood
samples collected at enrollment (10 weeks 0 days–13 weeks
6 days of pregnancy). Lipid measurement methods have been
previously published. (Shrestha et al., 2019; Ouidir et al., 2020).
Briefly, LDL-C was calculated using the Friedewald formula,
(Friedewald et al., 1972), while other lipids were directly
measured using the Roche COBAS 6000 chemistry analyzer
(Roche Diagnostics, Indianapolis, IN). The inter-assay
laboratory coefficients of variation were 2.2, 3.2, and 2.3% for
total cholesterol, HDL-C and triglycerides, respectively. Lipids
were dichotomized using clinically accepted cut-points for
cardiovascular disease risk comparing unfavorable versus
favorable values based on the third report of the National
Cholesterol Education Program (NCEP III) criteria (Expert
Panel on Detection and Adults, 2001): high vs normal total
cholesterol (≥200 mg/ dl vs < 200 mg/ dl), low vs. normal
HDL-C (≤50 mg/ dl vs. > 50 mg/ dl), high vs normal LDL-C
(≥100 mg/dl vs. < 100 mg/ dl), and high vs normal
triglycerides (≥150 mg/dl vs. < 150 mg/ dl).

Placenta RNA Quantification for Gene Expression
Within 1 h after delivery, trained personnel rinsed the placenta
with sterile saline, pat dried, removed nonadherent bloods clots,
trimmed placental membrane and umbilical cord and collected
placenta biopsies measuring 0.5 cm × 0.5 cm x 0.5 cm directly
below the fetal surface. (Tekola-Ayele et al., 2020). Samples were
placed in RNALater and frozen. Processing was performed at the
Columbia University Irving Medical Center; RNA was extracted
from biopsies (n � 80) using TRIZOL reagent (Invitrogen, MA),
and sequenced using the Illumina HiSeq2000 system. (Delahaye
et al., 2018). The expression of the transcripts were quantified
using Salmon (Patro et al., 2017) which accounts for experimental
attributes and biases such as fragment GC-content bias that is
commonly observed in RNA-seq data; 19,087 protein-coding
genes were available for analysis. A total of 64 participants
had both placental RNA-seq and maternal lipid
concentration data.

Statistical Analysis
Gene Co-expression Network Construction
To construct gene co-expression modules, we performed a gene
co-expression network analysis (Zhang and Horvath, 2005) using
the Weighted Gene Co-expression Network Analysis (WGCNA)
R package. (Langfelder and Horvath, 2008). To reduce noise in
the co-expression network, 436 genes with missing gene
expression values in more than 95% samples or with zero
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variance were excluded, leaving 18,651 protein-coding genes for
analysis. Then, as recommended by authors of the WGCNA
package, we have done a variance-stabilizing transformation
using the “varianceStabilizingTransformation” function from
the DESeq2 R package. (Love et al., 2014). To create the gene
co-expression modules we chose the soft power of 6, which was
the lowest power for which the scale-free topology fit index curve
reached a saturation point at a high value (R2 > 0.8) and a
satisfying mean summary connectivity (Supplementary Figure
S2). We performed a one-step network construction and module
detection with a soft-threshold power of 6, an “unsigned”
topological overlap matrix, a minimum module size of 30 and
a merge cut height � 0.25 (i.e, the branches of the hierarchical
clusters were cut at height of 0.25 to define modules). The
hierarchical clustering dendrogram was successfully generated
(Supplementary Figure S3). Next, for each gene module, we
computed its eigengene (first principal component of the
expression matrix).

Correlations Between Lipids and Co-expression Modules
The correlations between lipid concentrations in the overall
samples as well as stratified by lipid cut-points (i.e., high vs
normal total cholesterol, low vs. normal HDL-C, high vs. normal
LDL-C, and high vs. normal triglycerides) and eigengene of each
co-expression module were tested using the “cor” function as
implemented in the WGCNA package. (Langfelder and Horvath,
2008). For each gene belonging to a module that was significantly
correlated with a lipid trait, we calculated module membership
and gene significance as implemented in WGCNA. Module
membership estimates the degree of correlation between gene
expression and module eigengene (calculated using the first
principal component of the expression matrix of the module)
i.e., the module membership quantifies the correlation of the gene
expression with the module. Gene significance indicates the
correlation between gene expression and the lipid trait. The
higher the correlation between module membership and gene
significance, the more reliable is the association between the
module and the lipid trait. In order to identify the gene that
best explains the functional features of the module, we identified
the hub gene (i.e., the gene with the highest connectivity: high
module membership and high gene significance). (Bhuva et al.,
2019). Further, we assessed whether placental expression of the
hub genes differed between women with favorable vs. unfavorable
lipid profiles.

Canonical Pathway Analysis
All genes belonging to a co-expression module that was
significantly correlated with maternal clinically unfavorable
lipid concentrations were further explored for canonical
pathways, networks, and diseases and biological function using
the “Core Analysis” function in Ingenuity Pathway Analysis (IPA,
QIAGEN, Redwood City, CA, United States, www.qiagen.com/
ingenuity). Statistically significant overrepresented canonical
pathways were determined by Fisher’s exact test followed by
adjustment for multiple testing using the Benjamini-Hochberg
method.

Gene Regulatory Network Analysis
While co-expression networks have been successful, they do not
explicitly integrate the biological mechanisms involved in
regulating gene expression, such as the binding of
transcription factors (TFs). We implemented an approach
known as Passing Attributes between Networks for Data
Assimilation (PANDA) (Glass et al., 2013) with three inputs:
our placental gene expression data, a TF motif prior and a set of
known protein-protein interactions (PPI) from NetZooR
package. To create specific transcriptional regulatory networks
for each lipid trait, we ran PANDA using the same TF motif prior
and PPI data, but separately including gene expression from
women with clinically unfavorable vs favorable lipid
concentrations for each lipid trait. For each lipid trait, we
calculated edge weight (the degree of connection between TF
and target gene) in dyslipidemic women and edge weight in non-
dyslipidemic women. We then identified subnetworks by
selecting high-probability edges specific to clinically
unfavorable lipid profiles, using one probability combining the
probabilities that an edge is both “supported” and “different”, as
described in Glass et al. (Glass et al., 2015) We select edges for
which this combined probability is greater than 97%; this cutoff
was chosen so that each subnetwork contains roughly 0.05% of all
possible edges obtained in our analysis (n � 653,729) in each
group. We verified the robustness of our network analysis to this
cutoff by varying it systematically between 80 and 99%
(Supplementary Figure S4), for which similar results were
found (Supplementary Figure S5).

Genome-wide Associations
As a validation method, we tested genome-wide associations
between mRNA levels of protein-coding genes and each
maternal lipid profiles (i.e., high total cholesterol vs. normal,
high LDL-C vs. normal, high triglycerides vs. normal and low
HDL-C vs. normal) using the R/Bioconductor package DESeq2.
(Love et al., 2014). DESeq2 implements negative binomial
generalized linear models and estimates dispersion and
logarithmic fold changes to quantify differential expression.
Adjustment factors in the model included maternal race/
ethnicity, maternal age in years, fetal sex, and the first 10
genotype principal components. The Benjamini-Hochberg
adjusted p-value of the Wald test was used to correct for
multiple testing.

Comparison Between the Different Methods Used
The three analyses (i.e., co-expression modules analysis, gene
regulatory network analysis and the genome-wide associations)
were performed separately, and the last two were used as
validation of the co-expression modules analysis. The results
of the analysis have been compared looking at the overlaps of
genes in the co-expression modules and the differentially
expressed genes from the network analysis and the genome-
wide analysis. Overlaps using the co-expressed modules
significantly associated with maternal lipids levels were
presented in Venn-diagram using the “vennDiagram” function
from the R/Bioconductor package limma, (Ritchie et al., 2015),
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while overlaps with non-significant modules were presented in a
Table as percentage of the number of genes by module.

RESULTS

Among the 64 women included in the analysis the mean
(standard deviation) maternal age and pre-pregnancy BMI
were 27.6 (5.8) yeas and 23.3 (3.0) kg/ m2, respectively, and
22% had high total cholesterol, 44% had high LDL-C, 17%
had high triglycerides and 16% had low HDL-C at enrollment
(Table 1). There was no significant difference in characteristics
of women included in our analytic sample and the full NICHD
Fetal Growth Study cohort (Table 1). The co-expression
network construction resulted in 24 placental gene co-
expression modules. The size of the modules ranged from 31
genes (module “darkturquoise”) to 5,923 genes (module
“turquoise”), with a median size of 534 genes per module
(Supplementary Table S1).

Total Cholesterol and LDL-C are Related to
Placental Expression of Genes Implicated in
Inflammatory Response
Total cholesterol and LDL-C were significantly correlated with
the “darkred” module (r � 0.27, P-value � 0.03 and r � 0.31,
P-value � 0.01, respectively, Figure 1), composed of 39 placental
co-expressed genes of which LCN2 is the hub gene
(Supplementary Table S2). LCN2 gene expression in placenta
did not differ by total cholesterol status (P-value � 0.93) but
tended to be upregulated in women with high LDL-C status
(P-value � 0.085, Supplementary Figure S6). The correlation
between “darkred”module and lipid concentrations was stronger

in the group of women with unfavorable lipid concentrations
than favorable lipid concentrations (r � 0.29, p-value � 0.02 vs. r �
0.19, p-value � 0.13 for high vs. normal total cholesterol and r �
0.29, p-value � 0.02 vs. r � 0.00, p-value � 0.99 for high vs. normal
LDL-C, Table 2). “Darkred” module membership was highly
correlated with gene significance for total cholesterol (r � 0.49,
p-value � 0.001) and gene significance for LDL-C (r � 0.63,
p-value � 1.4 × 10−5), confirming that the association between the
module and the two lipid traits was highly reliable (Figure 2).
Protein-protein interactions in the “darkred” module are
presented in the Supplementary Figure S7A

The genes included in the “darkred” module were enriched in
canonical IPA disease and function pathways mostly related to
inflammatory response and disease (FDR p-values ranged from
1.14 × 10−2 to 1.64 × 10−31; Supplementary Table S3). The top
IPA canonical pathways included pathways related to
inflammation and cardiometabolic function such as IL-8
Signaling (AZU1, DEFA1, MPO; p-value � 0.004) that plays a
central role in angiogenesis, tumor growth and inflammation;
liver X receptor/retinoid X receptor (LXR/RXR) Activation
(ORM1, S100A8; p-value � 0.018) which is involved in the
regulation of lipid metabolism, inflammation, and cholesterol;
and Atherosclerosis Signaling (ORM1, S100A8; p-value � 0.019;
Supplementary Table S4). The top IPA canonical networks were
enriched in inflammatory response, cardiovascular disease and
cardiovascular system development and function
(Supplementary Table S5).

Further validation analyses found that four placental co-
expressed genes in the “darkred” module (MAGEC2, PGLYP1,
LUZP4 and MPO) overlapped with a set of 141 genes that were
associated with high total cholesterol based on regulatory
network analysis (Supplementary Figure S8A; Supplementary
Table S6) or 68 genes that were associated with high total

TABLE 1 | Characteristics of the study subsample (n � 64) compared to the remaining samples not included in the present study from the NICHD fetal Growth
Studies–Singletons (total n � 2,334).

Characteristics Participants included (n = 64) Participants not included
(n = 2,270)

p-value

Mean ± sd or N
(%)

Mean ± sd or N
(%)

Maternal age, years 27.6 ± 5.8 28.2 ± 5.5 0.37
Maternal pre-pregnancy BMI, kg/m2 23.3 ± 3.0 23.3 ± 3.1 0.33
Maternal race/ethnicity 0.30
Non-Hispanic white 18 (28.1) 596 (26.3)
Non-Hispanic black 17 (26.6) 594 (26.2)
Hispanic 22 (34.4) 627 (27.6)
Asian and Pacific Islander 7 (10.9) 453 (20.0)

Gestational age at enrollment, weeks 12.7 ± 1.0 12.7 ± 1.0 0.85
Gestational age at delivery, weeks 39.2 ± 1.2 39.2 ± 1.8 0.81
Fetal sex 0.96
Male 33 (51.6) 1072 (47.2)
Female 31 (48.4) 994 (43.8)

Maternal clinically unfavorable lipid trait
High total cholesterol 14 (21.9) 659 (29.0) 0.18
High LDL-C 28 (43.8) 999 (44.0) 0.80
High triglycerides 11 (17.2) 514 (22.6) 0.25
Low HDL-C 10 (15.6) 437 (19.3) 0.41

BMI, body mass index; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.
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FIGURE 1 |Heatmap plot illustrating the correlation of module-lipid trait relationships for the detection of the gene modules mostly associated with lipid traits. Each
element in the heatmap represents the Pearson correlation (and P-value) between module eigengenes (y-axis; calculated using the first principal component of the gene
expression matrix of each module) and lipid trait (x-axis); the color gradient represents the strength of the correlation.

TABLE 2 | Pearson correlation (and p-value) betweenmodule eigengenes (frommodules associated with lipid traits) and lipid concentrations where lipid traits were divided in
clinically favorable vs. unfavorable lipid concentration groups (i.e., high total cholesterol, high LDL-C, low HDL-C).

Lipid trait Module Favorable lipid concentration
group

Unfavorable lipid-concentration
group

r p-value R p-value

Total cholesterol darkred 0.192 0.128 0.293 0.019
LDL-C darkred 0.000 0.999 0.290 0.020
HDL-C purple 0.251 0.045 0.366 0.003

LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
NOTE: Triglycerides is absent from the table because it was not associated with any gene co-expression module.
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cholesterol based on genome-wide gene expression analysis
(Supplementary Table S7; Figure 3A, Supplementary Figure
S9A). Likewise, three placental co-expressed genes in the
“darkred” module (MAGEC2, PGLYP1, and LFT) overlapped
with a set of 120 genes found to be associated with LDL-C
based on regulatory network analysis (Supplementary Figure
S8B; Supplementary Table S6) or 48 genes found to be
associated with high LDL-C based on genome-wide gene
expression analysis (Figure 3B; Supplementary Figure S9B).
Overlaps with all the co-expression gene modules showed highest

overlap percentage with the “darkred” module for total
cholesterol and second highest for LDL-C and triglycerides
(Supplementary Table S8).

HDL-C Is Marginally Correlated With One
Gene Co-expression Module
HDL-C was marginally correlated with the “purple” module
composed of 185 placental co-expressed genes (r � 0.25,
p-value � 0.05, Figure 1), characterized by the hub gene

FIGURE 2 |Correlations between gene module memberships and gene significance for the module “darkred” and Total cholesterol and LDL-C and for the module
“purple” and HDL-C.
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NDP. NDP was significantly downregulated in placenta of
women with low HDL-C status (p-value � 0.001,
Supplementary Figure S6C). The correlation between
“purple” module and lipid concentrations was stronger in
the group of women with unfavorable HDL-C
concentrations than favorable HDL-C concentrations (r �
0.37, p-value � 0.003 vs. r � 0.25, p-value � 0.05 for low vs
normal HDL-C, Table 2). “Purple” module membership was
correlated with gene significance for HDL-C (r � 0.29,
p-value � 6.7 × 10−5, Figure 2). Protein-protein
interactions in the “purple” module are presented in the
Supplementary Figure 7B

Further validation analyses found that eight placental co-
expressed genes in the “purple” module (BHLHE22, CCR8,
FOXE3, GRP, MMP27, OR7G2, PRSS57 and
ENSG00000273259) overlapped with a set of 145 genes
found to be associated with low HDL-C based on genome-
wide gene-expression analysis (Figure 3C, Supplementary
Figure S9C). All differentially expressed genes significantly
associated with total cholesterol overlapped with genes
significantly associated with HDL-C (Supplementary
Figure S10).

Triglycerides Are Not Associated With Any
Gene Co-expression Module
Triglycerides were not significantly associated with any gene co-
expression module. However, ALX4 and MAGEC2 were
significantly associated with triglycerides based on both
gene regulatory network analysis (that found 154 triglyceride-
associated genes, Supplementary Figure S8D) and genome-wide
gene-expression analysis (that found 79 triglyceride-associated
genes, Supplementary Table S7; Figure 3D).

DISCUSSION

Using gene co-expression approach validated by genome-wide
analysis approaches, we identified placental gene regulatory
networks significantly associated with unfavorable maternal
lipid concentrations in early pregnancy. There was a
considerable convergence of the lipids-associated regulatory
networks, genes, and enriched pathways at loci relevant to
lipid metabolism and transportation, cardiovascular disease
risk, and inflammatory response. A notable finding of our
study was the consistent associations of total cholesterol and

FIGURE 3 | Venn diagram by lipid traits (A) Total cholesterol, (B) LDL-C, (C) HDL-C and (D) Triglycerides, illustrating top-differentially expressed genes from
WGNCA, PANDA and genome-wide analyses.
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LDL-C with the “darkred”module, characterized by the hub gene
LCN2 (Lipocalin 2). LCN2 plays a role in transportation of small
hydrophobic molecules such as lipids, steroid hormones and
retinoids; furthermore LCN2 is a candidate cardiovascular
disease gene and may function as a modulator of
inflammation. (Flo et al., 2004).

The three genes in the “darkred” module associated with total
cholesterol and LDL-C in both gene co-expression and regulatory
network analyses (LTF, MPO and PGLYRP1) are well-known
lipid related genes. LTF (lactotransferrin) is a major iron-binding
protein highly expressed in lactating breast, and its protein
product has been associated with decreased serum triglycerides
concentration in mice and rats. (Takeuchi et al., 2004; Tamano
et al., 2008). In humans, circulating level of lactoferrin has been
positively associated with HDL-C and negatively associated with
triglycerides, BMI, waist-to-hip ratio and fasting glucose.
(Moreno-Navarrete et al., 2008). Moreover, variants in LTF
have been associated with triglycerides and HDL-C
concentrations. (Moreno-Navarrete et al., 2008). MPO
(myeloperoxidase) is a heme protein that plays a role in the
oxidative modification of lipoproteins. Serum myeloperoxidase
contributes significantly to HDL-C functionality. (Variji et al.,
2019). In a previous genome-wide association study (GWAS),
MPO has been associated with plasma biomarkers of
cardiovascular risk. (Folkersen et al., 2017). PGLYRP1
(peptidoglycan recognition protein 1) has been associated with
cardiovascular risk factors such as diabetes, hypertension, higher
concentration of total cholesterol, lower concentration of HDL-C
and history of myocardial infarction. (Rohatgi et al., 2009).

Additional three genes (MAGEC2, LUZP4, ALX4) from the
“darkred”module associated with total cholesterol and LDL-C in
gene co-expression analysis were validated by the genome-wide
analysis. MAGEC2 (MAGE family member C2) and LUZP4
(leucine zipper protein 4) are expressed normally only in
immune privileged sites (testis or placenta), and their
restricted expression suggests that they may function in germ
cell development. (Djureinovic et al., 2016). ALX4 (ALX
homeobox 4) is essential for embryonic morphogenesis,
(Bertola et al., 2013), and previous GWASs have found
variants in ALX4 associated with blood pressure (He et al.,
2013) and LDL-C. (Drenos et al., 2009). We have previously
found that high maternal triglycerides are associated with
decreased methylation of a CpG site in ALX4. (Ouidir et al.,
2020).

Pathway analysis revealed placental inflammation response to
unfavorable maternal lipid concentrations including LXR/RXR
activation, where RXR is known to interact with peroxisome
proliferator-activated receptors (PPARs, α, β/δ, and γ) where
PPAR family plays a major regulatory role in energy homeostasis
and metabolic function by reducing the triglyceride
concentration, increasing insulin sensitization and enhancing
fatty acid metabolism. (Tyagi et al., 2011). Many studies have
identified LXR and PPARs as sensors of fatty acids and lipids and
mediators of their effects on gene expression. (Yoshikawa et al.,
2002; Salter and Tarling, 2007). Furthermore, PPAR is highly
expressed in the placenta and has a crucial role in placenta
development. Canonical pathway analysis of the co-expressed

genes associated with total cholesterol and LDL-C also reported
atherosclerosis signaling response in the placenta while previous
studies have reported higher offspring risk of progressive
atherosclerosis associated with maternal hypercholesterolemia.
(Palinski et al., 2007; Nasioudis et al., 2019).

We acknowledge that our study’s sample size is too small to
detect co-expression networks that may have a modest
correlation with lipid concentrations. However, even with a
modest sample size, we identified significant association at loci
relevant to lipid metabolism with a considerable convergence of
the different analyses. Our criteria for unfavorable lipid profiles
are from a non-pregnant population and lipid concentrations
were limited to sampling in the first trimester. Lipids are known
to rise dramatically in pregnancy with substantial changes in
blood lipid concentrations after the first trimester of pregnancy
for some women. (Grantz et al., 2019). Our study provides
important insight into the understanding that maternal lipid
concentration as early as the first trimester were associated
with placental gene expression at delivery. Future studies with
longitudinal lipid sampling are needed to further elucidate this
relationship. Furthermore, we cannot conclude whether the gene
expression changes are a cause or consequence of unfavorable
maternal lipid profiles because there are gestational age-
dependent changes in pregnant women’s blood lipid
concentrations (Grantz et al., 2019) and placental gene
expression profiles. (Tarrade et al., 2015). Our study has
several strengths: this is the first study of placental gene co-
expression in relation to maternal lipid concentrations. The study
cohort comprised non-obese healthy pregnant women (i.e.
without history of adverse pregnancy outcomes and behavioral
risk factors such as use of cigarettes, illicit drugs or alcohol in the
months prior to pregnancy), minimizing potential confounding.
We were able to validate our findings using three approaches: co-
expression network focusing on concordant changes in gene
expression, integrative networks leveraging conditional
regulatory relationships between transcription factors and gene
expression (i.e. identifying changes in regulation of different gene
expression across women with unfavorable/favorable lipid
profiles), and genome-wide analysis facilitating detection of
differential expression at specific genes.

Our study provided corroborating and coherent evidence related
to the association between maternal lipids and placental gene co-
expression. However, our studywas limited in providingmechanistic
insights, where further experimental studies are needed. Specifically,
the hub gene LCN2 and genes that were validated across different
analyses approaches such asMAGEC2, LUZP4, ALX4,MCUB, LTF,
MPO and PGLYRP1 can be taken forward by further experimental
work to identify molecular regulatory processes and further
understand the mechanism by which maternal lipid levels may
modify the placental gene expression.

CONCLUSION

In summary, we found that early pregnancy unfavorable lipid
concentrations based on common clinical cut-points were
significantly associated with placental gene expression at loci
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relevant to lipid metabolism, transportation, and inflammatory
response. This study highlighted the potential role of the hub gene
LCN2 known for its role in lipids transportation and potential
inflammatory modulation. The findings provide novel insight
about the potential role of placental gene expression mechanisms
in mediating the relationship between unfavorable maternal lipid
profiles and fetal development as well as future risk of offspring
cardiovascular diseases.
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