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A B S T R A C T   

Background: Deep learning has the potential to improve diagnostic accuracy and efficiency in medical image 
recognition. In the current study, we developed a deep learning algorithm and assessed its performance in 
discriminating melanoma from nevus using whole-slide pathological images (WSIs). 
Methods: The deep learning algorithm was trained and validated using a set of 781 WSIs (86 melanomas, 695 
nevi) from PLA General Hospital. The diagnostic performance of the algorithm was tested on an independent test 
set of 104 WSIs (29 melanomas, 75 nevi) from Tianjin Chang Zheng Hospital. The same test set was also 
diagnostically classified by 7 expert dermatopathologists. 
Results: The deep learning algorithm receiver operating characteristic (ROC) curve achieved a sensitivity 100% at 
the specificity of 94.7% in the classification of melanoma and nevus on the test set. The area under ROC curve 
was 0.99. Dermatopathologists achieved a mean sensitivity and specificity of 95.1% (95% confidence interval 
[CI]: 92.0%-98.2%) and 96.0% (95% CI: 94.2%-97.8%), respectively. At the operating point of sensitivity of 
95.1%, the algorithm revealed a comparable specificity with 7 dermatopathologists (97.3% vs. 96.0%, P = 0.11). 
At the operating point of specificity of 96.0%, the algorithm also achieved a comparable sensitivity with 7 
dermatopathologists (96.5% vs. 95.1%, P = 0.30). A more transparent and interpretable diagnosis could be 
generated by highlighting the regions of interest recognized by the algorithm in WSIs. 
Conclusion: The performance of the deep learning algorithm was on par with that of 7 expert dermatopathologists 
in interpreting WSIs with melanocytic lesions. By pre-screening the suspicious melanoma regions, it might serve 
as a supplemental diagnostic tool to improve working efficiency of pathologists.   

Introduction 

Deep learning is a kind of computational algorithm, which programs 
itself by learning a large number of examples to achieve desired 
behavior, without establishing rules specifically. One of the deep 
learning algorithms, the convolutional neural network (CNN) has been 
proven to have great potential to classify images and detect objects in 
pictures [1, 2]. Gulshan et al. [3] and Esteva et al. [4] proved that CNN 
achieved high sensitivity and specificity in diabetic retinopathy and skin 
lesion images classification, respectively. Except for traditional images, 

CNN also has been demonstrated application potential in whole-slide 
pathological images (WSIs) recognition. Ciresan et al. [5] applied a 
deep learning algorithm to the task of mitosis counting for primary 
breast cancer grading using WSIs. Ehteshami et al. [6] demonstrated 
CNN achieved better diagnostic performance than a panel of 11 pa
thologists in detection of lymph node metastasis of breast carcinoma. 
Song et al. [7] developed a clinically applicable histopathological 
diagnosis system for gastric cancer detection using CNN. 

Melanoma is the fifth most common form of cancer in adults and is 
potentially the most deadly form of skin cancer [8]. The incidence of 

* Corresponding author. 
E-mail addresses: chengxinderm@163.com, 443966199@qq.com (C. Li).  

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2021.101161 
Received 10 March 2021; Received in revised form 25 May 2021; Accepted 20 June 2021   

mailto:chengxinderm@163.com
mailto:443966199@qq.com
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2021.101161
https://doi.org/10.1016/j.tranon.2021.101161
https://doi.org/10.1016/j.tranon.2021.101161
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2021.101161&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Oncology 14 (2021) 101161

2

melanoma continues to increase in many countries [9-11]. It was estimated 
that 232,100 new cases were diagnosed with cutaneous melanoma in the 
world annually [8]. Accurate diagnosis for melanoma is an important task for 
pathologists. This process requires highly experienced pathologists and is 
time-consuming and error-prone [12, 13]. And inter and intra-observer 
variability exists in the pathological diagnosis of melanocytic lesions [13]. 
In addition, there is a critical shortage of pathologists both nationally and 
globally, which has created overloaded workforces, thus effecting diagnostic 
accuracy. The aim of our research was to investigate the potential of CNN to 
discriminate melanoma from nevus using WSIs and compare its performance 
with dermatopathologists. 

Patients and methods 

Image data and reference standard diagnosis 

A total of 885 melanocytic skin lesions (115 melanomas, 770 nevi) 
were retrospectively selected from patients aged 20 years and older who 
underwent surgery for clinical care at PLA General Hospital (86 mela
nomas, 695 nevi) and Tianjin Chang Zheng Hospital (29 melanomas, 75 
nevi). The dataset represented the most common melanocytic lesions 
encountered in routine pathology practice (Table 1). 

Because the complexity and observer variability existed in the path
ological diagnosis of melanocytic lesions [12-15], reference gold standard 
diagnosis was established for each of 885 cases. Three senior specialists in 
pathology department independently reviewed the glass slides and given 
the diagnosis of each case into one of the five MPATH-Dx (Melanoma 
Pathology Assessment & Treatment Hierarchy for Diagnosis) categories: 
1) Nevus/mild atypia; 2) Moderate atypia; 3) Severe atypia/Melanoma in 
situ; 4) T1a invasive melanoma; and 5) ≥T1b invasive melanoma [16]. For 
the cases with inconsistent diagnoses, all three dermatopathologists 
reviewed the case together using a multiheaded microscope. A consensus 
diagnosis was reached [13]. We assumed cases in MPATH-DX categories 1 
and 2 as nevus and cases in MPATH-DX categories 3 to 5 as melanoma. 

These 885 slides were scanned into WSIs using a digital slide scanner 
(PRECICE 500B) with a 40x objective lens (specimen-level pixel size, 
0.25 μm × 0.25 μm). All WSIs must pass an image quality review before 
they were made available for inclusion in this study. 

Ethics statement 

Institutional review board approval was obtained for a multi-center 
retrospective study with the PLA General Hospital & Medical School as the 
coordinating center (Approval no. S2018–123–01). The informed consents 
were waived by the institutional review board since the slides were 
anonymized. 

Image annotation 

Our deep learning algorithm was trained using a supervised learning 
method, which requires manual annotations. Regions of severe atypical 
and melanoma presented in the WSIs (MPATH-DX categories 3 to 5) 
were first manually annotated by 2 dermatopathologists, and every WSI 
was then checked in detail by 2 senior specialists (using the labeling 
software wkentaro/labelme, Image Polygonal Annotation with Python, 
https://github.com/wkentaro/labelme). There was no annotation on 
WSIs of nevi (MPATH-DX category 1 to 2). 

Training, validation and test datasets 

In the process of deep learning algorithm development, the training 
dataset is a set of examples used for the algorithm to learn, which means it is 
used to fit the parameters of the algorithm (e.g., weights of connections 
between neurons in CNN). A validation set is used to optimize the algorithm 
[17]. A test set is independent of the training and validation set, which is used 
to evaluate the performance of a fully specified algorithm [17]. 

A total of 781 WSIs (86 melanomas, 695 nevi) from PLA General 
Hospital were used for training and validation. Considering the unbal
ance of melanoma and nevus samples, oversampling method were 
adopted in deep learning algorithm development (details in supple
mentary method). Cross-validation was applied to compare and select 
the best algorithm. The 104 WSIs (29 melanomas, 75 nevi) from Tianjin 
Chang Zheng Hospital, were used to test the screening performance of 
the fully specified algorithm (Table 1). 

Deep learning algorithm development 

We introduced an efficient framework for WSI prediction. The pro
posed framework was conducted by integrating three modules: a region 
of interest tissue (RIT) extraction module, a CNN-based melanoma patch 
detection module, and a slide-level classification module. Fig. 1 showed 
the overall scheme of our algorithm, of which the details were illustrated 
in supplementary method. We also provided a movie to show the 
workflow of deep learning algorithm (Supplementary Movie). 

Table 1 
Characteristics of the whole-slide images for melanocytic lesions.  

Dataset MPATH-DX 
categories 

Terms on 
histology 
type 

Training and 
Validation 
from PLA 
(781 WSI) 

Test 
from 
CZ 
(104 
WSI) 

Total 
(885 
WSI) 

Common 
nevi (770 
WSI) 

Nevus/mild 
atypia 
(733WSI) 

Junctional 
nevus 

150 15 165 

Compound 
nevus 

150 15 165 

Intradermal 
nevus 

150 15 165 

Blue nevus 150 15 165 
Atypia- 
Atypical 
nevus NOS, 
mild 

67 6 73 

Moderate 
atypia (37 
WSI) 

Atypia- 
Atypical 
nevus NOS, 
moderate 

28 9 37 

Melanoma 
(115 
WSI) 

Severe 
atypia/ 
Melanoma 
in situ (25 
WSI) 

Atypia- 
Atypical 
nevus NOS, 
severe 

6 2 8 

Melanoma in 
situ 

13 4 17 

T1a invasive 
melanoma 
(31 WSI) 

Acral 
melanoma 

12 4 16 

lentigo 
maligna 
melanoma 

6 2 8 

Superficial 
spreading 
melanoma 

5 2 7 

≥T1b 
invasive 
melanoma 
(59 WSI) 

Acral 
melanoma 

25 8 33 

lentigo 
maligna 
melanoma 

5 2 7 

Superficial 
spreading 
melanoma 

6 2 8 

Nodular 
melanoma 

5 2 7 

Metastatic 
melanoma 

3 1 4 

Abbreviations: MPATH-DX, Melanocytic Pathology Assessment Tool and Hier
archy for Diagnosis; WSIs, whole-slide images; NOS, Not otherwise specified 
(including atypical nevus of special anatomic site: acral, genital, flexural, breast, 
scalp, ect); PLA, PLA General Hospital; CZ, Tianjin Chang Zheng Hospital. 
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Statistical analysis 

The main outcome measures were the sensitivity, specificity, and 
area under the receiver operating characteristic curve (AUC) for the 
diagnostic classification of melanoma and nevus using WSIs by the al
gorithm versus a panel of 7 pathologists. 

To compare the algorithm with the 7 pathologists, a two-sided, one- 
sample t-test was applied to compare the sensitivity (specificity) of the 
deep learning algorithm with the average of that on 7 pathologists. The 
results were considered statistically significant at the P<0.05 level. All 
the data were analyzed using SPSS Version 22. 

Results 

Comparison of the deep learning algorithm to pathologists 

To evaluate the deep learning algorithm in the context of 7 expert 
pathologists, a test set of 104 WSIs, independent of the training and 
validation set, was used to compare our algorithm predicted diagnosis 
with the diagnosis made by pathologists. 

We asked 7 dermatopathologists (all with over 20 years of cutaneous 
pathology experience) to independently assess 104 test WSIs with their 
diagnoses mapped into one of five MPATH-DX categories (categories 1 
to 2 assumed as nevus and categories 3 to 5 as melanoma), without 
knowledge of others’ diagnoses. 

All dermatopathologists voluntarily participated in this study, un
derstood and agreed with the basic principles and objectives of this 
study. The 7 dermatopathologists evaluated the corresponding glass 
slides for the WSIs, because they used to making diagnosis using a mi
croscope. There was no time restriction, and participants could complete 
evaluations over multiple sittings. 

The sensitivity and specificity of the 7 dermatopathologists for the 
classification of melanoma and nevus were 95.1% (95% confidence in
terval [CI]: 92.0%− 98.2%) and 96.0% (95% CI: 94.2%− 97.8%), 
respectively (Fig. 2a). Using the dermatopathologists’ mean sensitivity 
(95.1%) as the operating point on the algorithm’s ROC curve, there was 
no statistical difference between the specificity of algorithm (97.3%) 
and the mean specificity of the dermatopathologists (96.0%, P = 0.11). 
Using the pathologists’ mean specificity (96.0%) as the operating point 
on the algorithm’s ROC curve, there was no statistical difference be
tween the algorithm’s sensitivity (96.5%) and the mean sensitivity of 
dermatopathologists (95.1%, P = 0.30). 

Weighted error scoring 

In the pathological diagnosis of melanocytic lesions, failing to di
agnose (a false-negative result) is more harmful than making a mela
noma diagnosis when it was not (a false-positive result) [18] . We 
defined the weighted error scoring to reflect that fact (Supplemental 
Method). In the defined formula, the lower score presented the better 
diagnostic performance. The deep learning algorithm yielded a score of 
1.82%, and the weighted error of the 7 dermatopathologists ranged from 
1.36% to 7.27%, with a mean weighted error of 4.61%. As shown in 
Fig. 2b, the deep learning algorithm outperformed almost all except one 
dermatopathologist based on this weighted error scale. 

Malignancy identification 

A more transparent and explanatory diagnosis were provided by 
highlighting the predicted melanoma regions by deep learning algo
rithm in WSIs (Supplementary Movie). Fig. 3 showed examples of re
gions of melanoma annotated by dermatopathologists and predicted by 

Fig. 1. Overall architecture of the prediction framework. The proposed framework was conducted by integrating three modules: a region of interest tissue (RIT) 
extraction module, a convolutional neural network (CNN)-based melanoma patch detection module, and a slide-level classification module. First, RIT module 
proposed candidate tissue regions from WSI. Second, CNN-based melanoma patch detection module predicted melanoma and non-melanoma patches within RIT. If 
the WSI prediction only relied on CNN-based patch classifier, a single suspicious melanoma patch can change the WSI prediction, possibly resulting in a large number 
of false positives. So, we introduced the random forest to determine each WSI result. Third, the predicted patches were converted to a heat map. Based on the 
morphological and geometrical information of the heat map, a random forest-based classifier was built to determine a slide-level prediction. 

W. Ba et al.                                                                                                                                                                                                                                      



Translational Oncology 14 (2021) 101161

4

the deep learning algorithm. 
To evaluate the identification accuracy of melanoma regions by the al

gorithm, the Jaccard index was adopted to compute the overlap between the 
predicted melanoma regions and manually annotated regions (Supple
mental Method). The deep learning algorithm achieved a Jaccard index of 
77.78%, indicating that most of the melanoma regions were identified 
correctly by the algorithm. 

Discussion 

Deep learning shows promise for the application in image recognition 
and is approaching human performance in many tasks, including patho
logical image classification [19-21]. Ehteshami et al. demonstrated that a 
deep learning algorithm outperformed a group of 11 pathologists in the 
detection of lymph node metastases of breast cancer [6]. Hekler et al. 
demonstrated that CNN achieved better performance than 11 histopa
thologists in the classification of pathological images of melanocytic le
sions [22, 23]. Different from Hekler’s research using randomly cropped 
images from WSI, our study directly used WSI to compare CNN to pa
thologists. The randomly cropped images may lead to information lost. In 
a clinical setting, pathologists scanned the WSI rather than cropped im
ages. Our results demonstrated that the performance of the deep learning 
algorithm was comparable to that of a panel of 7 dermatopathologists. 
Due to the increased cancer incidence and personalized treatment op
tions, pathologists currently have to review a large number of slides, 
including immunohistochemistry, to make a final diagnosis. Therefore, 
this technique might be employed as a supplemental screening tool to 
demonstrate a biopsy as severe atypia or melanoma. 

The sensitivity, specificity and AUC did not accurately reflect the 

impact of incorrect diagnosis on an individual patient. Compared to a 
false-positive result (nevus was inaccurately diagnosed with melanoma), 
a false-negative result (melanoma was diagnosed with nevus) could have 
more serious consequences. To solve this problem, weighted error scoring 
was incorporated during the algorithm and the pathologists’ evaluation. 
Our study demonstrated that the deep learning algorithm outperformed 
almost all except one pathologist based on the weighted error scoring. 

The greatest benefit of regions of interest identification was that it 
revealed insights into the decisions of the network. The majority regions of 
melanoma (Jaccard index=77.78%) were recognized correctly, which 
confirmed that the neural network used accurate distinguishing features to 
made its decisions. CNN could highlight abnormal areas, prompting pa
thologists to perform a scrutinized reassessment and may facilitate their ef
ficiency and accuracy. 

Due to the fact that a false-negative result could lead to more serious 
consequences than false-positive in melanoma diagnosis. Moreover, the 
sensitivity and specificity of neural network are adjustable. In practice, we 
can set the sensitivity of deep learning algorithm to 100%. In this setting, the 
deep learning algorithm was capable of avoiding false-negative result as 
much as possible. Then the pathologists could check all the suspected mel
anoma regions, which might improve the accuracy without significantly 
decrease the efficiency. 

This study had several limitations. These analyses are performed as a 
simulation process rather than a real pathological workflow. The test 
dataset on which the deep learning algorithm and the pathologists were 
evaluated was enriched with the cases of melanoma, which was not 
directly comparable to the mixed cases encountered during clinical 
practice. In our study, each pathologist was given a single H&E slide for 
per case to determine the diagnosis. In a real clinical setting, 

Fig. 2. Comparison of the deep learning algorithm with 7 
dermatopathologists in the classification of melanoma and 
nevus. (a). ROC curve for the deep learning algorithm 
compared with the performance of human pathologists. 
The enlarged area was included for a detailed illustration 
of the comparison results. (b). Weighted error was used to 
reflect the fact that a false-negative result (failing to di
agnose) was more detrimental than a false-positive result 
(making a melanoma diagnosis when it was not). The deep 
learning algorithm outperformed all except one dermato
pathologist based on the weighted error scale. And the 
dotted line represented mean weighted error of 7 
dermatopathologists.   
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pathologists request additional IHC staining and clinical data, which 
might have improved diagnostic performance [24]. 

Moreover, the histology subtypes of melanocytic lesions were com
plex. Our study only included the most common melanocytic lesions 
encountered in routine pathological workflow. And differences in the 
inherent difficulty of the test set will directly affect the diagnostic per
formance of the deep learning algorithm and the pathologists. To 
generate comparability among different algorithms and pathologists, it 
is important to include more pathologists with various levels of expe
rience and to use larger datasets. In our study, the data set comes from 
Asians. The histological subtypes of melanomas are different between 

Caucasians and Asians. It is possible that the algorithm is likely to 
perform poorer on external test set. Future studies could use WSIs from 
multiple centers in training and test datasets, making the system uni
versally useful. In addition to confirming our results with larger, more 
diverse datasets, prospective studies are needed to address the pathol
ogists’ acceptance of this new technique [25, 26]. 

In conclusion, our research demonstrated that an adequately trained 
deep learning algorithm could have a high degree of accuracy in dis
tinguishing melanoma from nevus using WSI. Thus, a deep learning al
gorithm might function as a supplemental diagnostic tool to assist 
pathologist in demonstrating a biopsy with severe atypia or melanoma. 

Fig. 3. Examples of regions of melanoma annotated by the dermatopathologists (Top) and predicted by the deep learning algorithm (Bottom). (a)-(c). Three an
notated melanoma WSIs and local magnification taken from the test dataset compared with predicted regions of melanoma by deep learning algorithm. The colored 
scale bar (lower right) indicated the probability for each patch to be malignancy. 
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