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Abstract

Motivation: The precise targeting of antibodies and other protein therapeutics is required for their proper function
and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown
and randomized methods are used to design antibodies without a model that relates antibody sequence to desired
properties.

Results: Here, we present Ens-Grad, a machine learning method that can design complementarity determining
regions of human Immunoglobulin G antibodies with target affinities that are superior to candidates derived from
phage display panning experiments. We also demonstrate that machine learning can improve target specificity by
the modular composition of models from different experimental campaigns, enabling a new integrative approach to
improving target specificity. Our results suggest a new path for the discovery of therapeutic molecules by demon-
strating that predictive and differentiable models of antibody binding can be learned from high-throughput experi-
mental data without the need for target structural data.
Availability and implementation: Sequencing data of the phage panning experiment are deposited at NIH’s
Sequence Read Archive (SRA) under the accession number SRP158510. We make our code available at https://
github.com/gifford-lab/antibody-2019.
Contact: geliu@mit.edu or gifford@mit.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The identification of human antibodies and receptors with high af-
finity and specificity to human disease-associated targets is a key
challenge in producing effective human therapeutics. At present
antibody sequences are discovered in vivo using animal immuniza-
tion or by in vitro affinity selection of candidates from large synthet-
ic libraries of antibody sequences (Breitling et al., 1991; McCafferty
et al., 1990; O’Brien and Aitken, 2004; Scott and Barbas, 2001;
Smith, 1985). These methods both have the advantage that they do
not require the structure of a target to be known for antibodies to be
discovered. However, they are empirical and do not produce a
model of sequence space that admits computational optimization

and specificity analysis without conducting additional experiments
such as counter panning.

Most computational methods for antibody design optimization
assume that the structure of a target is known; however, target struc-
ture is unknown in many cases (Fischman and Ofran, 2018). Other
approaches seek to optimize antibody properties primarily focused
on predicting the structural conformation of the CDR-H3 loop,
which to date remains a difficult unsolved challenge (Kuroda et al.,
2012; Reczko et al., 1995). Many such approaches are based on cal-
culations of binding free energies, where the multitude of possible
expressions have been found to be of highly variable quality for pre-
dicting actual affinities in experiments (Kunik and Ofran, 2013;
Moal et al., 2011). More recently, neural network methods have
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been successfully applied to predict which region of the CDR will be
in contact with an antigen without reliance on structure prediction,
but this work does not provide insights on how to obtain improved
affinity (Liberis et al., 2018). Existing models of antibody binding
do not produce gradients for sequence optimization that directly re-
late antibody sequence to a desired objective.

Here, we describe the application of high-capacity machine
learning to design antibody sequences, rather than predicting their
properties. Unlike other computational approaches, the molecular
structure of an antigen does not need to be known, permitting our
method to be applied to any target used in affinity selections. Our
hypothesis is that with sufficient sequence-only training data, high-
capacity machine learning can sufficiently model the biophysics of
antibody-target interactions to generalize from these observations to
produce novel improved antibody sequences. We tested our hypoth-
esis by generating training data that relates Fab fragments with vary-
ing CDR-H3 sequences to their enrichment in phage display
panning experiments with four target antigens and one mock con-
trol. The four targets we focused on in this work include ranibizu-
mab, bevacizumab, etanercept and trastuzumab (Supplementary
Data). Our mock control consisted of panning with no antigen and
thus measures CDR-H3 sequence specific bias for display on phage
and phage propagation.

We first show that neural networks trained on other Fc-region
containing targets including trastuzumab and etanercept can predict
antibodies that were enriched for bevacizumab but not for the other
Fc-region containing targets. This result demonstrates that models
learned from multiple targets can be combined and transferred to a
new target to select antibodies with desired properties.

We next show that we could design improved antibody sequen-
ces with a two-stage approach, which we named Ens-Grad, by mod-
eling antibody affinity with an ensemble of neural networks and
efficiently optimizing it with gradient-based optimization (Fig. 1A).
Ens-Grad produced accurate predictive estimates of affinity enrich-
ment for previously unseen sequences. With a small design budget of
5467 sequences, Ens-Grad produced antibody sequences that were
superior to all of the sequences present in our training data. We
interpreted our machine learning models by computing the minimal
sets of specific CDR-H3 amino acids required for binding (Carter
et al., 2019a, b). Our results demonstrate that machine learning can
produce useful models of antibody affinity that can create novel
sequences with desired properties and increase target specificity.

2 Materials and methods

2.1 Phage-panning data generation
The experimental details of the initial and follow-up campaigns of
phage-panning experiments, including the initial single framework
library generation, Immunoglobulin G (IgG) expression, phage dis-
play panning against target molecule, next-generation sequencing
sample preparation, data preparation, oligo synthesis of CDR-H3
sequences and the follow-up library generation, are described in
Supplementary Data.

2.2 Training an ensemble of neural networks to predict

enrichment from antibody sequence
We used six different architectures in Ens-Grad, five of which were
convolutional neural networks with one or two convolutional layers
with filter size of 1, 3 or 5 residues and stride 1, followed by a local
max-pooling layer with window size 2 and stride 2. We used 64 and
32 convolutional filters for single convolutional layer networks. In
one of the double convolutional layer networks, we used 32 filters
with width 5 in the first layer and 64 filters with width 5 in the se-
cond layer. In the other network, we used 8 convolutional filters
with width 1 in the first layer to learn an embedding from one-hot
to hidden space for each amino acid, and then used 64 filters with
width 5 to learn higher-level patterns. In each of the convolutional
neural networks, the output from the last convolutional layer was
fed into a fully connected layer with 16 hidden units and a dropout
layer. It is then connected to the final output layer where the loss

function is evaluated. We also designed a two-layer fully connected
neural network with 32 hidden units and dropout in each layer.
Table 1 illustrates the detailed setup of each architecture and an esti-
mation of the number of parameters in each architecture. The details
of the training procedures are described in the Supplementary Data.

2.3 Optimizing antibody sequences with gradient ascent

and a neural network ensemble
In Ens-Grad, we used the gradients back-propagated from the neural
network output layer to the input layer to guide the improvement of
an input sequence, considering that direct optimization on one-hot
discrete space is difficult and inefficient. This use of backpropaga-
tion is in contrast to its usual application of updating network
parameters as in this application network parameters are held con-
stant. Similar technique has been used for visualization of neural
networks (Erhan et al., 2009; Liu et al., 2019; Simonyan et al.,
2013). We relaxed the one-hot constraint during optimization to
fully take advantage of gradient methods, periodically projecting the
current continuous representation back to a discrete one-hot input
by taking the argmax of each amino acid position (Fig. 2B). The
resulting sequence is then evaluated and compared to the best
recorded previously projected sequences from the same seed. If the
newly projected sequence fails to improve upon the best score for 10
iterations we terminate the optimization, presuming it has con-
verged to local optimum of the network’s score function in one-hot
space. By choosing different step sizes k and projection intervals k,
we were able to control the level of divergence between proposed
sequences and seed sequences. In addition, we employed ensembles
to increase diversity in the optimized sequences and used a two-step
voting-thresholding strategy to increase the robustness of our opti-
mization results (Supplementary Fig. S2A).

2.4 Alternative machine learning methods for

proposing sequences
In addition to our neural network ensemble (Ens-Grad), three other
machine learning frameworks were also applied to generate novel
CDR-H3 sequences. We describe the details of these methods in the
Supplementary Data.

3 Results

3.1 Machine learning predicts panning enrichment
To select Fab sequences against ranibizumab we conducted three
rounds of phage display panning (Fig. 1B). In parallel, we conducted
so-called mock panning in which we infected and propagated phages
without contact to an antigen. The synthetic input library for pan-
ning contained a fixed framework with fixed CDR sequences except
for CDR-H3. CDR-H3 was randomized with �1010 different
sequences that ranged in length from 10 to 18 amino acids. We
obtained 572 647 unique CDR-H3 sequences for ranibizumab in
Round 1 (R1), 297 290 in Round 2 (R2) and 171 568 in Round 3
(R3). We define enrichment as the log10 of the round-to-round ratio
of sequence frequencies and R2-to-R3 enrichment was used for
training as it had a higher signal-to-noise ratio. Data preprocessing
and denoising is described in detail in Supplementary material (Data
preparation section). Both directions of enrichment and certain pre-
ferred CDR-H3 lengths were observed for ranibizumab (Fig. 1C–E).
Moreover, in t-SNE visualization the CDR-H3 sequences with high
enrichment form isolated clusters that correspond to distinct
enriched sequence families (Fig. 1F, Supplementary Fig. S1).

We found that using a convolutional neural network one can ac-
curately predict the R2-to-R3 enrichment of held-out test sequences.
We trained our models on replicate I for R3 and tested on the non-
overlapping sequences in replicate II. Our model achieved an
AUROC (area under the receiver operating curve) of 0.960 and a
Pearson r of 0.79 (Fig. 3B and C). The direction of enrichment (posi-
tive or negative) was used for classification and the real-valued
observed R2-to-R3 enrichment was used for regression. Given a
0.83 correlation (Pearson r) between two biological replicates
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(Fig. 3A), we expect model performance is bounded by experimental
noise. When trained and tested on the mock control with a random
4:1 train–test split, an AUROC of 0.529 and a Pearson r of 0.025
were observed, consistent with our expectation of no predictive abil-
ity when attempting to infer phage enrichment in the absence of tar-
get binding.

To test the model’s capability to extrapolate beyond best seen
sequences, we built an independent held-out validation set consist-
ing of top 4% of the all observed sequences using R2-to-R3 enrich-
ment. We trained a convolutional neural network for regression task
on the lower 96% sequences, and compared the predicted scores be-
tween the held-out top sequences and top 4% of training sequences.
Our model assigned higher scores to the unseen sequences when
compared with top seen sequences, indicating that convolutional

neural network is able to extrapolate beyond seen examples. We
also observed that the network was able to assign higher score to the
upper half of the held-out set when compared with the lower half

(Supplementary Fig. S2).

3.2 Ensembles of neural networks improve accuracy

and characterize uncertainty
A method that produces novel antibody sequences will naturally
need to venture in sequence space outside of observed training data.
Thus, when evaluating sequences, it is important to estimate both

the expected value of enrichment as well as the model uncertainty of
the estimated expectations. Employing ensemble learning (Carney

et al., 1999; Lakshminarayanan et al., 2017; Zhou et al., 2002), we

Fig. 1. Summary of the training data used in our machine learning framework. (A) Diagram of the workflow for antibody optimization. (B) Diagram of training data gener-

ation using phage display panning and NGS. Three rounds of panning (R1, R2, R3) were performed. We characterize the frequency of CDR-H3 sequences at the ends of each

panning round to compute enrichment. (C) Histogram of R2-to-R3 enrichment for ranibizumab in training data. Y-axis denotes the sequence counts in each bin. (D) Scatter

plot of log10 sequence frequency in R2 and R3, colored by the R2-to-R3 enrichment value. Each point represents a unique valid sequence in the NGS output, where points

above the diagonal have positive R2-to-R3 enrichment and vice versa. (E) Histogram of CDR-H3 sequence length before and after two rounds of panning. Y-axis denotes the

proportion of reads in each bin. Ranibizumab binders (survived sequences in Round 3) tend to exhibit greater CDR-H3 lengths (compared to sequences in Round 1). (F) t-SNE

visualization of sequences with over 10-fold enrichment between Round 2 and Round 3. Sequences similar to the ones in Table 2 are labeled by circles

Table 1. Neural network architectures used in the Ens-Grad model ensemble and the number of parameters in each neural network model

Name Number of

convolutional layers

Conv 1

(width, #filters)

Conv 2

(width, #filters)

Number of fully

connected layers

Number of fully

connected neurons

Total number

of parameters

Seq_32_32 0 Not applicable Not applicable 2 32 13 954

Seq_32x1_16 1 Width 5, 32 Not applicable 1 16 8402

Seq_32x2_16 2 Width 5, 32 Width 5, 64 1 16 18 706

Seq_64x1_16 1 Width 5, 64 Not applicable 1 16 16 754

Seq_32x1_16_filt3 1 Width 3, 32 Not applicable 1 16 7122

Seq_embed_32x1_16 2 Width 1, 8 Width 5, 32 1 16 13 082
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accomplish this with an ensemble of 18 neural network models of
six architectures that have been trained on three different sets of
observations for each architecture (Section 2).

We first asked whether the uncertainty encoded in the ensemble
correlates with prediction accuracy. We quantified the prediction ac-
curacy using mean square error (MSE) and estimated ensemble un-
certainty by computing the variance of the predictions of the models
in the ensemble. With the ensemble trained on panning replicate I,
we evaluated the uncertainty and accuracy on sequences only
observed in replicate II. We observed a strong positive correlation
between the MSE and the variance of the ensemble prediction
(Fig. 3D), showing that confident predictions from the ensemble are
more accurate. This indicates that our ensemble model is well-
calibrated.

We hypothesized that the mean of an ensemble of models would
result in a more robust estimator of sequence enrichment than using
prediction from a single network. We compared the performance of
our 18 single models with an ensemble method that averaged the
prediction of all 18 models. Evaluating on our held-out data, we
observed that the ensemble model outperformed all of our 18 mod-
els in all metrics considered including Pearson r, R2 and MSE
(Fig. 3E).

3.3 Machine learning can eliminate non-specific anti-

bodies that bind to undesired targets
We hypothesized we could create a model to identify antibodies that
bind etanercept or trastuzumab, and then use this model to reject

Fig. 2. Overview of the Ens-Grad sequence-optimization methodology. (A) Neural network ensemble optimization and thresholding pipeline. (B) Optimization of a single se-

quence in one-hot space and continuous space using gradient ascent

Fig. 3. Performance of our neural networks in predicting ranibizumab enrichment. (A) Replicate consistency of enrichment for ranibizumab (Pearson r¼0.83, P<1e�16, the

P-value indicates the probability of an uncorrelated datasets having a Pearson correlation at least as extreme as the one computed from this dataset, same below); the Pearson r

is about the same between replicates as between the neural network predictions and the observed enrichment values, suggesting that our prediction performance is bounded by

the replicate consistency. (B) Regression performance for ranibizumab on non-overlapping sequences in replicate II using the mean prediction of the ensemble (Pearson

r¼0.79, P<1e�16). (C) ROC curve of classification task for ranibizumab using the best single network and the ensemble, compared with a mock control. (D) Uncertainty

estimates of ensemble correlate with prediction accuracy. (E) Ensembles (blue) produce better estimates of enrichments than any single network (red) in terms of Pearson r, R2

and mean square error
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anti-bevacizumab antibodies that bind to etanercept, trastuzumab,
or the IgG Fc region they share with bevacizumab. To this end, in
addition to the previously described ranibizumab panning experi-
ment, we further conducted three rounds of phage display panning
(Fig. 1B) separately against etanercept, trastuzumab and bevacizu-
mab starting with the same randomized library. We defined the
ground-truth specific/non-specific bevacizumab binders and Fc bind-
ers by whether one has positive R2-to-R3 enrichment in the panning
experiments against each target (Fig. 4A).

We trained an ensemble of six multi-output neural networks that
output predicted R2-to-R3 enrichment of both etanercept and tras-
tuzumab (Fig. 4A; Table 1; Section 2). We randomly held out 50%
of the non-specific bevacizumab binders that also appeared in the
etanercept and trastuzumab experiments from the training set. We
calculated the ensemble variance to incorporate model uncertainty,
and used the 95% confidence upper bound of the predicted scores
for trastuzumab and etanercept to indicate potential non-specific
binding.

By removing bevacizumab binders that had a positive confidence
upper bound score for either etanercept or trastuzumab (Fig. 4C),
our non-specific prediction ensemble successfully eliminated 75.2%
of general non-specific binding to either trastuzumab or etanercept
(Fig. 4D, Supplementary Table S1, P<1e�16). We found that the
percentage of bevacizumab-specific antibodies was increased by
7.4%, and 83.6% of the bevacizumab-specific antibodies remained
after filtering (Fig. 4D, Supplementary Table S1), showing that the
procedure successfully reduces non-specific binding while retaining
most target-specific binding.

We defined 366 sequences as ground truth IgG Fc binders that
showed positive R2-to-R3 enrichment in bevacizumab, etanercept
and trastuzumab (all Fc containing) but non-positive enrichment in
ranibizumab (no Fc region). Our non-specific prediction ensemble
successfully eliminated 340 of the 366 Fc binders (92.9%) and the

remaining sequences have low R2-to-R3 enrichment (Fig. 4D,
P<1e�16).

3.4 Machine learning designed sequences are better

than panning derived sequences
Our next aim was to examine whether computational models are
capable of designing previously unseen CDR-H3 sequences with
improved affinity for ranibizumab (Fig. 1A). We employed a
gradient-based optimization framework (Ens-Grad) to propose
high-affinity sequences from an ensemble of neural networks trained
to predict enrichment. For comparison, we also applied alternative
computational approaches to propose improved sequences including
a variational autoencoder (VAE) and genetic algorithms (GA-KNN,
GA-CNN; Section 2). We selected sequences with either non-
negative R2-to-R3 enrichment or larger than 5e�5 frequency in R3
as seed sequences that were used to initialize the optimization for
proposing novel sequences. Both the seeds and sequences that the
neural networks predicted to be negative were subsequently
included as experimental controls to validate our computational
methods and to provide baseline performance. Collectively we con-
structed a library of 104 525 sequences for experimental testing
(Section 2).

We experimentally tested the synthetic sequences in a three-
round phage display panning experiment using both stringent and
standard washing conditions (Supplementary Data). We cloned the
designed library into a phage Fab expression framework with the
other CDR sequences fixed to their values during training data gen-
eration, and created phage that displayed this library. This phage li-
brary was diluted 1:100 into a synthetic library of complexity
�1010, such that the library complexity was equivalent to the previ-
ous experiment and our designed sequences were not underrepre-
sented. We used the 1:100 library in a three-round phage display

Fig. 4. Machine learning can reject undesired antibodies. (A) Definition of non-specific, specific bevacizumab binders and Fc binders using panning experimental data. Positive

sign represents positive R2-to-R3 enrichment and negative sign represents non-positive enrichment. (B) Regression performance of a multi-output network on a randomly

held-out 5% test set with no-missing values for trastuzumab (left, Pearson r¼0.65, P<1e�16) and for etanercept (right, Pearson r¼0.64, P<1e�16). (C) Diagram of the

non-specific binding prediction task. (D) Changes in count of non-specific antibodies, FC-binders and bevacizumab-specific antibodies after filtering antibodies that were

enriched for bevacizumab using the specificity prediction ensemble (left). Bevacizumab binding antibodies plotted vs. their etanercept and trastuzumab enrichment, both of

which contain an Fc region (right). Blue dots represent ground truth bevacizumab Fc binders that were eliminated and red dots represent Fc binders remained after applying

the corresponding filter on all bevacizumab binders
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panning experiment and analyzed the R1-to-R3 enrichment which
reflects the full spectrum of binding affinity. Evaluated on all of the
tested sequences, including controls and optimized sequences, we
found that the observed R1-to-R3 enrichment correlates well with
the prediction from our ensemble of neural networks (Fig. 5A).

We compared the enrichment of the computationally optimized
sequences and the seeds in the three-round phage display panning
experiment. We observed that the 5467 sequences proposed by Ens-
Grad show a positive distributional shift of R1-to-R3 enrichment
compared to seed sequences (Fig. 5B; two-sided Mann–Whitney U
test; for standard washing condition, P¼5.324e�13; for stringent
washing condition, P¼1.333e�13). With stringent washing, the
mean R1-to-R3 enrichment value of Ens-Grad derived sequences is
0.341 log10 higher than that of the seeds, indicating an improve-
ment equivalent to 62.13% of the standard deviation of seeds R1-
to-R3 enrichment (0.549). The Ens-Grad method also produced the
sequences with the highest enrichment at the upper tail of the enrich-
ment distribution (Fig. 5C), outperforming all top sequences in seeds
by 28-fold (1.450 in log10 fold). None of the other computational
methods produce sequences with R1-to-R3 enrichment higher than
0.638 (log10 fold). Ens-Grad produced sequences with up to five
changes away from seeds, with certain sequences with two changes
producing sequences with more than a hundredfold R1-to-R3
enrichments (Supplementary Fig. S3C). We observed negative or in-
significant positive distributional shift (two-sided Mann–Whitney U
test; P¼0.025 for VAE, P¼0.140 for GA-CNN, P¼0.776 for GA-
KNN) of R1-to-R3 enrichment in sequences produced by each of
the three alternative baseline methods. Similar patterns were
observed for the distribution of R2-to-R3 enrichment.

We selected a subset of the highly enriched sequences including
12 seeds and 7 machine learning-designed sequences from six differ-
ent sequence families and synthesized complete IgG molecules of
these sequences to evaluate their affinity using an ELISA EC50 assay
(Supplementary Data). Within each CDR-H3 sequence family, we

observed that the machine learning-designed sequences had superior
or equivalent affinity for ranibizumab than any of the seed sequen-
ces, with the best machine learning-designed antibody having an
EC50 of 0.29 nM (Table 2, Supplementary Fig. S3B). We found that
a subset of CDR-H3 amino acid positions and values were Sufficient
Input Subsets (Carter et al., 2019a, b) for Ens-Grad to predict en-
richment at a threshold of 0.4 (Table 2) 17. We also found Ens-
Grad preferred to change certain CDR-H3 amino acid positions to
optimize enrichment, and the Ens-Grad Sufficient Input Subsets ne-
cessary for enrichment diverged from the simple observed frequency
of optimized sequences (Fig. 6).

4 Discussion

We have found that machine learning-based methods are an effect-
ive way to both model and optimize antibody complementarity-
determining region sequences based upon experimental training
data. We note that our methods are not intended as an alternative to
conventional randomized affinity maturation that can explore tens
of millions of alternative candidates. Rather, machine learning pro-
vides a modular method to combine models based on data from
both primary antibody campaigns and subsequent affinity matur-
ation steps to achieve desired affinity and specify objectives. We ob-
serve that within a single antibody campaign machine learning can
produce optimized sequences that are on average and at the
extremes better than what they observe during training. As DNA
sequencing of panning rounds can be performed at a low cost our
methods can be readily applied to new antibody campaigns to dis-
cover CDR sequences that improve affinity and specificity using the
methods we have described.

We demonstrated that we can combine machine learning models
to reject antibodies that bind undesired targets to improve antibody
specificity, a key property for therapeutic safety. Importantly,

Fig. 5. Experimental results of the ML-proposed library diluted 1:100 into our initial synthetic library. (A) Predicted enrichment using ensemble of all sequences in the synthe-

sized library, including optimal sequences, seed sequences and negative controls, grouped by their experimental R1-to-R3 enrichment. Ens_Grad predicts higher values for

groups with higher experimental binding affinity. (B) Distribution of R1-to-R3 and R2-to-R3 enrichment of sequences proposed by each of the methods, together with seed

sequences and negative controls. Ens-Grad proposed sequences that are better in general by introducing a positive distributional shift compared to seeds, whereas the other

methods failed to improve upon the seed sequences. (C) Stacked histogram of the right tail of R1-to-R3 enrichment distribution of each method. Ens-Grad sequences were in

higher percentage on the right tail, and the best Ens-Grad sequence outperformed the best seed sequences by 28-fold. None of the sequences designed by other methods attained

enrichment higher than 0.638 and thus do not appear in this plot
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compared to experimental procedures such as counter panning
which is specific to an undesired target, multi-objective machine
learning models can be readily applied to improve antibody specifi-
city by building upon data from past antibody campaigns.

Our results suggest machine learning will provide efficient strat-
egies for exploring promising subsets of sequence space for antibody
design. Conventional affinity maturation methods, when sufficiently
powered, improve the affinity of CDR-H3 sequences by randomiza-
tion. We note that Ens-Grad proposed sequences with two amino
acid changes from panning derived sequences which exhibited 1.899
log10 R1-to-R3 enrichment in stringent washing and 2.888 log10
R1-to-R3 enrichment in standard washing (Supplementary Fig.
S3C). A brute force search of all possible one and two changes for
6566 seed sequences would require up to 2.193�108 sequences,

while Ens-Grad explored certain of these changes within a design
budget of 5467 sequences. Thus, machine learning offers a powerful
tool for focusing design candidates on optimal sequences.

In the presence of adequate training data, we expect that the gen-
eral optimization framework we outline will be applicable to a wide
range of design challenges including the design of DNA aptamers,
RNA aptamers, and general protein sequences. We expect that our
methods will work unchanged for other CDRs and with data from
other affinity platforms such as yeast display (Boder et al., 2012).
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Fig. 6. Visualization of machine learning (ML) optimization. (A) Position independent proposed mutations map. Heatmap visualization showing the count of observed se-

quence mutations between seed and corresponding ML-proposed sequences. The mutation count indicates the number of mutations observed from/to each amino acid in 7614

pairs of seed and ML-proposed sequences, regardless of the position of the mutated residue. Cysteine and asparagine are not proposed by our ML method (Section 2). (B)

Position dependent proposed mutations map (sequences length 16 only). Heatmap visualization showing the count of ML-proposed sequence mutations occurring from (left)

and to (right) each amino acid at each sequence position. The mutation count indicates the number of mutations observed from/to each amino acid at each sequence position

in 5025 pairs of seed and ML-proposed sequences having length 16). (C) Sequence logo visualizations for top 1000 sequences of length 16 based on mean predicted R3/R1 en-

richment from the neural network ensemble. Sequence logos for Seeds (a) and ML-proposed (c) groups are based on residue frequency, and sequence logos for Seeds (b) and

ML-proposed (d) are based on frequency of residues marked as most important using Sufficient Input Subset for predicted sequence enrichment. Sequence logos are computed

using Skylign

Table 2. Examples of the top ML-proposed sequences and top seed sequences, along with their enrichment in standard and stringent wash-

ing condition, EC50 affinity measurement and R2 fit of EC50 model

CDR-H3 sequence Group R2 EC50 (nM) log(R3/R1)

Standard Stringent

1 HKPQAKSYLPLRLLDY Ens_Grad 0.99 0.47 3.369 2.399
HKPQAISYLPYRLLDY Ens_Grad 0.998 0.5 2.61 2.577
HKPQAISYLPYRILDY Seed 0.993 0.62 2.418 2.467
HKPQAKSYLPMRLLDY Ens_Grad 0.98 0.93 2.409 0.836
HKPQAVSYLPYRILDY Ens_Grad 0.994 0.98 2.915 2.561
HKPQAKSYLPYRLLDY Seed 0.996 1.48 2.693 1.128
HKPQAKSYLPYRTLDY Seed 0.993 2.49 2.371 1.986
HKPQSKSYLPYRLLDY Seed 0.995 4.78 2.634 0.445
HKPQAKSYLPYRILDY Seed 0.992 6.55 1.41 1.112

2 YRSPHHRGGATWQFDY Seed 0.992 5.79 0.037 0.036
3 DLFRYYYFMWPLDY Ens_Grad 0.986 34.05 2.638 0.523

DLFRYYYFFWPLDY Seed 0.99 109.5 2.988 1.283
4 MHYYDIGVFPWDTFDY Ens-Grad 0.971 0.29 2.089 3.381

GHYYDIGVFPWDTFDY Seed 0.99 0.49 0.703 1.593
5 WQQWAGYPRQKYSFDY Seed 0.986 3.31 2.657 1.888

WQQWSGYPRQKYSFDY Seed 0.975 66.81 0.264 0.219
6 GKSLYGQETTWPHFDY Seed 0.99 0.67 2.002 0.946

Note: See Supplementary data for how these sequences are chosen. Sequence positions colored in blue comprise a Sufficient Input Subset, which alone provides

sufficient evidence for the ensemble to justify a highly positive prediction �0.4 of enrichment. The color shades for EC50 uses a 3-color scale where the max value

is colored red, min value is colored green, median is colored yellow and the rest are colored proportionally. The log(R3/R1) column is colored with 3-colored scale

where max value is colored in red, min value is colored in blue and median is colored in white.

Column 1 is the family number of the sequence (see Fig. 1F).
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