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Evaluation of exercise-induced periodic breathing (PB) in cardiopulmonary exercise testing (CPET) is one of important diagnostic
evidences to judge the prognosis of chronic heart failure cases. In this study, we propose a method for the quantitative analysis
of measured ventilation signals from an exercise test. We used an autoregressive (AR) model to filter the breath-by-breath
measurements of ventilation from exercise tests. Then, the signals before reaching the most ventilation were decomposed into
intrinsic mode functions (IMF) by using the Hilbert-Huang transform (HHT). An IMF represents a simple oscillatory pattern
which catches a part of original ventilation signal in different frequency band. For each component of IMF, we computed the
number of peaks as the feature of its oscillatory pattern denoted by Δ 𝑖. In our experiment, 61 chronic heart failure patients with
or without PB pattern were studied. The computed peaks of the third and fourth IMF components, Δ 3 and Δ 4, were statistically
significant for the two groups (both p values < 0.02). In summary, our study shows a close link between the HHT analysis and level
of intrinsic energy for pulmonary ventilation. The third and fourth IMF components are highly potential to indicate the prognosis
of chronic heart failure.

1. Introduction

The rehabilitation of patients with chronic heart failure
(CHF) is a slow process, and sometimes, good progress is
difficult to obtain for some patients. Exercise-induced peri-
odic breathing (EPB) was found to be an important evidence
of poor prognosis [1–6]. Therefore, physiatrists commonly
check exercise breathing patterns of patients with CHF by
using cardiopulmonary exercise testing (CPET; Figure 1(a))
to guide the pharmacological and nonpharmacological

treatments for these patients. CPET involves measurements
of ventilation (VE) respiratory oxygen uptake (VO2) and car-
bon dioxide production (VCO2) during a symptom-limited
exercise test [7]. On increasing the bicycle workload during
a CPET test, the respiratory exchange rate and tidal volume
increase simultaneously. For more respiratory exchanges, a
periodic breathing (PB) patternmight occur in some patients
with CHF. PB (Figure 1(d)), first described in the 1970s [8], is
a phenomenon of abnormal hyperventilation that alternates
apneas and hypopneas. In this study, we investigated the
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Figure 1: A cardiopulmonary exercise testing (CPET) system and breathing patterns. (a) A CPET machine is comprised of a cycle
ergometer and pneumotachometer. During the test, the bicycle workload for the patient is increased until maximal exertion is reached. (b–d)
Breathing patterns include eupneic, gasping, and periodic breathing (PB). Tidal volume is the volume of air exchange between inhalation and
exhalation.

difference in ventilation signals between PB and non-PB
patients [9].

From the analysis of cardiopulmonary exercise testing
(CPET) measurements, two significant indicators have been
studied in the literature, namely, peak VO2 and VE/VCO2
slope. Peak oxygen consumption (peak VO2) was considered
the gold standard assessment parameter of prognosis in
CHF [10, 11]. Then, the ratio of ventilation-to-carbon dioxide
production (VE/VCO2 slope) was also studied later with the
same importance as peak VO2 [12, 13]. More recently, the
quantification of PB patterns was investigated in both the
spatial and frequency domains [3–5]. Here, we endeavored
to link CPET measurements and the quantification of PB
patterns by using the Hilbert-Huang transform (HHT) [14].
The Hilbert-Huang transform has been applied in many
biomedical analyses [15], including blood pressure [16, 17],
nasal flow [18], and electroencephalography [19, 20]. To apply
the Hilbert-Huang transform on the analysis of ventilation

measurements, we propose two important steps of prepro-
cessing. In the first step, we examine the ventilation mea-
surements from CPET tests. Some ventilation measurements
are noisy and aberrant when the testing patient is gasping.
The occurrence of such aberrant signals is caused by the
limitation of a CPET system. The ventilation VE values are
obtained from breath-by-breath calculation of gas exchange
at the mouth. A nonrebreathing valve is connected to a
mouthpiece to prevent mixing of inspired and expired air.
Thus, one irregular gasping exhalation may be recorded as
two or more breaths. As a result, we filter out those aberrant
measurements.

Moreover, not all measurements from entire CPET tests
were used in our analysis. To determine the meaningful
difference in cardiopulmonary response between the PB and
non-PB patients, we only selected the period before the
patient’s ventilation reached the maximal volume. The com-
mon respiratory rate for an adult at rest is 12–20 breaths per
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Figure 2: Measured signals of exercise breath-by-breath venti-
lation. Very low measurements usually occur when the patient is
gasping. In this study, when the ventilation volume was high, these
exceptional measurements were observed as noises.

minute, which will increase up to 30–50 breaths per minute
during exercise testing. Thus, PB patterns are most likely to
appear around the peak respiratory volume. Therefore, 200
ventilation measurements, that is, a period of 4–6 minutes
before the peak volume, were used in the analysis.

2. Materials and Methods

2.1. Breath-by-Breath Ventilation Signals for 61 Patients with
Chronic Heart Failure. Exercise ventilation signals were
recorded from CHF patients who received rehabilitation
at the Chang Gung Memorial Hospital-Keelung Branch in
Taiwan. All the subjects were studied in accordance with a
protocol previously approved by the local ethics committee
and registered at the ClinicalTrials.gov website with ID No.
NCT01053091. The respiratory signals were acquired using
a pneumotachometer connected to a mask and analyzed
using the machine MasterScreen CPX Metabolic Cart. In
common cases, the signals, including VO2 and VCO2, are
output per 30 seconds, although they are measured breath
by breath. More information about the collected CPET data
can be found in Fu et al. (2017). For this study, we output the
original breath-by-breath signals of ventilation instead. The
total measurement period was 10–15 minutes. We obtained
61 deidentified ventilation samples marked as PB (n = 20) or
non-PB (n = 41) by physiatrists.

2.2. Filtering of Ventilation by an Autoregressive Model. Many
observations of biosignal series exhibit serial autocorrelation
and can bemodelled with autoregressive (AR)models. Garde
et al. showed that ventilation signals can also be fitted by
AR models [18]. They used the coefficients of AR models to
characterize the respiratory pattern of PB or non-PB patients.
However, the average ventilation measurements per minute
were adapted in their study. In our study, we analyzed breath-
by-breath signals and applied the ARmodel method to fit the
curve of exercise ventilation as shown in Figure 2.

The AR models predict y𝑡 as a function of past observa-
tions, 𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑝. The form of the AR model is

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + ⋅ ⋅ ⋅ + 𝜙𝑝𝑦𝑡−𝑝, (1)

where p is the degree of the AR model and denoted by AR(p)
and 𝑦𝑡 is the predicted term.

For the analysis of PB or non-PB exercise ventilation, 200
serial measurements before the largest ventilation volume
were chosen, and an AR(6) model is applied to the series. By
using the equation to fit the exercise ventilations, we filtered
out the observed measurement of ventilation y𝑡 if 𝑦𝑡 < 0.8𝑦𝑡.
This filtered series of ventilation signals is called “the most
exhausted exercise ventilations (MEE-Ve)” in this paper.

2.3. Decomposition of the Chosen Ventilation Signals by
the Hilbert-Huang Transform. TheHilbert-Huang transform
(HHT) is a signal decomposition method developed by
Norden E. Huang in the 1990s [14]. By using this processing
method, biosignals are decomposed into a set of IMFs
by an empirical mode decomposition (EMD) process. The
instantaneous frequencies and amplitudes of all IMFs can be
used to identify embedded signal structures.

The HHT representation of series X(t) is

𝑋 (𝑡) = R
𝑛

∑
𝑗=1

𝑎𝑗 (𝑡) 𝑒
𝑖𝜃𝑗(𝑡) = R

𝑛

∑
𝑗=1

[𝐶𝑗 (𝑡) + 𝑖𝑌𝑗 (𝑡)] , (2)

where C𝑗(t) and Y𝑗(t) are, respectively, the j-th IMF compo-
nent of X(t).

To obtain IMFs, EMD [14], which is an iterative process
that output a set of signal components called IMFs, is
performed. Figure 3 shows an example of decomposed IMFs
for a series of MEE-Ve. The original signals are decomposed
into the components IMF1, IMF2, . . ., IMF5. Different IMF
components may imply particular factors. We calculated
the peaks of the oscillations in each IMF with MATLAB’s
“mspeaks” function [21]. The estimated peaks of the IMF
components of IMF𝑖 are denoted asΔ 𝑖 to compare the PB and
non-PB samples.

2.4. Statistical Analyses. Student’s t-tests were used to identify
statistically significant differences between two groups of
features of PB and non-PB samples.

3. Results

3.1. The Computation of IMFs of Most Exhausted Exercise
Ventilations (MEE-Ve) for PB and Non-PB Patients. The
measurements of ventilation (VE) obtained from cardiopul-
monary exercise testing (CPET) were analyzed using the
proposed method. The programs were written in MATLAB.
We analyzed the extracted exercise ventilations in this section
by using HHT for 20 patients with or without PB as judged
by physiatrists. The empirical mode decomposition (EMD)
process is applied to the VE data and several IMFs are
extracted. Figure 3 depicts the HHT decomposition result
for IMF1-IMF5. In addition, we show the corresponding
instantaneous frequency of the decomposed IMF1-IMF4
in Figure 4. All figures of HHT decomposition results
for the 61 patients are available at our Github repository
(https://github.com/htchu/EpbAnalysis).

3.2. Numbers of Peaks as the Features of IMFs. We used
MATLAB’s “mspeaks” function to perform the peak fitting
of IMFs and the source ventilations. Figure 5 illustrates

https://clinicaltrials.gov/ct2/show/NCT01053091
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Figure 3: An example of empirical mode decomposition of most exhausted exercise ventilations (MEE-Ve). The MEE-Ve signals are 𝑘
ventilations before the peak volume. The number 𝑘 is 200 in this paper. The illustration is from the analysis of the patient ID: pb0001 which
was judged as a periodic breathing (PB) case. All results of the EMD analysis for the PB or non-PB cases can be found at the Github repository
(https://github.com/htchu/EpbAnalysis).

the computed locations of peaks for the same experimental
data in Figure 3. Obviously, the peak fittings for the source
ventilations and the first IMF (Figures 5(a) and 5(b)) are
not as good as the peak fittings for the other IMFs (Figures
5(c)–5(f)). Table 1 lists the numbers of computed peaks of
IMF1-IMF5 for first 20 patients (10 PBs and 10 non-PBs).
Supplemental Table 1 provides all of the computed peaks for
the entire test dataset.

3.3. Statistical Significance Test of IMFs. The statistical signif-
icance test derived by Wu and Huang [22] is illustrated in
Figure 6. The five extracted IMFs are shown along with the
95% and 99% confidence limits. All IMFs are above the 99-
percentile confidence limit except for the IMF5. Therefore,
only the IMF5 is not statistically significant from noise [22].

3.4. More Peaks of IMF3 and IMF4 for Better Prognosis of
Chronic Heart Failure Cases. Student’s t-tests were used to

identify statistically significant differences between the two
groups (PB and non-PB patients). Table 2 lists the 𝑝 values
for the comparison between the two group for the computed
peaks of IMFs. The 𝑝 values for first two IMFs are greater
than 0.1 such that the peak computations are not statistically
significant for IMF1 and IMF2. By contrast, the 𝑝 values
for IMF3 and IMF4 are less than 0.02 such that the peak
computations are statistically significant for IMF3 and IMF4.

4. Discussion and Conclusion

This paper conducted a new analysis on exercise ventilation
signals to predict the prognosis of CHF patients. We defined
MEE-Ve as a breath-by-breath ventilation measurement fil-
tered using an AR model. We ran our correlation analysis
through IMFs, extracted from the EMD process, and found
that PB patterns were highly correlated to IMF3 and IMF3.
To clarify the correlation, we introduced peak computation of

https://github.com/htchu/EpbAnalysis
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Figure 4: The corresponding instantaneous frequency of the decomposed IMF1-IMF4 (Figure 3).

IMF3 and IMF4 (Δ 3, Δ 4) as the feature of ventilation signals
from cardiopulmonary exercise testing (CPET).

However, the effectiveness of the proposedmethod needs
more clinical examinations in the future. Meanwhile, the
range selection of exercise ventilations is another issue for
more studies. We plan to examine this method with more
cardiopulmonary tests.
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Figure 5: Peak Computations of IMFs (Figure 3).



Computational and Mathematical Methods in Medicine 7

Table 1: Computed peaks Δ 𝑖 of IMFs by mspeaks.

PB or non-PB Patient Δ 1 Δ 2 Δ 3 Δ 4 Δ 5
PB-1 11 23 11 6 2
PB-2 2 28 17 7 3
PB-3 11 29 13 5 2
PB-4 9 30 13 7 3
PB-5 14 27 14 4 2
PB-6 8 25 13 5 2
PB-7 0 28 14 6 3
PB-8 21 25 16 8 3
PB-9 0 30 15 7 3
PB-10 3 23 9 5 2
nPB-1 7 26 16 6 3
nPB-2 7 29 15 8 2
nPB-3 8 28 16 9 4
nPB-4 2 24 14 7 3
nPB-5 4 28 17 10 5
nPB-6 0 30 17 7 5
nPB-7 15 26 15 6 2
nPB-8 8 27 15 7 3
nPB-9 9 26 16 8 4
nPB-10 2 31 17 8 3

Significance test of IMFs of MEE-Ve
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Figure 6: Statistical significance test for the decomposed IMFs.The
IMF5 is below the 95% confidence limit and is therefore considered
statistically insignificant.

Table 2: P values of Student’s t-test for IMFs.

IMF component Δ1 Δ2 Δ3 Δ4
P value 0.6330 0.1103 0.016 0.017

signals of 61 chronic heart failure patients. (Supplementary
Materials)
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