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SUMMARY

Cell-based therapies have gained interest as a potential treatment method in cardiovascular disease in the past two decades,
peripheral artery disease amongst others. Initial pre-clinical and small pilot clinical studies showed promising effects of cell ther-
apy in peripheral artery disease and chronic limb-threatening ischemia in particular. However, these promising results were not
corroborated in larger high quality blinded randomized trials. This has led to a shift of the field towards more sophisticated cell
products, especially mesenchymal stromal cells. Mesenchymal stromal cells have some important benefits, making these cells
ideal for regenerative medicine, e.g., potential for allogeneic application, loss of disease-mediated cell dysfunction, reduced pro-
duction costs, off-the-shelf availability. Future high quality and large clinical studies have to prove the efficacy of mesenchymal
stromal cells in the treatment of peripheral artery disease. STEM CELLS TRANSLATIONAL MEDICINE 2018;7:842–846

SIGNIFICANCE STATEMENT

Chronic limb-threatening ischemia is the most severe form of peripheral artery disease, and a considerable number of patients
with this condition are not eligible for conventional treatment strategies. Therapies that aim at neovascularization might pro-
vide an escape for these patients. Initial clinical studies for first generation cell therapies were quite disappointing; however,
more sophisticated and better defined cell therapies—mesenchymal stromal cells in particular—seem promising. This article
describes the future perspectives and challenges of cell therapy in limb ischemia.

INTRODUCTION

Peripheral artery disease arises from atherosclerosis of major
arteries, with a predilection for the lower limbs. In its most
severe manifestation, occlusion of limb arteries reaches a
point where metabolic demands of the tissue can no longer
be met; this stage is termed chronic limb-threatening ischemia
(CLTI) or critical limb ischemia (CLI). CLTI poses a great unmet
need for novel treatments, as 20%–40% of the CLTI patients
are not eligible for conventional revascularization, ultimately
leading to amputation, associated with an immense medical
and socio-economic burden [1–3]. No-option status in these
patients is due to extensive and diffuse, often infrapopliteal,
atherosclerotic lesions, comorbidity, and/or lack of a suitable
bypass graft [4, 5]. Novel approaches that target neovasculari-
zation provide a potential solution for these no-option
patients. Cell-based therapies seem the most promising [6],

although initial enthusiasm has abated after negative results in
the first generation of progenitor cell trials. Here we will pro-
vide a concise review on the available evidence on and future
directions for cell therapy in CLTI. In that context we will also
briefly address literature regarding cell therapy in myocardial
infarction (MI) because objectives in both MI and CLTI trials
are to enhance revascularization through cell therapy.

CELL THERAPY FOR CLTI—THE PRESENT STATE OF AFFAIRS

The rationale behind using progenitor cell therapy as a treat-
ment for ischemic cardiovascular disease was motivated by the
discovery that human blood contains progenitor cells that
home to ischemic tissues [7] and augment angiogenesis [8].
Relatively soon thereafter, a first generation of progenitor cell
trials have been conducted using bone marrow mononuclear
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cells (BM-MNCs), a direct BM isolate which contains a variety
of different cell-types, mostly from the hematopoietic line. The
primary hypothesis was that BM, as the reservoir of hemato-
poietic stem cells, also contains endothelial progenitor cells
(EPCs) [9]. These putative EPCs were initially thought to pro-
mote angiogenesis through the formation of new vessels [7] as
they actively homed to ischemic areas after injection. Early,
uncontrolled clinical studies using BM-MNCs were promising,
but placebo-controlled trials gave conflicting results. A large,

double-blind, placebo-controlled randomized trial by our group,

the JUVENTAS trial, showed no treatment effects of BM-MNC

administration over placebo [10], which was corroborated by a

meta-analysis [11]. Similar results were obtained with BM-MNC

therapy for other indications such as MI, where an aggregated

study comprising over a 1,000 patients that were treated with

BM-MNCs for MI failed to find a consistent positive effect [12].
Advancing insight into the biology of progenitor cells has

in parallel, revealed that the mechanisms of effect involved in
progenitor cell-therapy are different and more complex than
initially thought. The use of cell surface markers to identify
EPCs has been shown to be prone to isolation artifacts [13,
14], and several ontologically distinct cell populations display
EPC markers. Furthermore it has been shown that BM-derived
cells do not stably incorporate into newly formed vessels and
only play an auxiliary role in neovascularization [15]. True vas-
culogenic ability has only been demonstrated for a single cell-
type, designated the endothelial colony forming cell (ECFC)
[16], which cannot be obtained from BM. While the auxiliary

angiogenic effects of BM-MNCs have been demonstrated very
consistently in animal models, it is likely that they only occur
with BM isolates from comparatively young subjects without
comorbidities [17, 18]. This restricts successful application of
BM-MNCs in MI to specific subsets [19] of patients, and likely
severely limits it in CLTI.

Collectively, these observations have precipitated a switch
away from undefined raw cell isolates such as BM-MNCs,
toward better-defined cell therapy products [20]. Whereas in
the therapy for MI, the focus has shifted away from angiogenic
cell therapy to cardiomyocyte regeneration [21], in CLTI the
primary objective remains to augment angiogenesis.

Angiogenesis can be induced via different cell-based strate-
gies (Fig. 1) by supplying endothelial-like cells, such as ECFCs
directly, which will spontaneously organize into new vessels
that integrate with the existing vasculature. Alternatively
angiogenesis can be promoted indirectly by cells that secrete
factors that remodel the extracellular matrix and recruit resi-
dent endothelial cells. In this category are circulating endothe-
lial cells, which are of monocyte/myeloid origin, and may
potentially act as bridging monocytes in angiogenesis [22].
Alternatively there are mesenchymal stromal cells (MSCs),
which are of pericyte origin [23] and secrete a host of para-
crine angiogenic and immunomodulatory factors [24]. How-
ever, it is debated that pericytes have the multilineage
potential in vivo, which characterize MSCs in vitro and that
the observed plasticity of MSCs result from manipulation
ex vivo [25]. But irrespective of this it is likely that there are
synergistic effects of combining these approaches, using a

Figure 1. Different potential modes of action of cell therapy. (A): Direct angiogenesis through introduction of endothelial-like cells that
will form new capillaries through vasculogenesis and fill endothelial defects. (B): Indirect angiogenesis through introduction of monocyte-
like cells, that will remodel the extracellular matrix and will recruit and guide new endothelial sprouts. (C): Indirect angiogenesis through
paracrine effects, including modulation of monocyte differentiation and recruitment of endothelial cells.
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combination of ECFCs and a supportive cell-type [26, 27]. At
present, however, translation to a clinical product has proven
difficult as ex vivo expansion of the above-mentioned cells
requires specialty cell culture additives that are difficult and
costly to obtain for clinical grade production [28]. For this rea-
son only MSCs, have advanced to a second generation of clini-
cal trials, as they can be relatively easily obtained from
different tissues such as BM, placenta and adipose tissue and
reproducibly expanded ex vivo (see Table 1 for overview).

MSC THERAPY FOR CLTI

While MNC have proven to effectively enhance angiogenesis
and neovascularization in preclinical studies, it has been sug-
gested that the pro-angiogenic effect of MSCs is superior
compared to MNCs in preclinical studies [34, 35]. In vitro and
vivo studies have demonstrated that MSC can home to
injured tissue and secrete beneficial factors that suppress
inflammation and improve angiogenesis via paracrine path-
ways [36]. Several small exploratory clinical trials showed pos-
itive effects of MSCs in the treatment of CLTI compared to
standard of care or placebo [30, 32, 37]. Clinical studies that
directly compare BM-MSCs with MNCs for the treatment of
CLTI are scarce. Only one study directly compared the two
strategies in 41 diabetic CLTI patients, suggesting that MSC
might be better tolerated and more effectively enhance per-
fusion and ulcer healing compared to MNC [31]. The disap-
pointing results of clinical trials on MNC in CLTI, the
promising effects of MSCs and several practical benefits of
MSCs, in particular the potential for allogeneic application,
have led to increased interest of MSCs as potential option for
cell therapy in CLTI A similar switch is also observed for stud-
ies in cardiac disease [38].

MSCs, rather uniquely among transplanted cell grafts, are
only minimally immunogenic [38] and display strong immuno-
modulatory properties [39]. This makes allogeneic application
possible, at least in a single administration, as it is still unclear
whether rejection occurs upon repeated administration [38]. At
the present state of knowledge, allogeneic administration of
MSCs is the most promising route to clinical application with
the advantage of providing an off-the-shelf available product.
An allogeneic product significantly reduces the burden on the

patient, as patients will not have to undergo a (BM) harvesting
procedure. Whereas in BM-MNCs it has been shown that
patient-derived cell isolates show decreased pro-angiogenic
effects [18], this does not necessarily apply to MSCs [40]. In a
previous study we did not observe reduced angiogenic potency
in CLTI MSC isolates in a murine hind limb ischemia model [40,
41]. In a clinical trial comparing efficacy of autologous versus
allogeneic MSCs in non-ischemic dilated cardiomyopathy, how-
ever, allogeneic MSCs had a more favorable side-effect profile
and a trend toward greater improvement in ejection fraction.
Additionally the occurrence of serious adverse events was sub-
stantially lower in allogeneic then autologous MSCs; 28% versus
64%, respectively [38]. Furthermore, an advantage of allogeneic
MSC therapy is that the (angiogenic) potency of the cell isolate
can be tested in advance. Demonstrable potency will likely be
of importance in the quality control of cell therapy products for
clinical regulation [42]. As a single MSC isolate generally is suffi-
cient to treat dozens of patients, a priori batch testing can con-
ceivable improve clinical outcomes, provided that validated
assays are developed [42, 43]. Last, allogeneic MSC administra-
tion is significantly less costly. Costs for expansion and quality
testing of a BM isolate are high, which in autologous applica-
tion were the per-patient cost, but which can be split over mul-
tiple patients in allogeneic application [44].

CURRENT CHALLENGES AND FUTURE DIRECTIONS

Allogeneic application makes MSC-therapy interesting for
commercial parties, as a defined cell product can be compara-
tively easily patented and produced by in-house companies,
without the complications of harvesting donor material for
each patient. Fifteen percentage of all clinical trials worldwide
involving cell therapy are industry-sponsored and the vast
majority of the remainder by leading academic centers. Addi-
tionally facilities and logistics involved in the development of
cell therapy products are becoming more available and less
expensive due to increased administration as standard of
care or as investigational novel treatment in other diseases
[45]. However, development of evidence-based accepted
approaches remains challenging, due to high developmental
costs, regulatory hurdles, and batch-per-batch product varia-
tion. Some of these factors may be less relevant for non-cellular

Table 1. Overview of MSC trials in CLTI

Author Year n Design Injection sites Total dose and source

Kim et al. [29] 2006 4 No control group NM 1 × 106 allogeneic HLA matched
UCB-MSCs

Dash et al. [30] 2009 24 Open label; control group
(1:1 randomization)

NM 45–60 × 106 autologous BM-MSCs

Lu et al. [31] 2011 41 Double blind study; randomly assigned
treatment per leg; one leg treated with
normal saline, the other treated with

MNC or MSC

20 9.3 × 108 autologous BM-MSCs

Gupta et al. [32] 2013 20 Placebo controlled; double blind 40–60 2 × 106 allogeneic BM-MSCs per kilogram
body weight

Gupta et al. [33] 2016 90 Nonrandomized; low dose, high dose or
standard care

40–60 (1 or 2) × 106 allogeneic BM-MSCs
per kilogram body weight

Abbreviations: BM, bone marrow; HLA, human leukocyte antigens; MSCs, mesenchymal stromal cells; NM, not mentioned; UCB, umbilical cord blood.
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cell-based therapies, such as exosome-based therapies, which
could make commercialization less difficult [46]. Another impor-
tant CLTI-specific limiting factor is that, historically, the design of
high-quality studies for the treatment of CLTI has proven notori-
ously difficult [47]. Improved clinical management and technical
advances in revascularization approaches, endovascular interven-
tions in particular, have led to a near doubling of 1-year
amputation-free survival for CLTI patients since the first trials
with BM-MNCs. Therefore larger and better-designed trials are
required to determine the potential added value of novel thera-
pies in CLTI [48, 49]. In the light of these considerations, small
phase I/II [31, 32] or pragmatically designed studies [33] have
provided valuable first indications about potential efficacy of
MSCs in CLTI. However, at no point can they substitute evidence
from placebo-controlled double-blind randomized trials. Public
demand for cell-based therapies has been such, that smaller
commercial parties are offering cell treatments in the absence of
evidence—positive or negative—potentially putting patients at

risk [50], leading to public discussions with respect to ethical
issues regarding regenerative medicine approaches [51].

We therefore would encourage increased openness and
standardization, both in the use of the investigational cell
product and trial design. Convincing evidence for efficacy of
MSC therapy will only come from well-designed randomized
controlled trials using hard and clinically relevant outcomes,
which would be ideally related with future imaging methods
to evaluate collateralization and neovascularization. It seems
increasingly unlikely that single investigative centers will
achieve sufficient statistical power to show efficacy. Interna-
tional collaborative efforts and data sharing are necessary to
push the field forward and maintain scientific integrity.
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