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Phenoloxidase (PO)–catalyzed melanization is a vital immune response in insects for
defense against pathogen infection. This process is mediated by clip domain serine
proteases and regulated by members of the serpin superfamily. We here revealed that the
infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)
significantly inhibited the PO activity in Ostrinia furnacalis hemolymph and induced the
expression of O. furnacalis serpin–4. Addition of recombinant serpin-4 protein to O.
furnacalis hemolymph resulted in a great increase of AcMNPV copies. Serpin-4
significantly suppressed the PO activity and the amidase activity in cleaving colorimetric
substrate IEARpNA (IEARase activity) of hemolymph. Further experiments indicated it
formed covalent complexes with three serine proteases (SP1, SP13 and SP105) and
prevented them from cleaving their cognate downstream proteases in vitro. Altogether, O.
furnacalis melanization restricted AcMNPV replication and serpin-4 facilitated AcMNPV
infection by inhibiting serine proteases, SP1, SP13, and SP105 which were all involved in
the melanization response.

Keywords: serpin-4, baculovirus, melanization, inhibition, Ostrinia furnacalis
INTRODUCTION

Insects inevitably encounter various pathogens including viruses during their lifetime, but they still
survive in a microbe–rich natural environment (1). This is mainly attributed to the powerful innate
immune system in insects, especially in the case most insects lack a typical adaptive immune system
(2, 3). Among insect innate immune responses, melanization is a prominent humoral reaction and
leads to the synthesis of melanin (4). A number of studies have shown that melanization, combined
with other immune mechanisms such as antimicrobial peptide (AMP) production, provides defense
against bacteria (5), fungi (6, 7), and parasites (8). Some research revealed that melanization was
also effective in resistance against viruses. For example, the melanized tracheal epidermis limited the
spread of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) to hemocytes and
other tissues in resistant Helicoverpa zea larvae (9). The melanized plasma in Heliothis virescens
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accounted for the inactivation of H. zea single capsid
nucleopolyhedrovirus (HzSNPV) in vitro (10). Hemolymph
melanization in Lepidoptera was correlated with antiviral
activity against Microplitis demolitor bracovirus (MdBV),
Lymantria dispar MNPV and Helicoverpa armigera
nucleopolyhedrovirus (HearNPV) (11, 12).

The melanization reaction is mediated by multiple activating
and regulating factors. During insect melanization, a series of
serine proteases (SPs) are sequentially activated upon infection
and culminate in the activation of prophenoloxidase activating
proteinase (PAP). Activated PAP further converts inactive
prophenoloxidase (PPO) to phenoloxidase (PO) (13). The
resulting active phenoloxidase catalyzes the oxidation of
phenols to quinones which spontaneously polymerize to form
melanin (14, 15). This process is strictly regulated by members of
the serine protease inhibitor (serpin) superfamily through
targeting at specific serine protease(s) (16). Serpins adopt a
canonical fold of three b–sheets and up to nine a–helices with
a reactive center loop (RCL) exposed at the surface (17, 18).
When a serpin interacts with its target serine protease, it is
cleaved at the scissile bond in the RCL by the target serine
protease and subsequently forms a covalent complex with the
target serine protease, which is therefore irreversibly inhibited
(18, 19). Many serpins have been reported to regulate insect
melanization, such as SRPN1 and SRPN2 in Aedes agypti (20),
SRPN2 in Anopheles gambiae (21), serpin–5, –6, –15 and –32 in
Bombyx mori (22–25), serpin–5 and serpin–9 in Helicoverpa
armigera (26), serpin–1, serpin–3, serpin–4, serpin–5, serpin–6,
serpin–7, serpin–9, serpin–12 and serpin–13 in Manduca sexta
(27–30) and SPN40, SPN55 and SPN48 in Tenebrio molitor (31).

The inhibition of melanization by serpins has been reported
to affect the antibacterial and antiparasitic responses (23, 32, 33).
Recent studies revealed that serpins also participated in the
antiviral processes in insects. For example, in H. armigera,
suppression of melanization by serpin–5 and serpin–9
promoted the baculovirus infection (26). In B. mori, depletion
of serpin-2 resulted in the decrease of the number of BmNPV
genomic DNA copies (34). Expression of a viral serpin Hesp018
increased the virulence of baculovirus in infected Trichoplusia ni
larvae, possibly due to its ability to inhibit the activity of host
protease involved in PPO activation (35). Comparing with the
understanding of the role of serpin in antibacterial response,
knowledge about its function in insect antiviral reaction is
relatively lacking.

The Asian corn borer, Ostrinia furnacalis (Guenée), is an
important agricultural pest in many regions of Asia and causes
great economic losses (36). The strategy suppressing O. furnacalis
larvae by the natural enemy such as entomopathogenic virus or
fungi has been proposed. Our previous work illuminated partly the
molecular and biochemical mechanisms involved in interaction
between O. furnacalis and entomopathogenic fungi Beauveria
bassiana (37). Four serine proteases, SP1, SP7, SP13 and SP105
mediated the melanization in O. furnacalis upon the infection of B.
bassiana (38–40). However, knowledge about the crosstalk between
O. furnacalis and entomopathogenic virus is very incomplete. In this
study, we investigated the relationship between AcMNPV infection
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and O. furnacalis melanization, and discovered that O. furnacalis
serpin-4 facilitated AcMNPV infection by inhibiting its target serine
proteases, SP1, SP13, and SP105 which were all involved in the
melanization response.
MATERIALS AND METHODS

Insect Rearing and AcMNPV Preparation
Asian corn borers, O. furnacalis (Guenée) larvae were reared on
an artificial diet at 28°C under a relative humidity of 70–90% and
a photoperiod of 16 h of light and 8 h dark. AcMNPV was
purchased from Henan Jiyuan Baiyun Industry Co., Ltd. and
dissolved in phosphate–buffered saline (PBS).

Examination of gDNA Copies of AcMNPV
in Infected O. furnacalis Larvae
To explore the replication process of AcMNPV in its host O.
furnacalis larvae, each fifth–instar day 0 larvae were injected with
1 mL of AcMNPV (2.5 × 104 polyhedral inclusion body (PIB)/mL)
or PBS as a control (2 larvae/treatment). Each treatment was
performed 3 times individually. After 1, 6, 12 and 18 h, the total
genomic DNA (gDNA) was individually extracted with the
Genomic DNA Extraction Kit Ver.5.0 (TaKaRa, Japan)
following the manufacturer’s instructions. Specific primers
(Table S1) were designed to amplify AcMNPV ODV–e56
which encoded an occlusion–derived virus–specific envelope
protein (41). O. furnacalis rpL8 was used to normalize the
expression of ODV–e56. qRT–PCR was performed on an
Appl ied Biosystems 7500 Real Time System (Li fe
Technologies™) using SuperReal PreMix Plus (SYBRGreen)
(TIANGEN, Beijing, China) with gDNA as a template,
according to the manufacturer’s instructions. The thermal
cycling conditions for qRT–PCR were 95°C for 15 min
followed by 40 cycles of 95°C for 10 s, 60°C for 30 s and 72°C
for 32 s to generate a melting curve. Each qRT–PCR experiment
was performed in 3 biological replicates. The relative viral gDNA
expression was calculated using the 2–DDCt method.

Analysis of PO Activity and Expression of
Serpin in AcMNPV–Infected O. furncalis
Larvae
To check whether the replication of AcMNPV in O. furnacalis
was affected by the melanization response of O. furnacalis, we
injected 1 mL of AcMNPV at different concentrations (2.5 × 103,
2.5 × 104 and 6 × 104 PIB/mL) into the hemocoel of O. furnacalis
fifth instar day 0 larvae. Injection of 1 mL of sterile PBS was used
as a control. At 1, 3, 6, 9, 12 and 18 h post infection (hpi), 1 µL of
hemolymph was collected from individual larva and incubated
with 9 µL of saline buffer (20 mM Tris, 150 mM NaCl, pH 8.0) at
room temperature for 10 min. Then, PO activity of the reaction
mixture was measured using dopamine as the substrate. One unit
of PO activity was defined as the amount of enzyme producing
an increase in absorbance (DA490) of 0.001 per min.

To check whether the replication of AcMNPV inO. furnacalis
was related to the expression of serpins which are known
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inhibitors of insect melanization response, we injected 1 µL of
AcMNPV suspension (2.5 × 104 PIB/mL, sterile PBS as a control)
into fifth instar day 0 larvae. Three hours later, total RNA was
isolated from the whole body of each larva (3 larvae/each group)
with TRIzol reagent (TIANGEN, Beijing, China) following the
manufacturer’s instructions. One microgram of total RNA from
each larva was converted into first–strand cDNA using a
FastQuant RT Kit (TIANGEN, Beijing, China) following the
manufacturer’s protocol. The cDNA products were diluted 10–
fold for use as templates in qRT-PCR. Specific primers were
designed based on the cDNA sequences from assembled O.
furnacalis transcriptome (37) and listed in Table S1. qRT–PCR
was performed as described above.

Cloning and Expression Profile Analysis of
O. furnacalis Serpin–4
Based on the data from “Material and methods 2.3”, O. furnacalis
serpin-4 (37) was selected for further cloning and characterization.
Specific primers (Table S1) were designed for the amplification of
full–length cDNA encompassing the entire reading frame with
cDNA from O. furnacalis larvae as a template. The products were
cloned into the pMD19–T vector, and the nucleotide sequences
were confirmed by DNA sequencing. To investigate the
transcriptional changes of serpin–4 during the various
developmental stages, total RNA was individually prepared from
three different stages including egg, larva, and pupa. To determine
the expression patterns of serpin–4 in different tissues, total RNA
samples were isolated separately from the heads, guts, fat bodies,
and hemocytes of day 1 fifth–instar larvae. The synthesis of first–
strand cDNA and qRT–PCR analyses were performed as
described above.

Production of Recombinant Serpin–4 and
GFP Proteins and Preparation of
Antiserum Against Serpin–4
To produce recombinant serpin–4 (rserpin-4), a cDNA fragment
encoding mature serpin–4 was amplified by PCR using the
specific primers listed in Table S1. The forward primer
included an Nco I site, which provided the start codon,
followed by one codon for a glycine residue and six codons for
histidine residues. The reverse primer contained a stop codon
and aNot I site. The PCR products were ligated into the pMD19–
T vector and then digested with Nco I andNot I (TaKaRa, Japan).
The digested product was subcloned into the same restriction
sites of the expression vector pET28a (Novagen). After sequence
confirmation, the resulting serpin–4/pET28a plasmids and gifted
GFP/pET28a plasmids were used to transform E. coli BL21
(DE3) cells, respectively. For recombinant protein expression, a
single clone was incubated at 37°C in LB medium containing 50
mg/mL kanamycin. When the OD600 of the culture reached 0.8,
isopropyl b–D–thiogalactoside was added to a final
concentration of 0.1 mM, and recombinant protein was
expressed for 13 h at 22°C and 220 rpm. The bacteria were
harvested by centrifugation at 3,000 × g for 30 min and
resuspended in lysis buffer (50 mM sodium phosphate, 300
mM NaCl and 5 mM imidazole, pH 8.0). The bacteria cells
Frontiers in Immunology | www.frontiersin.org 3
were lysed by sonication, and a cleared clear lysate was obtained
by centrifugation. The soluble rserpin–4 or rGFP in the
supernatant was purified as described previously (29). Two
milligram of the purified serpin–4 was used as an antigen to
produce a rabbit polyclonal antiserum (Beijing CoWin
Bioscience Co., Ltd). The remaining recombinant protein was
stored at –80°C for further use.

The other recombinant proteins, including O. furnacalis
PPO2, mutated proSP1 (proSP1Xa), wild type proSP13,
mutated proSP13 (proSP13Xa), and mutated proSP105
(proSP105Xa) were successfully obtained in our previous work
(38, 39, 42). In proSP1Xa and proSP13Xa, the cleavage activation
site was changed to IEGR to permit its activation by bovine
Factor Xa which was commercially available (43).

Effect of Serpin–4 on AcMNPV Replication
and Hemolymph Melanization
To investigate the effect of serpin–4 on AcMNPV replication inO.
furnacalis plasma (cell–free hemolymph), AcMNPV (1.25×104

PIB) was mixed with 5 mL of plasma from day 0 fifth instar
larvae plus 5 mL of rSerpin–4 (1.2 mg/mL) or 5 mL of rGFP (1.2 mg/
mL), or 5 mL of 20 mM phenylthiourea (PTU, specific inhibitor of
PO), respectively. Phosphate buffer (50 mM sodium phosphate,
pH 6.5) was supplied to adjust the final volume of the reaction
mixtures to 110 mL. After incubation for 1, 3 and 6 h at room
temperature, the total viral gDNA in each sample was extracted as
described above. The numbers of viral DNA copies in each
mixture were quantified with a standard curve that was
generated from a series of diluted plasmids containing the
fragment encoding AcMNPV ODV–e56 (Figure S1) (41).

To investigate the effect of serpin–4 on melanization, nickel–
nitrilotriacetic acid (Ni–NTA) agarose beads (Qiagen, Hilden,
Germany) were incubated with recombinant serpin–4 overnight
at 4°C (recombinant GFP was used as control). The coated Ni–
NTA beads were washed three times with PBS and resuspended
in PBS to approximately 100 beads/mL. Then, one microliters of
resuspended Ni–NTA beads was added to a 24-well plate
containing 10 mL of fresh hemolymph and 450 mL of Sf9
medium. After incubation for 2 h at room temperature, the
melanization of Ni-NTA beads were observed under an inverted
fluorescence microscope.

Analysis of Inhibition of Serpin–4 on PO
Activity and Amidase Activity in
O. furnacalis Hemolymph
To measure the inhibitory potential of serpin–4 on PO activity of
O. furnacalis hemolymph, hemolymph was collected into a 1.5
mL microcentrifuge tube from the cut abdominal prolegs of fifth
instar day 1 O. furnacalis larvae. Aliquots (1 mL) of hemolymph
was incubated for 10 min at room temperature with 9 mL of
purified recombinant serpin–4 at varying concentrations. The
residual PO activity in the mixtures was measured as described
above. Additionally, the amidase activity of the mixtures was
measured using acetyl–Ile–Glu–Ala–Arg–p–nitroanilide
(IEARpNA) as colorimetric substrate. Changes in absorbance
at 405 nm were monitored in a microplate reader (Bio-Tek
June 2022 | Volume 13 | Article 905357
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Instrument, Inc.). One unit of amidase activity was defined as the
amount of enzyme producing an increase in absorbance (DA405)
of 0.001 per min (39).

Analysis of Inhibition of Serpin–4 on SP1,
SP13 and SP105
To investigate whether the inhibition of PO activity by serpin-4
was due to it inhibiting SP1, SP13, and SP105 which were all
involved in PPO activation (38, 39), we firstly checked whether
serpin-4 could form an SDS-stable complex with one of these
three serine proteases. Recombinant proSP1Xa, proSP13Xa or
proSP105Xa (200 ng) were activated by Factor Xa as described
previously (38, 39), and then mixed with purified recombinant
serpin–4 at molar ratio of 1:1 or 1:10 (proSPs:rserpin–4). In
control samples, proSPs or Factor Xa was omitted. After
incubation at 37°C for 15 min, the reaction mixtures were
treated with 5 × SDS sample buffer containing dithiothreitol
(DTT) at 95°C for 5 min and subjected to 10% SDS–
polyacrylamide gel electrophoresis (SDS–PAGE) and
immunoblot analysis with mouse anti–His (1:2,000) or rabbit
anti–serpin–4 (1:2,000) as the primary antibodies. Antibody
binding was visualized using alkaline phosphate–conjugated
horse anti–mouse (1:3,000) or goat anti–rabbit (1:3,000) and
5–bromo–4–chloro–3–indolyl phosphate/nitro blue tetrazolium
(BCIP/NBT) staining buffer containing 165 mg/mL BCIP and
330 mg/mL NBT in 100 mM Tris (pH 9.5), 150 mM NaCl, and 5
mM MgCl2.

Furthermore, we analyzed the inhibitory potential of serpin-4
on the activities of SP1, SP13, and SP105 cleaving the respective
substrate. Factor Xa-activated SP1, SP13 or SP105 (200 ng) was
mixed with serpin–4 at a molar ratio of 1:1 or 1:10 (proSPs:
serpin–4). After incubation at 37°C for 15 min, 200 ng of
proSP13 (for SP1’s cleavage) or OfPPO2 (for SP13 and SP105)
was added to the reaction mixtures and incubated at 37°C for
another 15 min. The mixtures were separated with 10% or 8%
SDS–PAGE and subjected to immunoblot analysis using
antiserum against the mouse anti–His (1:2,000) or rabbit anti–
PPO2 (1:2,000).
RESULTS

AcMNPV Infection Suppressed PO Activity
in O. furnacalis Hemolymph and Induced
Serpin–4 Expression
As a first step to investigate the interaction between
entomopathogenic virus AcMNPV and the host O. furnacalis,
we infected O. furnacalis larvae with AcMNPV and measured the
viral gDNA copies 1, 6, 12, and 18 hours post infection (hpi). As
shown in Figure 1A, the gDNA amounts of AcMNPV remained
unchanged within 12 hours after infection, but increased
significantly at 18 hpi. Meanwhile, we checked PO activities of
O. furnacalis hemolymph after AcMNPV infection. PO activity
kept unchanged within 3 hours after infection, and began to
decrease significantly at 6 hpi. Until 18 hpi, PO activity was still
suppressed significantly (Figure 1B, S2A). It suggested that
Frontiers in Immunology | www.frontiersin.org 4
AcMNPV infection reduced PO activity in O. furnacalis
hemolymph, and this suppression might facilitate the viral
replication in the host.

On the other hand, PPO activation was regulated by the serpin
(s) in insects (44). We speculated that the decrease of PO activity
upon AcMNPV infection was related to the serpin(s) in O.
furnacalis, and then checked mRNA expression of several
transcripts encoding potential serpins, including CL7904.Contig2
(serpin-3), CL9195.Contig5, and CL5354.Contig1 (serpin-6) (37).
As shown in Figure 1C and S2B, the abundance of 3 transcripts all
increased significantly in the larvae challenged with AcMNPV.
The transcript level of CL9195.Contig5 had the largest increase, up
to around 25 folds 3 h after AcMNPV infection. Therefore, we
only focused on CL9195.Contig5 in the studies that followed. This
transcript was named as serpin-4.

Molecular Cloning and Sequence Analysis
of Serpin–4
The cDNA fragments encoding the entire coding region of
serpin-4 were amplified by PCR using specific primers
designed based on the cDNA sequence of CL9195.Contig5
from our previous O. furnacalis transciptome (37). The
obtained cDNA sequence of serpin–4 (GenBankTM accession
number ON323051) contained a 1,242–bp open reading frame.
The conceptual protein deduced from nucleotide sequence
consisted of 413 amino acid residues, including a predicted
18–residue secretion signal peptide. The calculated molecular
weight and the theoretical isoelectric point of the mature protein
was 44.7 kDa and 6.63, respectively (Figure S3). Phylogenetic
analysis showed that O. furnacalis serpin–4 clustered together
with B. mori serpin–4, M. sexta serpin–4, Operophtera brumata
serpin–4 and Plutella xylostella serpin–4, with the bootstrap
value of 100 (Figure S4). Among them, M. sexta serpin–4 has
been verified experimentally to inhibit PPO activation by
inhibiting at least 4 target serine proteases (27, 45). Therefore,
we predicted thatO. furnacalis serpin–4 could also function as an
inhibitor of melanization response.

Expression Profiles of O. furnacalis
Serpin–4
We analyzed the mRNA levels of O. furnacalis serpin–4 in various
developmental stages or different tissues using qRT–PCR
methods. As shown in Figure 2A, serpin–4 transcripts in eggs
were significantly more than that in other developmental stages.
The mRNA level of serpin–4 remained consistent in the third,
fourth and fifth instar larvae, but was significantly higher than that
in the first and second instar larvae and pupae. In different tissues,
serpin–4 was expressed at significantly higher levels in fat bodies
than in the head, gut and hemocytes (Figure 2B).

Production and Purification of
Recombinant Serpin–4 and GFP
In order to investigate the function of serpin–4, we produced the
recombinant serpin–4 protein with an amino-terminal
hexahistidine tag. SDS–PAGE analysis indicated that purified
June 2022 | Volume 13 | Article 905357
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A C

B

FIGURE 1 | Relationship between AcMNPV infection and the innate immune response in O. furnacalis. (A) Analysis of viral replication after AcMNPV infection.
Viral gDNA was extracted from larvae at 1/6/12/18 h after infection, and the relative viral amounts were determined by qRT–PCR. O. furnacalis ribosomal protein
L8 (rpL8) was used as the internal control. The bars represented the mean ± S.D. (n = 3). Different marked letters indicated means that were significantly
different (one–way ANOVA followed by Tukey’s multiple comparisons test, P < 0.05). (B) Analysis of PO activity after AcMNPV infection. Hemolymph (1 mL)
collected from virus-infected or control larvae was incubated for 10 min at room temperature. PO activity was monitored using dopamine as substrate. The bars
represented the mean ± S.D. (n = 3). Statistical significance was determined using Sidak’s multiple comparisons test (*P < 0.05, **P < 0.01). (C) Analysis of
expression of serpin–4 after AcMNPV infection. Fifth–instar larvae were injected with AcMNPV. The transcript level of serpin–4 was assayed by qRT–PCR three
hours later, and rpL8 was used as an internal standard. The bars represented the mean ± S.D. (n = 3). Asterisks indicated means that were significantly different
(unpaired t test, two–tailed, **P < 0.01).
A B

FIGURE 2 | Expression profile analysis of O. furnacalis serpin–4. (A) qRT–PCR analysis of O. furnacalis serpin–4 transcripts at different stages of development. RNA
was extracted from eggs, first–instar larvae (L1), second–instar larvae (L2), third–instar larvae (L3), fourth–instar larvae (L4), fifth–instar larvae (L5) and pupae.
(B) qRT–PCR analysis of O. furnacalis serpin–4 transcripts in different tissues. RNA was extracted from the head, gut, fat body (FB) and hemocytes (HC). The bars
represented the mean ± S.D. (n = 3). The rpL8 gene was used as an internal standard to indicate a consistent total mRNA amount. Bars labeled with different letters
were significantly different (one–way ANOVA, followed by Tukey’s multiple comparisons test, P < 0.05).
Frontiers in Immunology | www.frontiersin.org June 2022 | Volume 13 | Article 9053575

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ji et al. Serpin–4 Facilitates Baculovirus Infection
rSerpin–4 had an apparent molecular mass of 45 kDa,
approximately consistent with that predicted based on its cDNA
sequence (Figure 3A). Recombinant serpin–4 was clearly
recognized by the antibodies against O. furnacalis serpin-4 and
the commercial anti–His serum in immunoblotting analysis
(Figure 3B). Additionally, we produced the recombinant GFP
protein as a control. It had an apparent mass of approximately 34
kDa, and was recognized as a single band by anti–His
serum (Figure 3).

Effects of Serpin–4 on AcMNPV Infection
and O. furnacalis Melanization
To evaluate the effects of serpin-regulated hemolymph
melanization on virus infection, we incubated AcMNPV with
plasma only, or plasma plus rGFP, or plasma plus rSerpin–4, or
plasma plus PTU (PTU blocks the melanization by specifically
inhibiting PO) for 1, 3, and 6 h, and determined the viral gDNA
copies. After 3 h incubation, the virus copies in the sample
containing plasma only or plasma plus rGFP decreased to be
nearly undetectable (Figure 4A). However, when PTU was
incubated together with plasma and virus, the viral DNA
copies was unchanged even after incubation for 6 h. Similar
results were observed when virus was incubated with plasma
together with the recombinant serpin-4 (Figure 4A). These
results demonstrated that melanization could reduce the virus
copies in vitro and serpin-4 worked like PTU to inhibit the
melanization of hemolymph.

We further performed in vitro experiments to test the
potential of serpin-4 inhibiting melanization. We coated Ni-
NTA agarose beads with recombinant serpin-4 or GFP (as a
control), and then incubated with O. furnacalis hemolymph.
After 2 h, GFP–coated beads turned black. However, the beads
coated with rSerpin-4 had no change (Figure 4B).
Frontiers in Immunology | www.frontiersin.org 6
Hemolymph melanization was accompanied by induced PO
activity (20). Inhibition of melanization by serpin-4 inferred that
it could suppress PO activity in the hemolymph. To test this
hypothesis, we measured the PO activity after the incubation of
O. furnacalis hemolymph with different amounts of recombinant
serpin–4. Serpin–4 inhibited PPO activation in a concentration–
dependent manner (Figure 4C). It blocked PPO activation by
50% at 10 mg/mL and 95% at 30 mg/mL. On the other hand, PPO
activation was mediated by multiple serine proteases, some of
which exhibit IEARase activity (cleaving after arginine residue in
IEARpNA substrate). Thus, we examined the IEARase activity of
hemolymph with the addition of different amounts of
recombinant serpin–4. As the concentration of rSerpin-4 in the
reaction mixtures increased, the IEARase activity gradually
declined (Figure 4D). These results indicated that serpin–4
inhibited at least one serine protease in PPO activation cascade
in O. furnacalis.

Formation of SDS–Stable Complexes
Between rSerpin-4 and SP1, SP13
and SP105
In previous studies, we demonstrated that two serine proteases
(SP13 and SP105) acted as prophenoloxidase-activating protease
in PPO activation pathway in O. furnacalis, and proSP13 was
cleaved and activated by another serine protease (SP1) (38, 39).
To reveal which protease serpin–4 inhibited in blocking PPO
activation, we firstly checked whether serpin–4 could form SDS–
stable, high molecular weight complex with anyone of these three
proteases because the formation of such a complex was a
characteristic feature for serpin to inhibit its target protease (44).

The anti–His antiserum recognized purified proSP1Xa,
proSP13Xa and proSP105Xa as approximately 43 kDa, 49 kDa
and 50 kDa, respectively (Figure 5, circles in upper panels). After
A B

FIGURE 3 | SDS–PAGE (A) and immunoblot analysis (B) of purified recombinant serpin–4 and GFP. The purified recombinant serpin–4 (250 ng) or recombinant
GFP (250 ng) was treated with SDS sample buffer containing DTT, separated by 10% or 15% SDS–PAGE and subjected to Coomassie brilliant blue staining or
immunoblotting with anti–His or anti–serpin–4 as primary antibodies.
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activation by Factor Xa, the bands representing the three
zymogens disappeared (for proSP1Xa) or decreased in
intensities (for proSP13Xa and proSP105Xa). Meanwhile, a new
band with the apparent molecular weight of 34 kDa, 34 kDa and
35 kDa, appeared, which corresponded to the catalytic domain of
proSP1Xa, proSP13Xa and proSP105Xa, respectively (Figure 5,
asterisks in upper panels). When rSerpin–4 was mixed with
Factor Xa alone or proSP1Xa/proSP13Xa/proSP105Xa zymogen,
no change was observed. However, when rSerpin-4 was mixed
with Factor Xa-activated SP1Xa, SP13Xa and SP105Xa,
respectively, the band corresponding to the catalytic domain
disappeared, and a new immunoreactive band at ~ 80 kDa (for
SP1Xa) or ~90 kDa position (for SP13Xa and SP105Xa) was
detected, which was the expected size of a serpin-4/SP complex
(Figure 5, arrows in upper panel). This band with high molecular
mass was more abundant when the molar ratio of serpin-4 to SPs
increased from 1:1 to 10:1 (Figure 5, upper panel). Moreover,
these complexes were also recognized by antibody against
serpin–4 (Figure 5, arrows in lower panel). It indicated that
Frontiers in Immunology | www.frontiersin.org 7
serpin-4 could form a covalent complex with each of SP1, SP13,
and SP105 in vitro.

Serpin–4 Prevented SP1Xa, SP13Xa and
SP105Xa From Cleaving Its Respective
Downstream Substrate
Our previous work indicated that SP1, SP13, and SP105 could
cleave O. furnacalis proSP13, PPO2, PPO2, respectively (38, 39).
If SP1/SP13/SP105 could be inhibited by serpin-4, the cleavage of
their respective substrate would be theoretically suppressed in
the presence of serpin-4. To test this hypothesis, we incubated
Factor Xa–activated SPs with their substrates (SP1Xa and
proSP13; SP13Xa and PPO2; SP105Xa and PPO2) in the
absence or presence of serpin–4. As shown in Figure 6A, when
proSP13 was incubated with Factor Xa-activated SP1Xa, the ~49-
kDa band corresponding to proSP13 zymogen (hollow square in
Figure 6A) disappeared, and a ~34-kDa band corresponding to
the cleaved catalytic domain of proSP13 showed up (solid square
in Figure 6A). When Factor Xa-activated SP1Xa was pre-treated
A B

C D

FIGURE 4 | Inhibition analysis of melanization by O. furnacalis serpin–4. (A) Determination of gDNA copy numbers of AcMNPV in plasma incubated with inhibitors.
AcMNPV was mixed with plasma, plasma plus PTU (P+PTU), plasma plus recombinant GFP (P+rGFP) or plasma plus recombinant serpin–4 (P+rSerpin–4). The mixtures
were incubated at room temperature for 0, 1, 3, or 6 h, and the numbers of gDNA copies were determined by qRT–PCR. The data points represented the mean ± S.D.
(n = 3). (B) Serpin–4 suppressed the melanization of Ni–NTA agarose beads. Ni–NTA agarose beads coated with recombinant GFP or serpin–4 were incubated with
hemolymph from O. furnacalis larvae. The melanized beads were observed and photographed under a microscopy after 2 h of incubation. (C) Inhibition of PO activation
by serpin–4. Hemolymph (1 mL) collected from fifth instar larvae was incubated for 10 min at room temperature with purified recombinant serpin–4 at different
concentrations. PO activity was monitored using dopamine as substrate. The bars represented the mean ± S.D. (n = 3). (D) Inhibition of IEARase activation by serpin–4.
Hemolymph (1 mL) collected from fifth-instar larvae was incubated with purified recombinant serpin–4 at different concentrations. The residual IEARase activity of
hemolymph was plotted as the mean ± S.D. (n = 3).
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with serpin–4 before mixed with proSP13, proSP13 was clearly
detected and the ~34-kDa band indicating the cleavage of
proSP13 became faint. Pre-treatment of more serpin-4 resulted
in stronger inhibition on the cleavage of proSP13 by SP1Xa
Frontiers in Immunology | www.frontiersin.org 8
(Figure 6A). Similarly, when Factor Xa-activated SP13Xa was
pre-treated with serpin–4, the processing of PPO2 by SP13Xa was
partly inhibited (Figure 6B and Figure S5A). Especially when
Factor Xa-activated SP105Xa was pre-treated with serpin–4 at a
A B C

FIGURE 6 | Serpin–4 prevented SP1 (A), SP13 (B) or SP105 (C) from cleaving its respective downstream protease. Factor Xa–activated SPXa (200 ng) was
combined with a 1- or 10-fold molar excess of serpin–4 and then incubated with recombinant proSP13 (200 ng) or OfPPO2 (200 ng) at 37°C for 15 min. The
mixtures were subjected to 10% or 7.5% SDS–PAGE and immunoblotting using antiserum against His or PPO2. Circle, proSP13Xa; asterisk, catalytic domain of
proSP1Xa, proSP13Xa or proSP105Xa; triangle, serpin–4; hollow square, proSP13 or PPO2 zymogen; solid square, activated SP13 or PO2.
FIGURE 5 | Detection of covalent complex formation between serpin-3 and three serine proteases. 200 ng of proSP1Xa, proSP13Xa or proSP105Xa was activated
by Factor Xa, respectively, and incubated with purified serpin–4 at a molar ratio of 1:1 or 10:1 (serpin–4:SPXa) at 37°C for 15 min. The samples were subjected to
10% SDS–PAGE and immunoblot analysis using antiserum against His (upper panel) or O. furnacalis serpin–4 (lower panel) as primary antibodies. The sizes and
positions of the molecular mass standards were indicated to the right of each blot. Circles, proSPXa; triangles, serpin–4; asterisks, catalytic domain of proSPXa;
arrows, serpin–4/SP complex.
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molar ration of 1:10, all added PPO2 was recognized as ~80-kDa
zymogen band and no cleaved PO2 was detected (Figure 6C and
Figure S5B).
DISCUSSION

The understanding of the immune interaction between
entomopathogenic viruses and their insect hosts is incomplete.
The insect, such as a serious pest O. furnacalis, employs its own
immune response including melanization reaction to defend
against the microbial infection. On the other hand,
entomopathogenic virus, such as AcMNPV, suppresses O.
furnacalis immunity and finally kills it. Comprehensive
understanding of the biochemical mechanisms involved in the
crosstalk between O. furnacalis and AcMNPV would improve
the killing effects of AcMNPV, and further help to develop a new
strategy on controlling O. furnacalis. Here, we investigated the
interaction between AcMNPV infection and O. furnacalis
melanization, and discovered that O. furnaclais serpin-4
facilitated AcMNPV infection by inhibiting the melanization.
We further revealed serpin-4 performed the inhibitory function
possibly by blocking its target proteases, SP1, SP13, and SP105.

Upon the viral infection, insects rely on several defenses
including RNA interference (RNAi), Jak/STAT signaling
pathway, apoptosis and autophagy to restrict viral replication
and dissemination (46–48). Here we discovered that AcMNPV
infection resulted in a significant decrease in PO activity of O.
furnacalis hemolymph from 6 hpi to 18 hpi or possibly longer
(Figure 1B). Meanwhile, viral copies decreased significantly
when AcMNPV was incubated with O. furnacalis plasma only
in vitro, but remained unchanged when incubated with plasma
and PTU which inhibited the melanization of plasma
(Figure 4A). It suggested hemolymph melanization in O.
furnacalis was related to AcMNPV replication and infection.
Similarly, upon AcMNPV infection, PO activity decreased and
viral copies significantly increased in susceptible silkworm
strains p50. Instead, PO activity increased and viral copies kept
unchanged in resistant strain C108 (49). In Aedes albopictus -
derived U4.4 cell, more cells were infected by Semliki Forest virus
when PO activity of the conditioned medium was blocked (11,
50). 5, 6-dihydroxyindole (DHI), a reactive compound generated
by PO, and its spontaneous oxidation products were active
against viruses (51). It possibly explained why AcMNPV
infection was associated with PO–catalyzed melanization in
O. furnacalis.

On the other hand, PO–catalyzed melanization is mediated
by a series of sequentially activated serine proteases and
regulated by serpin superfamily (14). In this work, we
identified a novel serpin transcript, O. furnacalis serpin-4, and
illustrated that the melanization of the beads coated with
recombinant serpin-4 were obviously restrained (Figure 4B).
Recombinant serpin-4 protein inhibited PO activity and IEARase
activity of O. furnacalis hemolymph in a concentration-
dependent manner (Figures 4C, D). Furthermore, it was
interesting that the number of AcMNPV copies significantly
Frontiers in Immunology | www.frontiersin.org 9
increased when the melanization of plasma was suppressed by
serpin-4 (Figure 4A). It suggested AcMNPV replication was
indeed associated with melanization, and as well inferred that O.
furnacalis serpin-4 had the potential to inhibit the melanization.
Similar results were found in other insects. Knockdown of serpin-
5 or serpin-9 in H. armigera with RNAi significantly increased
PO activity of hemolymph and dramatically reduced the number
of HearNPV DNA copies (26). In B. mori, the copy numbers of
viral genomic DNA also decreased in Bmserpin2-depleted
hemolymph (34). Therefore, we concluded that the suppression
of melanization caused by serpin responded to viral infection,
and depletion of serpin might enhance the virulence of
entomopathogenic virus. In our study, O. furnacalis serpin-3 and
serpin-6 was also induced upon AcMNPV infection besides
serpin-4 (Figure S2B). The function of serpin-6 was completely
unknown so far. Serpin-3 has been clarified to regulate the
melanization of O. furnacalis hemolymph (32). Future work
would test whether serpin-3 could also facilitate virus infection
by inhibiting melanization response. We further deciphered the
mechanism of serpin-4 regulating O. furnacalis melanization
reaction. Recombinant serpin–4 formed covalent complexes with
three serine proteases (SP1, SP13 and SP105) which were all
involved in melanization pathway (Figure 5) (38, 39). It was
consistent with the characteristic feature of serpin in which it
forms covalent complexes with its target protease(s) (44). Such
serpin/protease regulatory unites were reported as serpin-12/HP14
(30), serpin-5/HP6 (28) and serpin-5/HP1 (27) inM. sexta, serpin-
5/cSP4, serpin-9/cSP6, and serpin-9/cSP29 in H. armigera (26).
Complex formation made serpin covalently linked to the target
protease, which was therefore irreversibly inhibited (19). Here, we
also observed serpin-4 strongly prevented SP1, SP13 and SP105
from cleaving their cognate downstream protease - proSP13,
PPO2, and PPO2, respectively (Figure 6). Therefore, we
speculated serpin-4 regulated the melanization of O. furnacalis
hemolymph in this way, and further made for the virus infection.
It is reasonable that insects are infected more easily by pathogens
or viruses when its immune system is weakened by the negative
inhibitors such as serpins. For example, expression of a serpin
homologue (Hesp018) in AcMNPV increased the viral virulence
and resulted in an increased mortality of infected Trichoplusia ni
(35). In Galleria mellonella and Myzus persicae, serpin-expressing
B. bassiana strain suppressed PO activation in host hemolymph
and exhibited higher virulence (52).

For entomopathogenic microbes, they evolved various
strategies to overcome host immunity, for example, inhibit the
melanization reaction. Some produced antibiotics to suppress
melanization. Entomopathogenic bacterium Photorhabdus
luminescens released a small-molecule antibiotic to directly
block PO activity (53). Some expressed its own viral protein to
inhibit the host PAPs, for example, Egf1.0 and Egf1.5 produced
in Microplitis demolitor bracovirus suppressed the processing of
host PPO by PAP and SPH (54). Some expressed serpin-like
protein to target at host serine protease, for example, parasitoid
wasp Pteromalus puparum secreted serpin isoform PpS1V to
inhibit host PPO activation by forming complexes with host
PrHP8 and PrPAP1 (55). In our study, entomopathogenic virus
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AcMNPV employed host serpin-4 to suppress host melanization
by inhibiting its potential target proteases SP1, SP13 and SP105.
However, it is unknown how AcMNPN induced the expression
of O. furnacalis serpin–4 and whether other serpin(s) also
contributed to AcMNPV infection. More investigation is
ongoing. The findings would provide a theoretical basis for
better controlling agricultural pests with entomopathogenic virus.
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Supplementary Figure 1 | Standard curve for the quantification of viral copy
numbers by qRT-PCR. The CT values were plotted as X-axis. The logarithm of viral
copy numbers was indicated on Y-axis. The standard curve parameters calculation
was shown above the curve.

Supplementary Figure 2 | Analysis of PO activity (A) and mRNA expression (B)
after AcMNPV infection. (A) Hemolymph (1 mL) collected fromO. furnacalis larvae
infected by AcMNPV at different concentrations was incubated for 10 min at room
temperature. PO activity was monitored using dopamine as a substrate. The bars
representedmean ± S.D. (n = 3). Statistical significancewas determined using Tukey’s
multiple comparisons test (*P < 0.05, **P < 0.01). (B) Fifth–instar larvae were injected
with AcMNPV. The transcript levels ofO. furnacalis serpin–3, serpin–4 and serpin–6
were assayed by qRT–PCR. rpL8was used as an internal standard to normalize the
templates.Thebars represented themean±S.D. (n=3).Asterisks indicatedmeans that
were significantly different (unpaired t test, two–tailed, *P < 0.05, **P < 0.01).

Supplementary Figure 3 | Sequenceanalysisof serpin–4.Thededucedaminoacid
sequence was shown below the nucleotide sequence of O. furnacalis serpin–4. The
one–letter code for each amino acid was aligned with the second nucleotide of the
corresponding codon. The stop codon wasmarked with an asterisk (*). The predicted
secretion signal peptide was underlined and assigned negative numbers. PutativeN–
linkedandO–linkedglycosylationsiteswereheavilyand lightly shaded, respectively. The
potential RCL region was in the square box with the predicted P1 and P1’ residues in
boldface. The predicted scissile peptide bond was indicated with “ǁ”.

Supplementary Figure 4 | Phylogenetic analysis of O. furnacalis serpin–4 and
serpins from other insect species. The used amino acid sequences were from
Ostrinia furnacalis (Of, red), Anopheles gambiae (Ag), Bombyx mori (Bm),
Drosophila melanogaster (Dm), Manduca sexta (Ms), Operophtera brumata (Ob),
Plutella xylostella (Px), Tenebrio molitor (Tm). GenBank accession numbers of this
specific genes were given in parentheses. The clade that groups O. furnacalis
serpin-4 with other serpin-4s was shaded in blue. The numbers at the nodes
indicated the bootstrap values as percentages of 1000 repetitions.

Supplementary Figure 5 | Serpin–4 inhibited the cleavage of recombinant PPO2 by
SP13 (A)andSP105 (B). FactorXa–activatedSP13XaorSP105Xa (200ng)wascombined
with a 1- or 10-fold molar excess of serpin–4 at 37°C for 15 min and then incubated with
recombinant PPO2 (200 ng) at 37°C for another 15min. Themixtures were subjected to
7.5%SDS–PAGE and immunoblotting using antiserum against His. Circle, proSP13Xa or
proSP105Xa; asterisk, catalytic domain of proSP13Xa or proSP105Xa; triangle, serpin–4;
hollow square, PPO2 zymogen; solid square, activated PO2.

Supplementary Table 1 | Oligonucleotides primers used in this study.
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