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A B S T R A C T

We present a study of Per3 expression in six different tissues of the non-human primate Cebus apella (capuchin
monkey). The aim of this study was to verify whether the expression of the Per3 gene in different tissues of
capuchin monkey occurs in a circadian pattern, its phase and the phase relationships between these different
tissues during the 24 h of a day. We observed that gene expression oscillated in all of the tissues studied during
this time period, although only the liver and muscle presented a robust circadian pattern. This preliminary study
highlights the possibility of using Cebus apella as a model to study circadian rhythms at the gene expression
level and opens an opportunity for future researches.

1. Introduction

In mammals, the suprachiasmatic nucleus (SCN) of the anterior
hypothalamus is the master oscillator that controls circadian output
[1,2]. The circadian information from environmental light/dark cycle is
received via the retinohypothalamic tract, and thus, the phase of the
circadian clock adapts to photoperiods [3]. The SCN coordinates the
phasing of myriad circadian oscillators that are present in peripheral
tissues [4] to ensure that physiology will be temporally coordinated [5–
7].

Among mammals, circadian oscillation is driven by a cell autono-
mous transcription/translation-based negative feedback loop, wherein
the transcription factors CLOCK and BMAL1 form functional dimers
and induce the expression of negative regulators (Per1, Per2, Per3,
Cry1 and Cry2) that regulate their own expression by inhibiting the
CLOCK-BMAL1 complex [8]. Generally, the expression of mammalian
clock genes oscillate in a robust circadian manner [1,9,10]. Therefore,
the oscillation of the clock genes could be a useful marker for defining
the phase [11,12] and angle phase of different peripheral clocks.

The complex of the transcription factors CLOCK-BMAL1 is also
responsible for the activation of various clock-controlled genes (CCGs).
Thus, the molecular clockwork controls physiological processes
through the regulation of CCGs. The clock-controlled genes represent
approximately 10% of the expressed genes in a given tissue, and most
of these CCGs are tissue-specific because of the different physiological
processes carried out in distinct tissues within the appropriate tempor-
al schedule [13,14]. However, the aberrant or desynchronized expres-

sion of clock genes within or among individual tissues may have
important consequences for the activation of CCGs and, thus, might
lead to organ dysfunction [13,15].

Recent studies have suggested that the genetic or functional
disruption of certain clock proteins favors the triggering of senescence
[16–18] and various physiological disturbances, such as metabolic
syndrome [13, 19–21], carcinogenesis [15, 22–24], and cardiovascular
diseases [19]. Thus, the desynchronization of the endogenous clock in
relation to the environment or between peripheral tissues might affect
homeostasis and circadian rhythms regulation [13,15]. These effects
can be seen in shift workers and pilots and flight attendants, who are
often subjected to transmeridian flights and suffer from higher
incidences of cancer [25–29], metabolic pathologies [30–32] and heart
diseases [33–37].

The clock gene Period 3 (Per3) has been shown to be associated
with Delayed Sleep Phase Syndrome (DSPS) and human chronotypes
[38–40]. In humans, this gene presents a tandem 54-nucleotide motif
of four or five copies in its coding region. In Japanese and English
subjects, DSPS was associated with the allele of this gene with four
copies of the motif [38,39], whereas in Brazil, DSPS is associated with
the allele with five copies [40]. Recently, it has been shown that this
VNTR (Variable Number in Tandem Repeat) polymorphism may
profoundly affect sleeping homeostasis and cognitive performance
[41–43]. Recently, new roles of Per3 gene have been proposed in
contributing to light input pathways [44] and assisting in timekeeping
in the pituitary and lung in mice [45]. Moreover the PER3 VNTR is a
special characteristic of primate molecular clock since this genomic
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region has not been found in any other mammal species.
Thus, the objective of this study was to verify whether the

expression of the Per3 gene in different tissues occurs in a circadian
pattern in capuchin monkeys (Cebus apella), and to determine the
phases and the phase relationship between these different tissues.
Monkeys are adequate models to study human circadian behavior due
to the fact that they exhibit diurnal habits [46] and are genetically
closer to humans than rodents and fruit flies [47]. Thus, studies using
this animal model may lead to new insights into circadian expression
pattern of Per3 in different organs and its relationship with behavior;
aiming at the future extrapolation to human health.

2. Materials and methods

Adult Cebus apella males from the Tufted Capuchin Procreation
Center (UNESP, Campus Araçatuba) were housed in the same condi-
tions, in individual cages and subjected to natural light-dark (LD)
cycles. Eleven monkeys were sacrificed at different times (one animal at
each time point) on different days (first day: 8:45, 11:30, 14:05; second
day: 8:35, 10:30; third day: 16:00, 20:45, 00:30, 4:40; fourth day:
00:25, 4:30). The procedures for animal sedation were performed

under red light during the dark phase. Samples of atrium, intestine,
liver, lung, muscle and spleen were collected and frozen immediately in
dry ice and stored at −80 °C. All experimental protocols of animal used
in this study were approved by the Research Committee of the
Universidade Federal de São Paulo.

Total RNA was extracted from aforementioned tissues by using
a Trizol-based extraction method according to the manufacturer's
instructions (Invitrogen, Brazil). Total RNA concentrations were
determined by using a spectrophotometer (NanoDrop 8000
Thermo Fisher Scientific), and the quality of RNA samples was
assessed by electrophoresis on 1% agarose gels. Total RNA was
subsequently treated with DNase I (Invitrogen, Brazil). 1.5 µg of
RNA from intestine, liver, lung, muscle and spleen, and 400 ng of
RNA from atrium samples were reverse transcribed using
SuperScript First-Strand Synthesis for RT-PCR (Invitrogen,
Brazil) according to the manufacturer's protocols.

Relative real-time PCR was performed using an ABI PRISM 7500
(Applied Biosystems). The primers were designed with Primer Pre-
mier 5 software (PREMIER Biosoft International), and the seq-
uences of the forward and reverse primers were as follows:
hPer3 FW: CAGGCTAACCAGGAATATTACCAGC, hPer3 RV:

Fig. 1. Daily profile of Per3 gene expression in the liver, muscle, intestine, lung, spleen and atrium of capuchin monkeys. The animals were sacrificed at different times and on different
days, and only one animal was sacrificed for each time point (first day: 8:45, 11:30, 14:05, second day: 8:35, 10:30; third day: 16:00, 20:45, 0:30, 4:40; fourth day: 0:25, 4:30). An
average was made of samples collected at successive time points to aid in statistical analysis. The amount of mRNA was assessed by real-time quantification. The time is expressed in
hours and the expression data in relative values.
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CACAGCCACAGAGAA GGTGTCCTGG; and the β-actin primers that
were used as the endogenous control were β-actin FW:
AGGTATCCTGACCCTGAAG, β-actin RV: CGTTGAAGGTCTCAAAC
ATG. Control PCRs were performed using PCR reaction mixes without
cDNA (non-template control) and with a cDNA sample without DNase
I treatment.

The Cosinor method was used to verify whether the Per3 gene
expression presented a significant 24-h rhythm in different tissues. The
level of significance for detection of the rhythmic cycle was set at
р≤0.05.

3. Results

Per3 expression oscillated over the time period of 24 h in all of the
tissues studied. However, significant circadian rhythms were identified
only in the liver and muscle according to the Cosinor analysis (with
adjusted p-values of 0.046 and 0.028, respectively). The acrophases of
Per3 expression in muscle and liver tissues were 5:58 a.m. and
7:20 a.m., respectively, and the phase angle between these two
acrophases is 1 h and 22 min.

The observation of our results reveals that Per3 gene expression in
almost all tissues present the highest level at the end of night and the
beginning of morning, although in the spleen, the highest expression
level occurs in the middle of night. The lowest level of expression was
observed at dusk in the liver and atrium. In the intestine, lung, spleen
and muscle, the minimum level of expression occurred in the middle of
the afternoon (Fig. 1).

4. Discussion

It has been reported that the expression of several clock genes of
different tissues of rodents, such as heart, lung, liver, stomach, spleen,
kidney, pancreas, retina, bone marrow, submandibular gland and
skeletal muscle exhibits a circadian pattern [48–57]. On the other
hand, testis and thymus appear to have no oscillating pattern of the
expression of clock genes [58,59]. In humans, most studies have shown
robust circadian expression of clock genes in peripheral blood and
tumor cells [23,24,60,61]. However, to date, there are few studies on
the expression of clock genes in peripheral tissues of primates [62].

Although we were able to show that Per3 is expressed in six
different tissues of a non-human primate (capuchin monkey), our study
has some limitations: the data were collected from only one animal at a
time, thus increasing the effects of individual variability, and we
collected the samples for only one period of 24 h. In spite of these
limitations, it was possible to observe circadian expression of the Per3
gene in the liver and muscle, which indicates that the 24-h oscillation is
clearly detectable.

Another study showed that Per3 expression in skeletal muscles of
mice presented a peak of expression between the end of a subjective
day and the beginning of a subjective night [51]. The Per3 expression
pattern that we observed in Cebus monkeys is in opposite phase
compared to these previous results. This result is expected because of
the antiphase expression of circadian rhythms behaviors in monkeys
and mice, which exhibit diurnal and nocturnal activity preferences,
respectively.

A recent study evaluated the profiles of periodic gene expression in
peripheral blood mononuclear cells of young and old people [61]. The
Per3 expression peak of the individual daily profiles occurred at the
beginning of the morning or the end of night, as we also observed in the
liver and muscle in capuchin monkeys. They showed that the acrophase
for PER3 was at 08:28 ± 00:37 for older subjects and 05:57 ± 00:26 for
young controls. Although the tissue was not the same we analyzed, the
data are very similar to those obtained in this study in monkeys in
terms of phase, as we found that the acrophase was at 5:58 a.m. in
muscle and at 7:20 a.m. in liver. In that way the PER3 phase of
expression or phase relationships between tissues could be used as an

index of circadian entrainment.
To the best of our knowledge, this study is the first to show the

expression of the Per3 gene in six different tissues of a non-human
primate. We found a robust circadian rhythm in the liver and muscle.
However, it is not possible to assume whether the absence of 24 h
rhythms observed in the other tissues was attributable to the experi-
mental design, or if there are actually no robust circadian rhythms in
these tissues. The present results suggest that Cebus apella represents
a suitable model for studies of circadian oscillations, but more
elaborate studies are needed to understand the relationship between
the Per3 circadian phase, the phase angle in different tissues and
circadian behavior. It is necessary to understand these circadian
patterns of expression in each tissue to better understand disorders
that are caused by the disruption of circadian rhythms.

The pattern of expression of clock genes allows for each organ to be
able to respond to various physiological stimuli that change throughout
the day. Therefore, the alteration of this temporal order will have
physiological consequences, making it critically important to under-
stand the role of Per3 and other circadian clock genes in the physiology
of each organ.

The human PER3 gene is associated with myriad of sleep and
circadian phenotypes and also with disease states [40,63,64], mainly a
functional genomic structure, a VNTR in exon 18th, that has been
demonstrated to be exclusively a primate region [65] which could be
associated with particular aspects of sleep and circadian rhythms
evolution in this Order of animals. The Cebus appela particulary has
the same structure, the VNTR, in its Per3 structure but it is a little beat
different of humans because it has only two repeats and it is not
polymorphic. It remains to be clarified if the number of repeats in the
Per3 VNTR in different primate species has some particular role on
circadian processing that is specie-specific.
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