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Defensins are small proteins, usually ranging from 3 to 6 kDa, amphipathic, disulfide-rich, and with a
small or even absent hydrophobic core. Since a hydrophobic core is generally found in globular proteins
that fold in an aqueous solvent, the peculiar fold of defensins can challenge tertiary protein structure pre-
dictors. We performed a Protein Data Bank survey of small proteins (3–6 kDa) to understand the similar-
ities of defensins with other small disulfide-rich proteins. We found no differences when we compared
defensins with non-defensins regarding the proportion of apolar, polar and charged residues and their
exposure to the solvent. Then we divided all small proteins (3–6 kDa) in the Protein Data Bank into
two groups, one group with at least one disulfide bond (bonded, defensins included) and another group
without any disulfide bond (unbonded). The group of bonded proteins contained apolar residues more
exposed to the solvent than the unbonded group. The ab initio algorithm for tertiary protein structure
prediction Robetta was more accurate at predicting unbonded than bonded proteins. On the other hand,
the trRosetta algorithm, which uses artificial intelligence, improved the prediction of most bonded pro-
teins, while for the unbonded group no improvement was obtained. Our work highlights one more layer
of complexity for the prediction of protein tertiary structure: The ability of small disulfide-rich proteins
to fold even with a poorly hydrophobic core.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Defensins are a group of small proteins (<10 kDa) related to host
defense in animals, plants and fungi [1–3]. Their primary sequence
is very diverse but rich in cysteines that form disulfide bonds [1–5].
The tertiary structure has a compact core, and they typically con-
tain a triple-stranded antiparallel b-sheet, packed against an a-
helix restrained by disulfide bonds [2]. Defensins frequently lack
a hydrophobic core (thus forming a core-less fold), with a high pro-
portion of hydrophobic residues exposed to the solvent [5,6]. Other
globular proteins form a hydrophobic core, which buries apolar
residues, minimizing their solvent- accessible surface [7]. Almeida
and collaborators solved the structure of sugarcane defensin 5
(SD5) [8], Pisum sativum defensin 1 (Psd1) [4] and Pisum sativum
defensin 2 (Psd2) [9]. These proteins lack a hydrophobic core and
present an unusual side-chain exposure of multiple hydrophobic
amino acids [8–10]. The authors concluded that defensins are sta-
bilized by tertiary contacts formed by hydrophobic surface clus-
ters, solvent-stabilized clusters of surface-exposed hydrophilic
and hydrophobic residues [8]. Remarkably, despite the multiple
exposed hydrophobic residues, these proteins are highly soluble
in water. It was hypothesized that the long polar/charged side
chains of the surface clusters protect the hydrophobic amino acids
from complete exposure to the solvent [9].

The features that allow the poor hydrophobic core of defensins
to exist are still obscure, but it is likely that the presence of disul-
fide bonds plays an essential role in their fold. Even though it is
well known that defensins possess a core-less fold, as far as we
know, no systematic comparison of defensins with other small pro-
teins containing or not disulfide bonds has yet been performed.

To address this issue, we analyzed all small protein structures
(3–6 kDa) with at least one disulfide bond in the Protein Data Bank
(PDB). The parameters we chose to compare defensins vs. non-
defensin proteins were the percentage of apolar, polar and charged
residues and the degree of their solvent exposure. No statistically
significant differences were found between the two data sets, sug-
gesting that besides defensins, other small proteins cross-linked by
multiple disulfide bonds also display an unusual fold lacking a
canonical hydrophobic core. Next, we compared all PDB small pro-
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teins (3–6 kDa) containing (bonded) or not (unbonded) disulfide
bonds, following the same rationale. This time, we observed that
the group with disulfide bonds has a lower proportion of apolar
residues than the unbonded group. The apolar residues of the
bonded group were more exposed to the solvent than those of
the unbonded group, which compromised the formation of
hydrophobic cores. We also compared the frequency and exposure
of the long polar/charged side chains between the two groups, but
no differences were found.

Prediction servers are now able to tackle challenging tertiary
structures, resulting in satisfactory models [11–16]. We challenge
the ab initio and transform-restrained Rosetta (trRosetta) algo-
rithms, available in the Robetta prediction server (http://robetta.
bakerlab.org), which predicts tertiary protein structure, comparing
the accuracy of prediction between bonded vs. unbonded peptides.

The models obtained by ab initio and trRosetta were compared
with their respective PDB model from the RCSB PDB database. The
structure comparison was measured by the root-mean-square
deviation (RMSD) value, which the higher the value, the more devi-
ated the obtained model is from the deposited PDB. Interestingly,
the accuracy of the ab initio algorithm was greater for the
unbonded peptides than for those with disulfide bonds, since the
former possess the ‘‘canonical” hydrophobic core, while the trRo-
setta algorithm predicted well for both groups.

Our study indicates that even for small proteins, the ab initio
prediction algorithms still have difficulty determining the protein
structure, especially if the protein is cross-linked by disulfide
bonds. Moreover, the new deep-learning algorithms circumvent
this limitation and have high accuracy for predicting tertiary pro-
tein structure even in the absence of the canonical hydrophobic
core.
2. Materials and methods

2.1. Data collection and analysis workflow

To understand how defensins compare to other small proteins,
we chose the molecular weight ranging from 3 to 6 kDa because it
allowed us to obtain a significant proportion of defensins in the
bonded group (with disulfide bond). Fig. 1 shows a visual represen-
tation of the data collection and refinement that preceded the anal-
ysis of results. We performed an advanced search of PDB files in the
Fig. 1. Schematic representation of the pipeline used to obtain curated groups of b
group and 39 proteins for the unbonded group were selected, as described in the text.
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RCSB PDB database and used the Uniprot database to collect FASTA
sequences of the selected proteins. In advanced-search options of
the RCSB PDB database, we could not refine the criteria sufficiently
to obtain only proteins in an aqueous solvent, without ligands or
other elements that could interfere in their folding, so we had to
curate the data manually. After manual review, the number of pro-
teins within the groups was significantly reduced because we
aimed to obtain unbiased comparable groups of proteins without
any variable that could interfere with their folding in an aqueous
solvent. Bonded and unbonded groups are proteins with and with-
out at least one disulfide bond, respectively.
2.2. Protein selection

The RCSB PDB database available at rcsb.org was used as a
source of 3D protein structures. Selected data were downloaded
as a PDB file in October 2021, and subjected to the following query:
Number of Protein Instances (Chains) per Assembly = 1 AND
Molecular Weight per Deposited Model = [3 – 6] AND Disulfide
Bond Count per Deposited Model = 0 AND Entry Polymer Types =
‘‘Protein (only)” AND Total Number of Non-polymer Instances = 0
AND Structure Keywords NOT CONTAINS WORDS ‘‘micelle, mem-
brane, ligand”. In this first search, 337 structures were found. In
a second advanced search, we selected the option ‘‘Disulfide Bond
Count per Deposited Model” >= 1, and 454 proteins were found, so
in this case, each protein had at least one disulfide bond in its
structure.

Thus, two groups were formed, the bonded group containing
proteins with at least one disulfide bond, and the unbonded group
containing proteins without a disulfide bond. Before analyzing
these data, both groups were subjected to manual curation. Only
proteins in an aqueous solvent, with a well-defined secondary
structure and following all the criteria described in advanced-
search options were kept. Finally, the bonded group contained
114 proteins, and the unbonded group had 39 proteins. All data,
including results, are available in Supplementary Table 1.
2.3. Solvent-accessible surface area (SASA) calculation

To calculate SASA for each protein, we subjected them to the
software GETAREA [15], available online at curie.utmb.edu/
getarea.html, and the software Chimera 1.14 [17,18]. The SASA
onded and unbonded small proteins. After curating, 114 proteins for the bonded
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Fig. 2. Defensins present a similar percentage and solvent exposure of apolar,
polar, and charged residues compared to other small disulfide-bonded proteins.
In all graphs, the whole population of bonded proteins is represented in black,
N = 114; proteins of the bonded group without defensins are represented in orange,
N = 78; and proteins of the group containing only defensins are represented in
green, N = 36. The proportion of apolar (A), polar (B), or charged residues (C) was
calculated for each protein. The residue’s average degree of solvent exposure was
calculated using GETAREA (please see details in methodology). Exposure of apolar
(D), polar (E), or charged (F) residues. Kruskal-Wallis test was performed for all
comparisons, but no statistical differences were identified. Since no differences
were observed, the following analyses involve only the bonded group, N = 114.

Table 1
Software and algorithms used for data acquisition.

Software and algorithms Source Identifier

GETAREA Fraczkiewicz and
Braun, 1998

Chimera 1.14 Petterson at al.,
2014; Sanner,
Olson and Spehner,
1996

Robetta Yifan et al., 2013;
Srivatsan et al.,
2009

SASA_chimera_calculation.py This paper github.com/
mhoyerm/

SASA_chimera_calculation
Percentage_proportion.py This paper github.com/

mhoyerm/
SASA_chimera_calculation
Percentage_exposure.py This paper github.com/

mhoyerm/
SASA_chimera_calculation
Amino-acid_proportion.py This paper github.com/

mhoyerm/
SASA_chimera_calculation
Amino-acid_exposure.py This paper github.com/

mhoyerm/
SASA_chimera_calculation
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result obtained by GETAREA is given in percentual of residue expo-
sure, so the calculation by Chimera had to be transformed into a
percentage to be comparable with the other method.

GETAREA uses the intersection of half-spaces to find vertices of
all intersecting atoms exposed to solvent [15]. Chimera 1.14 cre-
ates a molecular surface model using an embedded software from
MSMS package [18], then analytical solvent-excluded and solvent-
accessible surface areas per atom and residue are computed as
‘‘AreaSES” and ‘‘AreaSAS”, respectively.

After opening a PDB file in Chimera, the option ‘‘show” in ‘‘Sur-
face” was selected from the ‘‘Action” menu. Then, using ‘‘Render by
Attribute” from ‘‘Structure Analysis” in the ‘‘Tools” menu, the attri-
butes ‘‘AreaSAS” and ‘‘AreaSES‘‘ of residues were exported in a TXT
file. These files were subjected to a Python software that we devel-
oped called ”SASA_chimera_calculation.py.‘‘ This algorithm calcu-
lates for each residue its percentage exposure by Eq. (1):
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SASA ¼ AreaSASr
AreaSASr þ AreaSESrð Þ

� �
:100% ð1Þ

AreaSASr and AreaSESr refer to each amino acid residue’s values
in Chimera’s respective TXT files.

The percentage results obtained from both programs were sub-
jected to further Python programs in order to calculate the mean
values for apolar, polar and charged amino acid proportion and
exposure in each protein.
2.4. Amino acid proportion and exposure calculations

An in-house Python software (percentage_proportion.py) was
developed to process the results obtained by GETAREA and Chi-
mera, and it classifies the amino acids according to Table 2. The
percentage of apolar, polar, and charged amino acids present in
the structure is calculated for each protein.

Because the input files also contained SASA values for each
amino acid, a Python software called percentage_exposure.py was
used to calculate the average exposure of apolar, polar, and charged
residues. For each group of classified amino acids, the arithmetic
mean of their solvent exposure values is calculated. Thus, these
Python software output files include percentage values for both
amino acid proportion and average exposure of apolar, polar, and
charged groups of amino acid residues present in the protein.

The software amino-acid_proportion.py and amino-
acid_exposure.py analyzed the tendency to form surface clusters
with polar or charged amino acids. These algorithms receive the
same inputs as the previous, but in this case, the amino-acid clas-
sification follows Table 3 [9]. Like the algorithms described earlier
the output files includes percentage values of amino-acid types
and average exposure, respectively, for amino-acid residues classi-
fied as short-chain or long-chain present in the protein.
2.5. Ab initio 3D determination

The online server Robetta was used to predict our data’s ab initio
protein structures [19,20]. Primary sequences were obtained from
RCSB PDB or the database SwissProt from uniport.org. The primary
protein sequence was submitted as a job for structure prediction in
Robetta, with the option ‘‘AB only” selected. After determining the



Table 2
Classification of amino acids according to polarity and charge.

Classification Amino acids

Apolar GLY, ALA, VAL, PRO, LEU, ILE, MET, TRP, PHE
Polar CYS, SER, THR, TYR, ASN, GLN
Charged LYS, ARG, HIS, ASP, GLU

Table 3
Classification of polar and charged amino acids according to the length of side chain.

Classification Amino acids

Short side chain CYS, SER, ASN, ASP
Long side chain THR, TYR, GLN, LYS, ARG, HIS, GLU
Non classified GLY, ALA, VAL, PRO, LEU, ILE, MET, TRP, PHE

Fig. 3. Small proteins with at least one disulfide bond (bonded) present
distinctive features regarding the proportion and exposure of residues com-
pared to proteins that do not make disulfide bonds (unbonded). In all graphs, the
whole population of bonded proteins is represented in black, N = 114, while the
group of unbonded proteins is represented in blue, N = 39. The proportion of apolar
(A), polar (B), or charged residues (C) was calculated for each protein. The average
degree of solvent exposure was calculated using GETAREA. Exposure of apolar (D),
polar (E), or charged (F) residues. Mann-Whitney test, **0.0037, ***<0.0001.
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tertiary structure, the server provides five models, downloaded as a
PDB file.

2.6. Deep learning-based modeling

Robetta also allows protein modeling through their deep
learning-based prediction method, called trRosetta [16]. Similar
to the procedure described for the ab initio determination of each
protein structure, the primary sequence was processed on the
Robetta server, but in this case, with the option ‘‘TR only” selected.
The server provides 5 models for the tertiary structure that can be
downloaded as a PDB file.

2.7. RMSD calculation

The root-mean-square deviation (RMSD) between the protein
structure deposited on RCSB PDB and the protein structure
obtained from Robetta (either by ab initio or the trRosetta method),
was calculated by Chimera 1.14. Both structures were opened in
Chimera, then in the menu ‘‘Tools”, the option ‘‘MatchMaker” from
‘‘Structure Comparison” was used to select a reference structure,
which would be the one downloaded from RCSB PDB, and a struc-
ture to match, which would be the one obtained from Robetta.

In cases where the reference contained multiple structures, only
the first was considered. It was combined with all five possible
matches (because Robetta provides five structure models) to deter-
mine the lowest RMSD value. The option selected for chain pairing
was ‘‘Best-aligning pair of chains between reference and match
structure”. The alignment algorithm was Needleman-Wunsch,
BLOSUM-62, 1 gap extension penalty. Options ‘‘include secondary
structure score (30%)” and ‘‘compute secondary structure assign-
ments” were selected. The option ‘‘iterate by pruning long atom
pairs until no pair exceeds 2 angstroms” was chosen for matching.

2.8. Statistical analyses, correlation, and raw data

The raw data used to create all Figures in this paper is available
in the Supplementary Table1. All statistical analyses were per-
formed by GraphPad Prism 7. For Fig. 1, the Kruskal-Wallis test
was used. For Fig. 3, Fig. 5, and Supplementary Fig. 1, the Mann-
Whitney test was used. For Fig. 4, linear regression with a 95% con-
fidence level was performed.

3. Results and discussion

3.1. Compared to other small cysteine-rich proteins, defensins do not
appear to have an unusual fold to accommodate the poor hydrophobic
core.

To understand how the tertiary structure of defensins differs
from other small disulfide proteins, we downloaded PDB files from
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the RCSB PDB of all proteins with 3 to 6 kDa with at least one disul-
fide bond (bonded, 454 protein structures, Fig. 1). After manual
review, the proteins solved in the presence of ligands, micelles,
detergents, lipids, or organic solvents were eliminated, resulting
in 114 proteins representing 25,1% of the initial sample (Fig. 1).
The main classes of proteins in this group were defensins and tox-
ins, with each class representing � 30% of the total (Fig. S1). On
average, each protein has 3 disulfide bonds and most structures
(97%) were solved by NMR (Table S1). Using the software GETAREA
we measured the proportion and degree of exposure to the solvent
of all amino-acid side chains in these small proteins. First, we
determined if, defensins have different amino acid composition
from other proteins within the bonded group and thus should be
treated separately in subsequent analysis. The bonded group
(114 proteins) shown in Fig. 2 was divided in two subsets, one con-
taining only defensins (36 proteins) and other containing non-
defensins proteins (78 proteins). These groups were analyzed for
parameters such as amino acid classification (apolar, polar, and



Fig. 4. The unbonded group presents a good correlation between protein size and exposure to solvent for apolar residues. The Spearman correlation between apolar
residues’ exposure and protein size is negative for the unbonded group (A) and insignificant for the bonded group (B).

Fig. 5. Comparison between percentage and exposure of long or short side chains and polar/charged residues for the bonded and unbonded groups. In all graphs, the
bonded group proteins are represented in black, and proteins of the unbonded group are in blue. Comparison of the proportion (A) and solvent exposure (B) of long-chain
polar/charged (A) residues among the bonded vs. unbonded groups of proteins. The same analysis was performed for short-chain polar/charged residues (C and D). Mann-
Whitney test, ****<0.0001.
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charged, Table 2) in terms of proportion within the primary
sequence (Fig. 2A-2C) and their exposure to the solvent (GETAREA
analyses, Fig. 2D-F). Fig. 2 shows that there were insignificant dif-
ferences among the three groups of proteins. We then decided to
proceed with the entire bonded group, N = 114, for all subsequent
analyses.

We conclude that if the defensins do present a core-less fold
[8,9,21], their structure is not unique compared to other small
disulfide proteins.

3.2. Small disulfide-rich proteins tend to expose more of their apolar
residues to an aqueous solvent than non-disulfide proteins.

Since no differences were observed within the bonded group
(Fig. 2), we then proceeded to analyze how the bonded group as
a whole differs from small proteins without disulfide bonds (un-
bonded group) following the same pipeline described in Fig. 2. To
define the unbonded group, we downloaded from the RCSB PDB
the PDB files from proteins without disulfide bonds ranging from
3 to 6 kDa (337 protein structures). We followed the same manual
review described for the bonded group, but, this time, we ended up
with just 39 proteins (11,6 % of the initial sample). It is important
to note that even starting with about 35% more proteins, after
manual revision, the group of bonded proteins contained 3-fold
more proteins than the unbonded group. One explanation for this
discrepancy may be that small proteins without disulfide bonds
are more dependent on cofactors to achieve their fold. Most of
the proteins (87%) belonging to the unbonded group were solved
by NMR (Table S1). Fig. 3 shows a comparison between bonded
vs. unbonded groups according to amino acid classification (apolar,
polar, and charged), in terms of proportion of each class within the
primary sequence (Fig. 3A-C), and their exposure to solvent
(GETAREA analyses, Fig. 3D-F). It is remarkable that essentially
all parameters analyzed revealed significant differences between
these groups. As observed in Fig. 3A and 3D, the bonded group, a
lower proportion of apolar residues, can afford a greater degree
of exposure to the aqueous solvent than the unbonded group. This
result leads us to conclude that the bonded group of proteins does
not present a canonical hydrophobic core in their structure. Even
though it contradicts the expected folding model, it is consistent
with what was observed for the structure of cysteine-rich peptides
[7–9,21].

Due to their tertiary structure stabilized by the disulfide bonds,
proteins in the bonded group can afford this seemingly costly con-
formation. These proteins collapse in an enthalpically and entrop-
ically favorable ensemble, which allows the formation of disulfide
bonds [6,22]. However, their hydrophobic residues’ exposure to the
solvent makes these proteins more prone to form aggregates [6].

A similar conclusion was obtained on analyzing the area of sol-
vent accessibility through the Chimera 1.14 software (Fig. S2). The
result of Fig. 3F (GETAREA analyses) did not show a significant dif-
ference between groups regarding the exposure of charged resi-
dues. On the other hand, when the structures were analyzed by
Chimera 1.14, we observed a slightly greater exposure of charged
residues for the unbonded group compared to the bonded group
(Fig. S2F).

We also evaluated whether exposing or hiding amino acid resi-
dues was correlated with protein size. Even though there is no con-
sensus in the folding models for proteins with disulfide bonds, it is
suggested that it is due to their disulfide bonds that these proteins
have a stable structure [23]. Therefore, it is unlikely that the ter-
tiary structure observed for this group of small proteins would
be affected by the length of their amino-acid side chains. However,
as the protein size increases, the folding pathway for the proteins
of the unbonded group would be less affected by steric hindrance.
Therefore, a canonical hydrophobic collapse would be more likely
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to occur. That being said, we compared the amount of exposure
of apolar, polar, and charged residues vs. the protein size for both
groups, unbonded and bonded (data not shown). Only the
unbonded group has a negative correlation (q = �0.613) between
protein size and exposure to solvent for apolar residues, as shown
in Fig. 4.

The result of Fig. 4 reveals that even in a narrow size range (3 to
6 kDa), we could see the tendency for less exposure of the apolar
residues as the protein size increases for proteins in the unbonded
group. For example, the smallest protein in the group, PDB ID
6M56, has an average exposure of 72% for its apolar residues, while
for the largest protein, PDB ID 2N8O, this exposure drops to 27%. It
is important to note that the bonded group proteins may do not
present their lowest free energy conformation as their native state,
which is a possibility raised by Levinthal [24].

Pinheiro-Aguiar and colleagues noticed the presence of
hydrophobic surface-clusters on defensin 2 from Pisum sativum
[9]. The authors suggested that long polar/charged side chains in
surface-clusters protect the hydrophobic amino acids from com-
plete exposure to the solvent [9]. The following test was designed
to determine whether the bonded group has some preferences for
long polar/charged amino acids compared to the unbonded group.
The amino acids were classified as short polar/charged (CYS, SER,
ASN, ASP) or long polar/charged (THR, TYR, GLN, LYS, ARG, HIS,
GLU, see also Table 3). The remaining amino acids (GLY, ALA,
VAL, PRO, LEU, ILE, MET, TRP, PHE) were omitted in these analyses.
First, the proportion in the primary sequence of long polar/charged
residues was compared between bonded vs. unbonded groups. If
the hypothesis of Pinheiro-Aguilar is correct, we expect to see a
higher proportion of long polar/charged side chains in the bonded
group, but it was not the case (Fig. 5A). Furthermore, no difference
was found comparing the degree of solvent exposure of long polar/
charged residues between the groups (Fig. 5B). On the other hand,
we observed differences for both the proportion and degree of sol-
vent exposure of short polar/charged residues between the groups
(Fig. 5C-D). The bonded group presented a higher proportion and a
lower exposure to the solvent for short polar/charged residues
compared to the unbonded group (Fig. 5C-D). We conclude that
no bias toward long polar/charged residues exists for the bonded
group. It is unlikely that the model proposed by Pinheiro-Aguiar
and colleagues explains the unusual solvent exposure of hydropho-
bic residues that occurs in the fold of defensins and other small
disulfide-rich proteins. This work supports the participation of
short polar side chains in the formation of the hydrophobic surface
clusters.

3.3. Tertiary structures of small cysteine-rich proteins are better
predicted by state-of-the-art algorithms.

To understand whether the structure of the bonded group pro-
teins presents a non-obvious folding, we challenged the predictor
server Robetta by selecting the ab initio option (Fig. 6) or the TR
option (Fig. 7). We systematically submitted all proteins to the ser-
ver because we wanted to compare how accurate the predictions
are for both groups. Then, the structure obtained by Robetta was
compared to the model in PDB file obtained from RCSB PDB, and
the Chimera 1.14 software calculated the Root-mean-square devi-
ation (RMSD) of atomic positions. Therefore, any difference
observed between the groups’ RMSD values is due solely to the
predicted folding based on the proteins’ primary sequences.

Fig. 6A shows an example of accurate prediction: the original
PDB (5DMA, gold) superposed well on the structure predicted by
Robetta (cyan) with an RMSD of one angstrom. A different scenario
was observed for the PDB 2N2Q, where the RMSD was eleven ang-
stroms (Fig. 6B). Fig. 6C illustrates the comparison of RMSD values
between the groups. We observed that the software Robetta pre-



Fig. 6. The prediction accuracy of the ab initio algorithm Robetta was greater
for the unbonded than for the bonded proteins. Visual representation comparing
original PDB files (in gold) for 5DMA (A) or 2N2Q (B) with the structures predicted
by Robetta (in cyan). (C) Comparison between RMSD means for the bonded and
unbonded groups. Mann-Whitney test, **0.0012.

Fig. 7. trRosetta algorithm is more accurate in 3D protein structure prediction than
group the twomethods do not differ. Comparison between RMSD calculated for the bon
value = 0.0042. A positive correlation between RMSD values obtained from ab initio (Robe
while no correlation exists for the bonded group (C).
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dicted with greater accuracy the proteins belonging to the
unbonded group (Fig. 6C). Finally, we correlated the proportion
and degree of solvent exposure of apolar, polar, and charged resi-
dues with the RMSD. Again, we divided the proteins into two
groups, unbonded and bonded and Fig. S3 shows the Spearman
correlation for the mentioned parameters. We observed correla-
tions with a p-value below 0.05 for two analyses, both for the
unbonded group (Fig. S3B). The number of polar residues correlates
positively with the RMSD (q = 0.43, Fig. S3C). The degree of solvent
exposure of apolar residues also presented a positive correlation
(q = 0.58) with RMSD. The Rosetta all-atom forcefield, used in
ab initio prediction, is based on hydrogen bonding, short-range
Van der Waals interactions, and desolvation [20,25]. Although very
realistic, this forcefield did not predict well the structure of our
groups of peptides, especially those with disulfide bonds. This
could indicate that the native conformation of the bonded group
proteins is not their lowest free-energy state, and considering the
extensive exposure of their apolar residues, this lack of hydropho-
bic core is probably not an evident folding. The structural predic-
tion of small proteins is a challenging task [26], which is
improving due to deep-learning techniques [27], as we were able
to prove in the analyses using the TR option.

Fig. 7A illustrates the comparison of RMSD values between the
groups, this time using the TR option in Robetta. Clearly, it is a bet-
ter methodology for solving tertiary structures, due to smaller
mean values of RMSD obtained for both groups when compared
to the ab initio method (Fig. 6C). Surprisingly, however, the mean
the ab initio algorithm for the bonded group, but for proteins of the unbonded
ded and unbonded groups using the algorithm trRosetta (A). Mann-Whitney test, p-
tta) vs. deep learning (trRosetta) methods was observed for the unbonded group (B)
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RMSD was higher for the unbonded group than for the bonded
group using this methodology (Fig. 7A).

A positive correlation between RMSD values using deep-
learning (trRosetta) vs. ab initio (Robetta) prediction was observed
for the unbonded group, as shown in Fig. 7B. It indicates that for
proteins in this group, both methodologies predict the tertiary
structure with similar accuracy (Fig. 7B). On the other hand, no cor-
relation was observed when the same analysis was performed for
the proteins of the bonded group (Fig. 7C). For most proteins
(105 among 114), the RMSD obtained from the deep-learning
(trRosetta) algorithm was below 3 Å. A different scenario was
observed when the ab initio (Robetta) method was used: few pro-
teins (24 out of 114) presented RMSD equal to or under<3 Å
(Fig. 7C).

We conclude that small disulfide proteins adopt an unusual fold
without a hydrophobic core. However, due to improvements in
deep-learning algorithms, the absence of a hydrophobic core does
not compromise the accuracy of the tertiary structure predictors.
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