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A B S T R A C T

Chronic kidney disease (CKD) poses a great burden to global public health as current therapies are generally
ineffective. Early detection and effective therapy are crucial for the future prevention and progression of CKD.
Nanoparticles (NPs) vary by particle size, charge, shape and the density of targeting ligands and are associated
with enhancement of the pharmacokinetic properties, targetability, or the bioavailability of drugs. Thus, the
emergence of NPs in medicine has provided novel solutions to the potential diagnosis and treatment of CKD. This
review describes the current experimental research, clinical applications of NPs, the current challenges, and
upcoming opportunities in the diagnosis and treatment of CKD.

1. Introduction

Nanoparticles (NPs) refer to minute structures (1–100 nm) in at
least one dimension. Nanotechnology encompasses the engineering and
manufacturing of NP materials at an atomic or molecular scale [1]. NPs
can be produced using both organic and inorganic materials. Organic
NPs include polymeric NPs, dendrimer-based NPs, liposomes, and
carbon NPs. Inorganic NPs include quantum dots (qdots) NPs, carbon
NPs, and magnetic iron oxide particles [2]. Medical nanotechnology
involves NPs used in the design, manufacture, regulation, and appli-
cation of therapeutic drugs or devices [3]. As shown in Fig. 1, NPs have
many characteristics and can serve as colloidal dispersions that are
made up of an outer shell and an inner core or a matrix structure [4]. In
terms of diagnosis, these structures can be used on the surface of a
device to improve the sensitivity and selectivity of detection. They can
also be used as imaging agents to assist in diagnosis. In terms of
treatment, colloidal dispersions consist of an outer shell and an inner
core within which the desired drugs, protein, and nucleic acids can be
placed (Fig. 1). Furthermore, the NPs could be shielded from the blood
components as their surface layer was coated with inert polymers. This
technology has certain advantages such as great carrying capacity, long

site-specific retention, and effective absorption of active drug agents
[3]. The matrix structure of NPs also can encapsulate bioactive com-
pounds such as drugs, proteins and nucleic acids. Their architecture
allows for the control of characteristics such as size, charge, shape, and
targeting ligands and subsequently improves the biocompatibility and
bioavailability of drugs [5,6]. For example, dendrimers are highly
branched and easy to modify and are therefore used in various fields
[7]. Nanogels can be crosslinked with hydrophilic flexible polymers,
and they have a great water retention ability [8]. Ligands such as an-
tibodies, proteins, and nucleic acids can be linked to the NP surface for
targeting specific cells or organs. Therefore, this emerging discipline is
becoming a promising tool for medical applications, such as biomarkers
detection, imaging techniques, drug delivery, gene therapy, chronic
disease therapy, antimicrobial agents, tissue engineering and re-
generative medicine [9]. The various applications of NPs in medicine
are presented in Fig. 2.

Kidney diseases can be mainly divided into acute kidney injury
(AKI) and CKD in terms of kidney function progression. AKI is defined
as an increase in serum creatinine by ≥ 0.3 mg/dL within 48 h or an
increase in serum creatinine to ≥1.5 times baseline within the previous
7 days or urine volume<0.5 ml/kg/h for 6 h. It is usually caused by
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hypovolemia, urinary obstruction, drug poisoning, etc. CKD is defined
as a persistent abnormality of kidney structure or function (e.g., glo-
merular filtration rate [GFR]<60 mL/min/1.73 m2 or albumi-
nuria> 30 mg per 24 h) for more than 3 months. Diabetes, hyperten-
sion and primary glomerular disease are the most common causes of
CKD. They are quite different in terms of definition, causes, and treat-
ment methods. CKD is a worldwide health problem with a prevalence of
more than 10%, and a higher prevalence in the elderly [10]. Patients
with CKD invariably experience multiple complications and adverse
outcomes, which results in a high financial burden to both the affected
individuals and society [11]. Thus, early diagnosis of CKD and prompt
prevention of disease progression are becoming a public health priority.

A significant amount of research has demonstrated that NPs have
exhibited a great capacity for the diagnosis and treatment of CKD. For
instance, NPs can provide precise and accurate methods to measure
kidney morphology and function and target the delivery of drugs and
nucleic acids to specific tissues, which improves renal targeting, re-
tention, and localization. However, few systematic studies of NPs’ ap-
plication in CKD have been conducted. This review focused on the
application of NPs in the detection of kidney injury biomarkers and
imaging technology. Then we described a novel treatment for CKD and
renal replacement therapy for patients with end-stage renal disease
(ESRD), as shown in Fig. 3. In the rest of the review, we stated some
challenges associated with this technology as well as perspectives.

2. Application of NPs in the diagnosis of CKD

Assessment of early and specific markers is considered crucial for
prediction of early onset and the progression of nephropathy.
Therefore, an effective intervention therapy could be administered to

prevent CKD and reduce complications such as infection, hypertension,
anemia and heart failure. However, the traditional diagnostic methods
currently available have many limitations such as insensitivity and in-
convenience. Therefore, NPs may be important for the early detection
of CKD with considerable sensitivity.

2.1. Detection of kidney injury biomarkers

Albuminuria is the risk predictor of incident CKD and CKD pro-
gression [12,13]. The routine urinalysis dipstick was positive only when
the urinary albumin concentration was>30 mg/dL. Microalbuminuria
could be tested by specific urinary albumin dipsticks or by various
specific antibody methods [14]. However, these methods are both in-
sensitive and inconvenient. Surface-enhanced Raman scattering (SERS)
with silver/copper/gold NP surface is an emission technology that in-
cludes the inelastic scattering of the incident laser energy [15]. SERS
has many advantages such as high sensitivity, simple sample proces-
sing, rapid analysis, and presence of commercial available portable
Raman spectrometers [16]. For example, this technique uses the silver
NP surface that absorbs the analyte; thereby, the Raman signal could be
enhanced significantly [15]. Stefancu et al. reported that SERS spec-
troscopy exhibited a strong correlation between the predicted and re-
ference albumin concentrations, with an R2 and a root-mean squared
error of prediction of 0.98 and 2.82, respectively, suggesting that this
method is accurate for detecting absolute albuminuria. The extreme
low level at 3 μg/ml indicated that this tool is more sensitive in mon-
itoring microalbuminuria than traditional strategy. As reported pre-
viously, the detection of the urinary albumin did not require pre-pro-
cessing of the samples, and this process of detection was very rapid
[17]. At present, commercial devices are available that facilitate the

Fig. 1. The composition and properties of nanoparticles. A) Nanoparticles can serve as colloidal dispersions or a matrix structure; B) The features of NPs can be
modified by size, charge, shape, and targeting ligands including antibody, peptide and small molecule.
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point-of-care screening of microalbuminuria [16]. Recently, a simple
disposable electrochemical immunosensor (Fig. 4) was also developed
for the point-of-care testing of microalbuminuria, wherein gold NPs
were used on the electrodes to enhance the biocompatibility and con-
ductivity of this sensor and novel PS/Ag/ab-HSA nanoprobes (poly-
styrene nanoparticle core with silver nanoshells covalently conjugated

to the HSA antibodies) were prepared on the surface of electrode by
dielectrophoresis. This point-of-care platform could perform tests any-
where from the home to the bedside and the data is transferred wire-
lessly to electronic equipment or the cloud for early detection and
monitoring of CKD [18].

Other than microalbuminuria, a novel nanotechnology-based

Fig. 2. The various application of nanoparticles in medicine.

Fig. 3. Diagrammatic sketch for different applications of nanoparticles in chronic kidney diseases.
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multianalyte point-of-care device could quantitatively measure he-
moglobin, serum albumin, urine creatinine, and glycosylated he-
moglobin, which might be extended to other protein markers (glycated
albumin and serum creatine) [19]. By comparing the tested results from
this device with laboratory results, the device has been proved useful
for detecting early diabetic kidney disease and, in the future, could be
used in remote developing nations [20].

Promising biomarkers such as cystatin C (CysC), N-acetyl-β-D-glu-
cosaminidase (NAG) and kidney injury molecule-1 (KIM-1) were ef-
fective predictors for CKD [21–23]. A growing body of research has
indicated that NPs could be used to amplify the response of an im-
munosensor in the detection of these biomarkers [24–28]. A disposable
amperometric immunosensor was developed to detect CysC in human
serum using a sandwich-type assay. They used a layer-by-layer con-
struction approach applying Au NPs to produce an amplified response,
which allowed the immunosensor to measure CysC with sensitivity
[26]. Wang et al. proposed a novel “light-switch” molecule of the Ru
(II) complex ([Ru(dcbpy)2dppz]2+-DPEA) with self-enhanced elec-
trochemiluminescence (ECL) properties [24]. This molecule was almost
non-emissive in an aqueous solution; however, when intercalated into
the DNA duplex, it became brightly luminescent. They combined this
ECL self-enhanced molecule with DNA nanotechnology, to offer an ef-
fective signal amplification method that determined NAG which is a
characteristic biomarker of diabetic nephropathy. This detection
method has been reported to be very sensitive with a linear range of
0.1 pg/mL to 1 ng/mL [24]. Similarly, an ECL biosensor was con-
structed to determine the levels of KIM-1, a biomarker of early renal
injury that reflected the process of renal injury and recovery. Pt NPs
were then applied to improve the electron transfer efficiency [28].
Thus, nanotechnology is a promising tool with high sensitivity and ef-
ficiency that could improve and complement the current clinical ex-
amination methods for CKD, thereby facilitating an earlier intervention.

2.2. Noninvasive fluorescence kidney functional imaging technique

Glomerular filtration rate (GFR) directly describes kidney function.
However, this type of detection is inconvenient and poses the risk of
acute kidney injury caused by the contrast agent iohexol required for
this procedure. Physicians routinely apply the CKD-epidemiology col-
laboration (CKD-EPI) formula to estimate GFR, which was referred to as
eGFR. However, a minor part of creatinine could be absorbed and se-
creted by the tubular cells, which declined the efficiency in detecting
CKD in the early and late-stage, whereas various fluorescent NPs, in-
cluding qdots, gold and silica NPs, were found to provide four distinct

advantages over current methods in the evaluation of GFR. First, they
did not cause toxicity or interfere with metabolism in vivo. Second, the
absorption and emission wavelengths were in the visible region, and
more favorable in the near-infrared range. Third, they were completely
filtered by the glomeruli while not being secreted or absorbed via the
tubules [29]. Fourth, these NPs were easy to produce and relatively
inexpensive [30].

Examples of commercially available nanomaterials are fluorescent
semiconductor nanocrystals (also known as qdots), which have been
widely applied in the biological field [31]. Furthermore, highly-sensi-
tive and inexpensive near-infrared fluorescence imaging had been
widely used in investigating many diseases, such as cancer [32,33].
Nevertheless, noninvasive fluorescence imaging of renal insufficiency
and staging are still in the preclinical phase of research [33]. Yu et al.
used renal-clearable near-infrared-emitting glutathione-coated gold
NPs (GS-AuNPs) as a contrast agent in fluorescence imaging of the
kidneys to assess kidney function. They found this nanotechnology was
viable for assessing kidney dysfunction noninvasively, reporting the
dysfunction stages, and even revealed adaptive functioning in mice
with unilateral obstructive nephropathy (UUO) [34]. Moreover, they
successfully identified the dysfunction occurring in kidney stages that
fitted with renal damage evaluated via pathological findings [34]. Be-
cause conventional markers such as serum creatinine and blood urea
nitrogen (BUN) could not reveal the renal dysfunction of UUO accu-
rately, this nanotechnology can serve as a powerful kidney function
imaging tool. Initially, they applied GS-AuNPs in the fluorescence
imaging of kidney clearance kinetics in normal mice to prove that they
were non-toxic and did not affect metabolism in vivo [35]. The kidneys
of mice revealed no structural alterations and found a very low accu-
mulation in the background tissues [35]. Gold NPs coated by glu-
tathione exhibited the emission wavelength (~800 nm), which was in
the near-infrared range and was visible [36]. The hydrodynamic dia-
meter of GS-AuNPs (3.3 ± 0.4 nm) was lower than the renal filtration
threshold (6–8 nm), so they could be removed out of the body through
the kidneys efficiently [37]. Many renal-clearable NPs are currently
available, including AuNPs, copper nanoparticles (CuNPs), iron oxide
NPs, silica NPs (SiNPs), carbon dots and palladium nanosheets, which
makes the application of NPs in noninvasive renal imaging possible
[38–42]. SiNPs with fluorescent anti-CD11b have also been utilized as
an imaging tool for assessing inflammation and fibrosis at a high in-
tensity in animal models of UUO [43]. Importantly, NP imaging accu-
rately determines the kidney dysfunction stages and evaluates renal
inflammation and fibrosis, indicating that this technology can be used
to detect the renal function and invasively investigate the pathology in

Fig. 4. Schematic illustration of systematic protocol for immunosensor fabrication and operation. (Reprinted with permission from Ref. [18] Copyright 2019:
Elsevier.).
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the future.

2.3. NPs-based magnetic resonance imaging (MRI) reflects the structural
information in the kidney

Currently, renal biopsy is the best method to diagnose and evaluate
kidney disease. It is considered as the only link between the diagnosis of
renal disease and its pathological conditions of the kidney. However, a
biopsy is an invasive procedure, which puts patients at risk for hema-
toma; thus it is an impractical measure for use in follow up [44]. Fur-
thermore, mismatches between the very small obtained specimen and
the overall kidney condition have occurred because of the limited ex-
tent of renal tissue involvement [45]. Thus, nano-MRI could provide
solutions to the limitations of conventional modalities and might be the
next step in renal biopsy [46]. Moreover, it is noninvasive and assesses
the overall condition of the kidneys and would be a viable measure for
use in follow up. In the development of nanoscale detection technolo-
gies, iron oxide NPs are regarded as a promising alternative to ne-
phrotoxic gadolinium-based MRI contrast agents [47]. Iron oxide par-
ticles could be used in both functional (quantitative perfusion,
quantitative glomerular filtration rate, and estimation of tubular func-
tion) and cellular imaging (intrarenal phagocytosis in inflammatory
nephropathy) [48,49]. Inflammatory cells including macrophages ab-
sorb iron oxide, and the T2-weighted MRI signal decreased in these
areas of high cell populations [50]. The signal intensity of each kidney
was measured using different types of nephropathies prior to and 24 h
after injection of the iron oxide. The cortical signal intensity decreased
significantly in the nephrotoxic nephritis rats. In contrast, the signal
intensity loss was seen in all renal compartments in response to the
diffuse interstitial lesions in the obstructive nephropathy model, in-
dicating NP-based MRI can help in diagnosing different types of ne-
phropathies [51]. Similar results have been reported in human studies
[52]. Hauger et al. also injected iron oxide intravenously to detect and
characterize macrophages infiltrated in native and transplanted kid-
neys. The patients with cortical macrophage infiltration in their kidneys

presented a 33% ± 18% mean cortical signal decrease, as revealed by
T2-weighted images. In three patients with ischemic acute tubular ne-
crosis, an intense (42 ± 18%) signal decline was exclusively observed
in the medulla [52]. Given that macrophages infiltration is one of the
characteristics of inflammation, signal decline due to uptake by mac-
rophages can provide the information of renal inflammation and injury.
By detecting the intensity and area of MRI signal, different ne-
phropathies can be identified and differentiated. Though the safety of
frequent use of iron oxide NPs remains unknown, its preclinical phar-
macokinetic and safety appears to be satisfactory in view of the appli-
cation prospect of this method as a single-dose diagnostic agent for
human MRI [53]. As NP-enhanced MRI could provide both structural
and functional information for the kidneys, it could be used to assess
renal inflammation and differentiate between different kidney diseases
clinically.

3. Application of NPs in the treatment of CKD

CKD results in loss of renal function and even renal failure. In
contrast to more acute inflammatory glomerulonephritis where im-
munosuppression could potentially even cure disease, no currently
available therapies can reverse the loss of renal function in CKD [54].
At present, only limited therapeutic strategies are available to slow
down the progress of CKD. Supportive treatment includes angiotensin-
converting enzyme inhibitor (ACEI) or angiotensin receptor blocker
(ARB), and other conservative treatments [55,56]. In addition, im-
munosuppressive therapy comprises glucocorticoid, cyclophosphamide,
cyclosporin, mycophenolatemofetil and rituximab. However, there is a
need for markedly more targeting therapies with few side effects to
slow down the progression of CKD. NPs play an important role in terms
of serving as kidney-targeting transport system for several classes of
drugs and nucleic acids.

Fig. 5. Schematic structure of the kidney glomerulus and the glomerular filtration barrier. As shown, nanoparticles (< 10 nm) could reach tubular epithelial cells
easily. 10–100 nm nanoparticles could be designed size for glomerular deposition and particles of ~75 ± 25 nm size for mesangial cells. Modified nanoparticles can
target podocytes specially. The large nanoparticles (~400 nm) could reach the proximal tubule cells via the peritubular capillary. Moreover, carbon nanotubes
(length 100–500 nm and diameter 0.8–1.2 nm) directly headed for proximal tubule cells. Expanded portion showed three layers of glomerular filtration barrier:
endothelium with fenestration (60–80 nm), glomerular basement membrane (2–8 nm pore), and epithelial podocytes with filtration slit (20–30 nm). It is negatively
charged and repels negatively charged nanoparticles.
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3.1. Kidney targeted treatment

Kidney targeted therapy could improve the therapeutic drug effi-
cacy and reduce toxicity. The nephron, which is the structural and
functional unit of the kidney, is composed of the glomerulus and tubule
system. The glomerulus is made up of a tuft of blood capillaries and the
mesangium (mesangial cells and the extracellular matrix). The glo-
merular filtration barrier comprises three layers: glomerular endothelial
cells (GECs), glomerular basement membrane (GBM), and podocytes
(Fig. 5). The first layer is composed of the GECs that are characterized
by numerous transcellular holes and fenestrations (60–80 nm) filled
with an endothelial glycocalyx [57]. It restricts the circulating plasma
components from entering the endothelial cell membranes through a
filamentous structure and strong negative charge [58]. The next layer is
a 300-nm thick connective tissue membrane with a 2-8-nm pore size; it
comprises collagen IV, laminin, nidogen, and negatively charged he-
paran sulfate proteoglycans [59–61]. These layers produce an inter-
woven meshwork to filter small molecules according to charge and size.
The podocytes are firmly attached to the GBM and have interdigitating
foot processes, forming 20-30-nm-wide filtration slits [62]. This barrier
is the final size-selective filter in albumin.

NPs can be designed to target specific cells or tissues via tailoring
the particle size, charge, shape, and density of the targeted ligands
(Table 1). The size of NPs significantly influences cellular uptake, blood
circulation half-life, and targeting [63]. NPs of an average size of
100 nm have a longer half-life period than NPs of smaller or larger
sizes. Smaller particles penetrated the kidneys more readily, but
those< 10 nm were more likely to be removed by renal excretion and
phagocytosis [63]. Thus, by tailoring the size of the NPs, there is po-
tential to target different cells (Fig. 5). Research has shown that NPs
with diameters of approximately 75 ± 25 nm targeted the renal me-
sangium, whereas larger NPs (> 100 nm) could not enter the me-
sangium due to the size limitation created by the fenestrations of GECs
[64]. Studies have also focused on targeting the renal tubule, and have
designed NPs (< 10 nm) small enough to get past the glomerular fil-
tration barrier and be internalized by the epithelial cells [65,66]. In
vivo, 5 nm dextran-based NPs and dendrimer NPs were both filtered,
and then absorbed by the tubular epithelial cells in a time and dose-
dependent fashion [66]. However, large NPs (~400 nm), which were
much larger than the fenestrations of the GBM, were found to target the
proximal tubules selectively. This result suggested that the NPs are
internalized by the proximal tubule epithelial cells at basal side via
passing through the peritubular capillaries [67].

The surface charge of the NPs has a bearing on glomerular filtration
rate. NPs with different surface charges could be combined with the
circulation proteins or other charged molecules, which led to an in-
crease in hydrodynamic size. Furthermore, they interacted with the
glomerular capillary wall, which is negatively charged [68]. Thus, this

interaction could be another strategy to attain kidney-targeting. Ca-
tionic ferritin NPs (13 nm) were accumulated in the GBM of the rat;
however, the negatively charged ferritin NPs were not [69]. Similarly,
the siRNA NPs in circulation could access the GBM and preferentially
deposited there because of their positive surface charge [70]. Studies
have indicated that with NPs of< 5.5 nm, the charge is a primary
determinant of kidney uptake. Negatively charged quantum dots
(~3.7 nm) accumulated in the mesangial cells, with only a few found in
the urine. While similar sized cationic quantum dots were excreted
directly into the urine [71].

The shape of NPs has a significant impact on the performance and
biological distribution in vivo, as they need to be successfully trans-
ported and bound to their designated target. Different shapes have been
developed, such as cubic, spherical, hexagonal, helical, and rods.
Cylindrical shape is the only shape affected by blood flow [72]. Rod
structure has exhibited enhanced tumor penetration compared to other
shapes [73]. Spherical NPs are cleared less slowly than non-spherical
NPs due to their aspect ratio and dimension; however, they migrate to
the vessel walls less efficiently [74]. For example, the single-walled
carbon nanotubes with a length of 100–500 nm and a diameter of
0.8–1.2 nm were rapidly filtered by the glomerular, reabsorbed by the
tubules partially, and translocated into the nuclei of proximal tubular
cells (Fig. 5). Mathematical modeling suggested the trend of flow
compared with the orientation of the NPs allowed for clearance via the
glomerular pores [75]. Similarly, in the renal injury models induced by
cisplatin, carbon nanotubes targeted therapeutic siRNA to proximal
tubule cells to reduce the injury [76]. Thus, appropriate shapes could be
designed to target podocytes in the future to alleviate albuminuria in
CKD.

Active targeting of NPs involves the conjugation of targeting ligands
to the surface of NPs, which improved the specificity of therapy under
identical physical conditions such as size, charge, and shape [77]. These
ligands included antibodies, antibody fragments, peptides, aptamers
and small molecules. Various ligands were designed to target the cor-
responding receptors of mesangial cells, GECs, GBM, podocytes and
tubular cells, respectively, which have been listed in Table 1. The well-
studied ligands include E-selectin antibody, Ac2-26 peptide, cyclopep-
tide, angiotensin I/II, modified polymyxin, and their corresponding
receptors include E-selectin, collagen IV, αvβ3 integrin receptor, an-
giotensin II receptor and megalin, respectively. At the onset of glo-
merulonephritis in mice, E-selectin was specifically expressed on the
endothelial cells. Therefore, coating the liposomes with an antibody
against E-selectin, could successfully suppress this expression in the
GECs and reduce albuminuria [78]. Studies have shown that NPs con-
taining a specific peptide Ac2-26 bind to a collagen IV target sub-
endothelial collagen IV [79]. Because collagen IV was produced by
GECs or podocytes and both these cells are present on the surface of
GBM, the podocytes and GECs can be repaired by targeting the GBM.

Table 1
Characteristics of NPs with renal targeting.

Characteristics Renal target and receptor

Size ~75 nm gold NPs Mesangium [64]
5 nm dextran-based NPs Renal tubular epithelial cells [66]
5 nm dendrimer NPs Renal tubular epithelial cells [66]
~400 nm PLGA–PEG NPs Proximal tubule epithelial cells [67]

Charge Cationic ferritin NPs Glomerular basement membrane [69]
SiRNA NPs Glomerular basement membrane [70]
Negatively-charged quantum dots Mesangial cells [71]
Cationic quantum dots Tubular epithelial cells [71]

Shape Carbon nanotubes (100–500 nm and diameter of 0.8–1.2 nm) Proximal tubular cell [75,76]
Surface ligands E-selectin antibody E-selectin/Glomerular endothelial cells [78]

Ac2-26 peptide Collagen IV/Glomerular basement membrane [79]
Cyclo peptide αvβ3 integrin receptor/Podocyte [80]
Angiotensin I/II Angiotensin II receptor/Mesangial cells [81]
Modified polymyxin Megalin/Proximal tubule epithelia cells [85]
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Cyclopeptide was able to selectively bind with the αvβ3 integrin re-
ceptor on the podocytes, and the cyclo-modified quantum dots have
been shown to be internalized by the podocytes [80]. Thus, this may be
a potential method for targeted therapies of podocyte-associated dis-
eases. Recently, NPs used to target mesangial cells for the presence of
angiotensin-converting enzyme on the surface have been developed,
which are pivotal to diabetic nephropathy. This method used angio-
tensin I as a proligand and angiotensin II as a secondary ligand, which
triggered the NP uptake in the mesangial cells by binding in a second
stage to the angiotensin type II receptor [81]. Targeting drugs to the
proximal tubular cells can be an attractive approach to treat tubu-
lointerstitial fibrosis by minimizing the risks of adverse side effects and
enhancing the efficacy of the antifibrotic drugs [82]. Megalin has been
identified as a multi-ligand receptor that is expressed in the apical
membrane of proximal tubule epithelial cells and plays an important
role in the endocytosis of the cells [83]. Several studies have probed the
megalin receptor for specifically delivering the drugs to the kidneys
[84,85]. As showed in Fig. 6, Oroojalian et al. synthesized megalin-
targeted nanocomposites of modified-polymyxin–polyethylenimine
(PEI) conjugates for the delivering an EGFP plasmid to improve the
biocompatibility, cell specificity, and stability of drugs used to treat
tubulointerstitial fibrosis. Both in vivo and vitro experiments showed
that modified polymyxi–PEI/DNA NPs could target kidney cells that
express megalin effectively and had improved the efficiency of trans-
fection [85] (Table 1).

3.2. NPs can be used to deliver drugs

NPs possess an efficient and safe selective drug delivery property
(Fig. 1a), which is why they have been widely investigated for the
delivery of various types of drugs. NPs improved the pharmacokinetic
properties and enhanced the targetability and bioavailability of drugs.
Recently, thapsigargin NPs proved to be viable for treating CKD by
activating Nrf2 and FoxO1. In vitro, thapsigargin NPs protected human
kidney tubular epithelial cells from oxidative stress-induced cell death
by activating Nrf2 and FoxO1, whereas the oxidative stress-induced
cytotoxicity was enhanced by siRNA-mediated inhibition of Nrf2 and

FoxO1. In vivo, thapsigargin NPs reportedly ameliorated renal injury in
an adenine diet-induced CKD mouse model [86], indicating that it is a
promising therapy to prevent or interfere with CKD progression.

Resveratrol is a natural polyphenol that elicits beneficial effects on
several renal diseases through an anti-inflammatory mechanism [87].
However, poor pharmacokinetic properties such as low aqueous solu-
bility, low photostability, and poor bioavailability limited the applica-
tion of this polyphenol [88]. Thus, a novel method was used to over-
come these limitations, and resveratrol-loaded NPs were constructed.
NPs were conjugated with the KIM-1 antibody, which was highly up-
regulated on the surface of the injured kidney epithelial cells, which
enhanced targetability [89]. The treatment of HK-2 with resveratrol-
loaded NPs resulted in lower toxicity, allowed sustained and controlled
release of drugs, and inhibited the NLRP3 inflammasome and IL-1β,
which play central roles in kidney inflammation. CKD mice induced by
adenine presented high BUN and creatinine levels. Following treatment
with resveratrol-loaded NPs or KIM-1-resveratrol-loaded NPs, the
creatinine levels were reduced, and the tubulointerstitial injury was
alleviated in the CKD models. The KIM-1-resveratrol-loaded NPs ex-
hibited a more favorable effect, and thus, it was concluded that these
NPs could prevent CKD via targeting injured kidney cells and attenu-
ating the NLRP3 inflammasome, which showed better therapeutic ef-
fects and less side effects than the traditional treatment methods [90].
Several natural herbs have reportedly inhibited fibrosis and CKD pro-
gression, but when treated alone, the effects were limited because of
poor bioavailability and non-specificity [91]. Salvianolic acid B is ex-
tracted from the traditional herb Danshen, which inhibits the TGF-β1-
induced myofibroblast phenotype and restores the epithelial mor-
phology in the human kidney proximal tubular cell line [92]. Reports
had shown that when salvianolic acid B-phospholipid complex was
encapsulated into NPs, the oral bioavailability and gastrointestinal
absorption were improved [93]. Therefore, in the near future, nano-
technology could be used in TCM herbal medicines to potentially treat
CKD.

The initial medication for the treatment of iron deficiency anemia
was ferrous sulfate (FeSo4). However, the use of FeSo4 had several
drawbacks, including a low absorption rate, poor bioavailability, and

Fig. 6. Schematic illustration of megalin-mediated delivery of modified-polymyxin-PEI conjugates to PTECs. (Reprinted with permission from Ref. [85] Copyright
2017: Elsevier.).
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serious side effects [94]. Thus, some studies used iron oxide magnetic
NPs to treat iron deficiency anemia in an effort to overcome these
disadvantages [95,96]. Furthermore, liposomal NPs were also used for
drug delivery. Liposomal NPs enhanced iron absorption and solved
some of the noncompliance problems [97].

CKD was frequently accompanied by hyperphosphatemia [98]. The
currently prescribed phosphate binders on the market have several
drawbacks, such as a high risk of hypercalcemia, high cost, low-to-
moderate efficacy, and adverse gastrointestinal effects [99]. A phos-
phate binder based on iron-ethylenediamine with nanoporous silica
(Fe-EDA-SAMMS) had been chosen for substrates and Fe (III) deposition
methods to overcome these limitations. Compared with other common
phosphate binders, the Fe-EDA-SAMMS material possessed an improved
phosphate-binding capacity, a faster phosphate-binding rate, a broader
operating pH window, and was significantly less affected by the other
anions [100]. Importantly, several nanodrugs have already been ap-
proved for hyperphosphatemia applications by the US Food and Drug
Administration (FDA), such as sevelamer carbonate [101].

3.3. NPs deliver nucleic acids

Apart from delivering the drugs, NPs can also be applied to deliver
the nucleic acids to the specific target, such as siRNA, mRNA, and DNA.
Thus, by combining nucleic acids with NPs, a biocompatible, stable,
and modifiable delivery system can be formulated, which can cure
chronic kidney disease. Connective tissue growth factor (CTGF), which
is the important molecule in chronic fibrotic diseases, provided a un-
ique strategy for siRNA target therapy [102]. Khaja et al. produced a
biocompatible and cheap sterically stabilized phospholipid NPs
(SSLNPs), then combined the siRNA against CTGF with NPs. This na-
nocarrier could load and transport enough siRNA against CTGF to treat
the renal tubular epithelial cells, which showed favorable pharmaco-
kinetic properties and became a stable system for targeting fibrotic
kidney diseases [103]. Both p38α mitogen-activated protein kinase
(MAPK) and p65 contributed to the inflammatory injury in the kidneys
[104]. Recently, Wang et al. designed a liposomal NP siRNA co-delivery
system that loaded both p38α MAPK and p65 siRNA to reduce the
kidney injury. Liposomes were selected for the siRNA delivery because
of their biocompatibility, biodegradability, cheapness, modifiability
and high carrying capacity [105]. Experiments showed that the lipo-
some siRNA co-delivery had glomerulus targeting and retention cap-
abilities and could efficiently silence p38α MAPK and p65. In mouse
IgA nephropathy models, the proteinuria, inflammation, and excessive
extracellular matrix deposition were markedly relieved. This co-de-
livery system provided a new method of glomerulus targeting and could
be a promising way to treat other inflammatory diseases [106].

mRNA could be used as a replacement therapy for treating heredi-
tary renal diseases and other kidney diseases. Delivering mRNA by NPs
was less expensive and more stable, and provided an alternative
treatment for diseases. Fabry disease is a rare inherited lysosomal sto-
rage disorder led by mutations in the gene (GLA) encoding the lyso-
somal enzyme a-galactosidase A [107,108]. Patients with enzyme de-
ficiency are at a higher danger of developing CKD and cardiovascular
disease [109]. Enzyme replacement therapies are currently used for
treating Fabry disease but are costly and have negligible efficacy [110].
Recently, an alternative approach was developed by constructing na-
noparticles-formulated with mRNA for delivering the therapeutic
human GLA sustainably in vivo. This study indicated that the serum
GLA protein levels had increased significantly, and the clinically re-
levant biomarkers reduced by delivering the human GLA mRNA into
mice. Their research took advantage of the inner features of an mRNA-
based approach to produce the hGLA protein at very high levels for
several days, resulting in more favorable therapeutic properties than
the enzyme replacement therapies [111].

Plasmid DNA (pDNA) delivery, as a gene method, exhibited lower
immune response and toxicity in vivo [112]. NPs have the ability to

deliver pDNA to the targeted organ or cells effectively [113,114].
Conversely, it could prevent pDNA from DNase digestion in the blood
circulation [115]. Tsai et al. combined anti-miRNA plasmids and iron
oxide/alginate NPs for conjugating with anti-kidney antibodies. MRI
and in vivo imaging systems showed that these nanocomposites could
target the renal tubular cells specifically, and that anti-miRNA released
by the nanocomposites inhibites cyst formation and cell proliferation
which are characteristics of the autosomal dominant polycystic kidney
disease [116]. These findings indicate that NPs can be a promising
strategy for the treatment of CKD and other gene mutation‐caused
diseases.

4. Application of NPs in the management of ESRD

A significant number of patients with CKD will progress to ESRD,
which necessitates dialysis or kidney transplantation [117]. This con-
dition is associated with a major change in their quality of life, as well
as a series of complications. Thus, nanomaterials might one-day lead to
fewer complications and improved quality of life.

4.1. Dialysis

NPs could improve the efficacy and reduce the adverse effects of
hemodialysis. Magnetically assisted hemodialysis was introduced to
remove the target toxins. This type of NPs was based on conjugates
made from biocompatible ferromagnetic NPs and a targeted binding
substance. The experiments revealed that this new method exhibited a
greater removal rate and overall removal efficiency than conventional
hemodialysis, and it could be used to remove toxins that could not be
done with conventional treatment [118]. The use of a plasmon-induced
dialysate comprised of Au NPs-treated water instead of conventional
deionized water was an innovative breakthrough. This dialysate treat-
ment reduced the removal time of 70% BUN and creatinine, which were
reduced by 47% and 59%, while NO that was induced by the lipopo-
lysaccharide was suppressed [119]. Additionally, nanotechnology could
also reduce the side effects led by hemodialysis, such as dialysis-in-
duced oxidative stress, protein absorption, and plate adhesion
[120–122]. Chen et al. designed multi-functional decorated gold NPs
and used an artificial kidney to simulate efficient hemodialysis. It re-
duced the acute adverse effects, and also decreased dialysis-induced
oxidative stress [123]. Peritoneal dialysis, nanotechnology also could
reduce the side effects. A nanoconjugate Apaf-1 inhibitor might protect
the mesothelial cells from cytokine-induced injury and quaternary
ammonium polyethyleneimine, and therefore, NPs might be used as
antibacterial agents for peritonitis [124,125].

4.2. Transplantation

Only a relatively small proportion of patients are able to receive
kidney transplants because of the scarcity of available donor organs.
Novel methods being tested include implantable artificial kidneys,
which incorporate a high-efficiency filter made of silicon nano-
technology and a bioreactor of cultured renal tubule epithelial cells.
These filters had slit-like pores, similar to the glomerular slit dia-
phragms, which showed great selectivity at a given value of perme-
ability [126]. This implantable artificial kidney simulated the ar-
rangement of the glomerular–tubule of the kidney was implanted into
the vascular system, which utilized the patient's blood pressure to pump
blood into the NP filters with membranes that mimicked the slit-shaped
pores of the podocytes, and then via the bioreactor containing living
tubular cells. However, challenges such as how to sustain a clot-free
filtration and a stable differentiated phenotype of tubule cells still exist
[127].
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5. Conclusions and perspectives

Nanotechnology is a promising tool for the diagnosis of early CKD
and monitoring of CKD progression to ensure that prompt prevention
and therapy strategies are immediately undertaken. This tool has pro-
vided some biomarkers such as microalbuminuria, hemoglobin, serum
albumin, urine creatinine, glycosylated hemoglobin, CysC, NAG and
KIM-1 and has amplified effective signals using SERS, etc. Furthermore,
NP imaging could measure kidney dysfunction stages and assess the
inflammation and fibrosis of the kidneys, which might replace invasive
renal biopsies in the future. Also, this technology could be used to treat
CKD and ESRD patients. By tailoring the NP size, charge, shape, and
surface ligand, we could design the proper transport to deliver both
drugs and nucleic acids. In addition, NPs could reduce complications
and improve existing renal replacement therapy. As the progress of
nanotechnology advances, several NPs have already been marketed,
while many are still in preclinical trials. Challenges exist regarding
bringing the NPs closer to clinical translation. Thus, efforts are still
required for improving the in vivo stability, kidney targeting, biodis-
tribution, metabolism, and reduction in nanotoxicity. We believe that
collaboration is required between nephrologists and nanotechnologists
so that appropriate targeting and therapeutic methods could be trans-
lated more readily from the bench to the hospital bed.
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