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ABSTRACT Gene expression variation is a major contributor to phenotypic variation in human complex traits. Selection on complex
traits may therefore be reflected in constraint on gene expression. Here, we explore the effects of stabilizing selection on cis-regulatory
genetic variation in humans. We analyze patterns of expression variation at copy number variants and find evidence for selection
against large increases in gene expression. Using allele-specific expression (ASE) data, we further show evidence of selection against
smaller-effect variants. We estimate that, across all genes, singletons in a sample of 122 individuals have �2.23 greater effects on
expression variation than the average variant across allele frequencies. Despite their increased effect size relative to common variants,
we estimate that singletons in the sample studied explain, on average, only 5% of the heritability of gene expression from cis-
regulatory variants. Finally, we show that genes depleted for loss-of-function variants are also depleted for cis-eQTLs and have low
levels of allelic imbalance, confirming tighter constraint on the expression levels of these genes. We conclude that constraint on gene
expression is present, but has relatively weak effects on most cis-regulatory variants, thus permitting high levels of gene-regulatory
genetic variation.
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VARIATION in human complex traits is connected to
variation in gene expression (Nicolae et al. 2010;

Giambartolomei et al. 2014; Gusev et al. 2014, 2016;
Gamazon et al. 2015; Hormozdiari et al. 2016; Boyle et al.
2017). Selection on complex traits (e.g., complex disease)
may therefore be reflected in selection on gene expression
levels.

Across species, gene expression has been shown to evolve
more slowly than expected under a neutral model (Chan et al.
2009; Brawand et al. 2011; Khan et al. 2013; Chen et al.
2018). An analysis of mammalian gene duplications also
showed that the total expression of gene pairs in species that
experienced a duplication event is similar to the expression of

the corresponding single gene copy in species without dupli-
cation (Lan and Pritchard 2016). As a duplication event
would be expected to dramatically increase gene expression,
this suggests that stabilizing selection on gene expression
may act to return the total expression of duplicate gene pairs
to an optimal expression level.

Constraint on gene expression has also been shown to
influence patterns of genetic variation within humans. First,
some genes are unusually depleted for loss-of-function and
copy number variants (CNVs) (Lek et al. 2016; Ruderfer
et al. 2016). These genes are thought to be particularly con-
strained with respect to their expression levels.

Further, individuals with extreme expression levels for a
particular gene aremore likely to have rare variants in cis than
individuals with average expression (Li et al. 2014, 2017;
Zeng et al. 2015; Zhao et al. 2016). This suggests that large
expression changes are associated with rare genetic varia-
tion. As detailed below, this is consistent with stabilizing se-
lection acting against large-effect regulatory variants.

Despite this evidence for constraint on expression, humans
exhibit substantial variation in gene expression and possess
many common gene regulatory variants (Gaffney et al. 2012;
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Battle et al. 2014; GTEx Consortium 2017). It is therefore of
interest to characterize constraint on gene expression and its
effects on regulatory variation across the human genome.

Under a model of stabilizing selection, the negative fitness
effect of a cis-regulatory variant increases with its effect on
expression. In other words, as large-effect variants move in-
dividuals further from an optimal gene expression value, se-
lection acts against them, keeping themmore rare than those
with small effects or no effect on expression. This reduces the
variance in gene expression and creates a global relationship
between the allele frequencies and effect sizes of regulatory
variants [Figure 1; see Simons et al. (2018) for a detailed
model of stabilizing selection, genetic variation, and complex
trait variance].

This model of stabilizing selection is consistent with ob-
servedpatternsof gene-regulatoryvariation.Past studieshave
noted a relationship between the allele frequencies and effect
sizes of expression quantitative trait loci (eQTLs) [Battle et al.
2014, but see Tung et al. (2015) for a nonselective explana-
tion for this relationship]. More recently, polygenic models
have shown a relationship between allele frequency and the
variance in gene expression explained by trait-associated var-
iants (Hernandez et al. 2017; Zeng et al. 2018). However, the
strength and breadth of this selection across genes have yet to
be quantified.

Here, we test whether patterns of regulatory variation are
consistent with human gene expression evolving under sta-
bilizing selection. We analyze gene expression and genetic
variation related to CNVs, eQTLs, and allele-specifically
expressed (ASE) transcripts. Together, these data show that,
although constraint on expression affects variation in gene
expression and in regulatory genetic variation, its effects are
relatively weak.

Materials and Methods

Genotypes and relative expression of CNVs

We identified loci containing CNVs in healthy individuals,
aswell as the number of gene copies per locus per individual,
by applying LUMPY (Layer et al. 2014) and Genome STRiP
(Handsaker et al. 2011) to whole blood RNA sequencing
data from version 4 of the Genotype Tissue Expression Proj-
ect (GTEx) (GTEx Consortium 2017). Only CNVs contain-
ing an entire protein coding sequence were retained for
downstream analysis. We obtained gene expression (RPKM)
measurements for each CNV in each individual across
12 tissues.

eQTL mapping

We obtained genotype and RNA sequencing data from 922
European individuals included in the Depression Genes and
Networks (DGN) dataset (Battle et al. 2014; Mostafavi
et al. 2014). Genotypes were imputed to 1000 Genomes as
described in Kukurba et al. (2016). We then polarized geno-
types relative to the human ancestral allele.

To determine the humanancestral allele, we compared the
human major allele to the human-chimp ancestral allele. We
obtainedhumanmajor alleles fromthe1000Genomesdataset
(1000 Genomes Project Consortium et al. 2015) and inferred
the human-chimp ancestral allele from Ensembl multiple
alignments using Ortheus (Paten et al. 2008).

At SNPs forwhich the humanmajor allele and the human-
chimpancestral allele agree,wedefined thehumanancestral
allele as the agreeing allele. At SNPs for which the human
major allele and human-chimp ancestral allele disagree and
the humanminor allele is rare (,5% frequency), we defined
the human ancestral allele as the human major allele. At
SNPs for which the human major allele and human-chimp
ancestral allele disagree and the human minor allele is com-
mon (.5% frequency), we defined the human ancestral
allele as the human-chimp ancestral allele. At SNPs that
lacked data regarding the human-chimp ancestral allele,
we defined the human ancestral allele as the human major
allele.

We considered SNPs with minor allele frequency .1%
within a 100 kb window centered on the most upstream
annotated transcription start site (TSS) to be candidate
cis-eQTLs for the corresponding gene. TSSs, as annotated
in Ensembl, were obtained using biomaRt (Kinsella et al.
2011).

To obtain comparable gene expression measurements
across individuals, we normalized read counts at each gene
by the total reads sampled per individual, and log2 trans-
formed the resulting measurement.

To allowmultiple independent eQTLs per gene,wemapped
eQTLs using forward stepwise regression. For a detailed treat-
ment of the challenges introduced by multiple regulatory
variants per locus, see Zeng et al. (2017).

Figure 1 Expected signals of stabilizing selection on gene expression. (A)
Effects of stabilizing selection. (B) Phenotypic variation. (C) Regulatory
variation.
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If any SNPswere significantly associatedwith gene expres-
sion (a ¼ 0:05 after Bonferroni correction for the original
number of candidate eQTLs for the gene), the most signifi-
cantly associated SNP was added to the model. All SNPs in
linkage ðr2 . 0:8Þ with the newly called eQTL were excluded
from the list of candidate eQTLs. This model selection pro-
cedure was repeated until no significantly associated SNPs
remained.

Modeling the contribution of cis-regulatory variants
to ASE

In general, ASE is measured by comparing reads expressed
fromeach allele at a particular locuswithin an individual. This
relies on a heterozygous site within a transcript that can be
used to identify the allelic origin of each read.

We first sought to define a metric of ASE that is robust to
variation in read depth across sites and agnostic to the di-
rection of allelic bias (excess of reads from the reference or
alternativeallele).Here,wemodel allele specificexpressionof
the gth locus in the ith individual as a squared Z-score of
reads containing the alternative allele ðZ2

ALT;i;gÞ:
Under a null model in which read counts follow a Binomial

distribution,

Ai;g � Binom
�
Ni;g; p

�
: (1)

Ai,g is the number of sampled reads containing the alternative
allele, p is the underlying proportion of reads that contain the
alternative allele, and Ni,g is the total number of reads sam-
pled at the locus. The expected number of sampled reads
containing the alternative allele is, then,

E
�
Ai;g

� ¼ E½p�3Ni;g: (2)

In the absence of locus- and allele-specific cis-regulation, the
expected proportion of reads expressed from the alternative
allele is 0.5. However, due to reference mapping bias, the
observed proportion of reads from the alternative allele will
be slightly lower. This ratio ðp̂Þ was estimated empirically
using global reference bias.

p̂ ¼
P

ði;gÞ2ðI;GÞAi9;g9P
ði;gÞ2ðI;GÞNi9;g9

: (3)

where ðI;GÞ is the set of individual-gene pairs at which we
measured ASE. The variance in alternative allele counts is,
therefore,

Var
�
Ai;g

� ¼ p̂ð12 p̂Þ3Ni;g: (4)

Our ASE statistic is, therefore,

Z2ALT;i;g ¼
�
Ai;g2E

�
Ai;g

��2
Var

�
Ai;g

� ¼
�
Ai;g2

�
p̂3Ni;g

��2
p̂ð12 p̂Þ3Ni;g

: (5)

To explore the relationship between ASE and locus-specific
regulatory variation, we allow the underlying proportion of

alternative-allele reads to vary across ASE sites. Thus far, we
assumed that the underlying proportion of alternative-allele
reads at all loci is determined by reference bias alone. We
therefore extended our model with the assumption that,
within an individual, any heterozygous site in cis to an ASE
site can alter expression across haplotypes and contribute to
allelic imbalance.

Specifically, in each individual i at each locus j, we as-
sumed the underlying proportion of reads containing the
alternative allele ðpi;gÞ to be Beta distributed. The mean
proportion of alternative allele reads is determined by refer-
ence bias, as described above. However, we modeled the
variance in the proportion of reads expressed from the alter-
native allele across individuals as a function of the number of
heterozygous sites in cis to each measured ASE site.

pi;g � Beta
�
p̂;s2

HET 3nHET;i;g þ vp
�
: (6)

s2
HET is the variance in the proportion of alternative allele-

reads contributed by a cis-heterozygous site, nHET;i;g is the
number of cis-heterozygous sites at the gth locus in the ith
individual, and vp is the variance in the proportion of reads
expressed from each allele contributed by factors other than
cis-genetic variation. This could represent expression vari-
ance from trans-acting or environmental factors.

Note that s2
HET is a genome-wide parameter; this assumes

that, across loci, variable sites have similar effects on allelic
imbalance. This model also assumes that each cis-heterozygous
site contributes additively to the variance in the underlying pro-
portion of reads expressed from the alternative allele ðVar½pi;g�Þ:

We then assumed that the number of alternative allele-
reads sampled in individual i at locus g ðAi;gÞ results from
binomial sampling around the proportion of alternative allele
reads at that locus.

Ai;g � Binom
�
Ni;g; pi;g

�
: (7)

In total, the observed number of reads containing the alter-
native allelewill be Beta-Binomially distributed. The variance
in alternative-allele counts is, then,

Var
�
Ai;g

� ¼ p̂ð12 p̂Þ3Ni;g 3
�
1þ 4

�
Ni;g2 1

�
Var

h
pi;g

i�
:

(8)

Under this model, we can update our squared Z-score of
alleleic imbalance (Equation 5) to account for variance con-
tributed by cis-regulatory genetic variation.

Z*2ALT;i;g ¼
�
Ai;g2

�
p̂3Ni;g

��2
p̂ð12 p̂ÞNi;g

�
1þ 4

�
Ni;g 21

��
nHET;i;gs2

HET þ vp
��:
(9)

Note that

Z*2ALT;i;g ¼ Z2ALT;i;g
1

1þ 4
�
Ni;g 21

��
nHET;i;gs2

HET þ vp
�: (10)
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When the number of sampled reads at a locus, Ni;g; is large,
Z*
ALT;i;g; is standard-normally distributed. Regardless of the

number of sampled reads, E½Z*2
ALT;i;g� ¼ 1: Therefore,

E
h
Z2ALT;i;g

i
¼ 1þ 4

�
Ni;g2 1

��
nHET;i;gs2

HET þ vp
�
: (11)

Rearranging Equation 11,

E
h
Z2ALT;i;g

i
2 1

4
�
Ni;g 2 1

� ¼ nHET;i;gs2
HET þ vp: (12)

As Z2
ALT;i;g; Ni;g; and nHET;i;g are measurable in data, we can

apply linear regression according to the above model to esti-
mate s2

HET:

If stabilizing selection acts on gene expression, we would
expect rare variants to contribute disproportionately to allelic
imbalance. However, the above model assumes that all cis-
heterozygous sites contribute equally to the variance in ASE. We
therefore extended our model to allow different values of s2

HET
for cis-heterozygous sites with different allele frequencies. Now,

E
h
Z2ALT;i;g

i
2 1

4
�
Ni;g 2 1

� ¼
X
b

�
nHET;i;g

�
b

�
s2
HET

�
b þ vp: (13)

where b indexes allele frequency bin. ðnHET;i;gÞb is, for indi-
vidual i at locus g, the number of cis-heterozygous sites with a
population frequency that falls in allele frequency bin b, and
ðs2

HETÞb is the variance in allelic imbalance explained by each
variant in allele frequency bin b.

We can then estimate values of ðs2
HETÞb jointly using mul-

tiple regression with the counts of cis-heterozygous sites in
each allele frequency bin as predictors.

Estimating the contribution of cis-regulatory variants
to ASE

In this study, we analyzed ASE in 122 self-reported European
individuals with RNA sequencing data and genotype calls
from whole-genome sequencing from the Genotype Tissue
Expression Project (GTEx Consortium 2017). We included
the nine best-sampled tissues [whole blood, subcutaneous
adipose, tibial artery, heart (left ventricle), lung, skin (not
sun exposed), tibial nerve, skeletal muscle, and thyroid] in
our analyses.

For an allelic imbalancemeasurement to be included in our
analyses, we required the individual to have at least two reads
supporting the reference and alternative alleles, respectively,
within a given tissue, and at least five reads supporting each
allele across the nine studied tissues. We also required the
focal ASE site to be in Hardy-Weinberg equilibrium; deter-
mined using a chi-squared test with one degree of freedom
and a ¼ 0:005: These filters help reduce false signals of ASE
resulting from genotyping errors at ASE sites.

For individual-gene pairs with multiple heterozygous sites
thatpassed thesefilters, the site coveredby the largest number
of reads was analyzed.

Human imprinted genes as listed by geneimprint (down-
loaded from http://www.geneimprint.com/site/genes-by-
species) were excluded from downstream analyses, as were
highly polymorphic human leukocyte antigens (HLA) genes
(i.e., genes in the extended MHC region; bounded by SNPs
rs498548 and rs2772390plus 2 Mb extensions on both sides).

Ateachindividual-genepair ineachtissuethatmetourquality
control (QC) criteria, we calculated Z2

ALT;i;g as described above.
As an example, this resulted in 141,138measurements of allelic
imbalance at 18,307 unique loci in whole blood. We also calcu-
lated a combined-tissue ASE, wherein, within an individual,
reads containing each allele at a focal ASE site were summed
across tissues. This resulted in 343,653 measurements of com-
bined-tissue allelic imbalance at 36,180 unique loci.

To estimate the contributions of cis-regulatory variants to
ASE, we determined the number of possible gene-regulatory
variants at each locus. In each individual, we considered all
heterozygous sites in cis to an ASE site to have potential
effects on gene regulation.

We defined sites in cis to be those that lie within 10 kb (or,
when noted, 50 kb) of themost upstream TSS of a gene contain-
ing an ASE site. TSSs, as annotated in Ensembl, were obtained
using biomaRt (Kinsella et al. 2011). We filtered sites not in
Hardy-Weinberg equilibrium, determinedusing a chi-squared test
with onedegree of freedomanda ¼ 0:005:Wethen counted, for
each individual, the number of sites in cis to each ASE site that
were called as heterozygous based on whole-genome sequencing
data from the GTEx Project (GTEx Consortium 2017).

For the combined-tissue data, this resulted in 1,183,405
heterozygous sites in cis to 12,159 unique genes with mea-
sured ASE, with a median of 19 cis-heterozygous sites per
locus per individual.

We then estimated the average contribution of a cis-
heterozygous site to allelic imbalance using linear regression,
as described in Equation 12.

Due to correlation between data points (e.g., ASE was
measured at the same gene in many individuals), we esti-
mated 95% confidence intervals for the regression coefficient
ðs2

HETÞ using aweighted jackknife as described in Busing et al.
(1999), excluding measurements from all individuals for a
single gene in each subsample.

Toexplorewhether stabilizing selectionacts on cis-regulatory
variants in these ASE data, we tested whether there was a re-
lationship between the allele frequency of a cis-heterozygous
site and its contribution to allelic imbalance.

To do so, we binned cis-heterozygous sites by their minor
allele frequency in Europeans in GTEx (GTEx Consortium
2017). We divided variants into singletons, doubletons, and
spaced the remaining bins such they each contained approx-
imately the same number of sites as the doubleton bin. The
resulting bins have the following allele frequency cutoffs:
(0.02, 0.04, 0.09, 0.16, 0.27, 0.4, 0.5).

We also repeated this analysis with cis-heterozygous sites
binned by their minor allele frequency in Europeans in
gnomAD (Lek et al. 2016). Allele frequencies in gnomAD were
extracted using bcftools (Li 2011). Only variants with matching
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reference and alternative alleles in the GTEx and gnomADdata-
sets were included. Bins were spaced such that they each con-
tained approximately the same number of sites. The resulting
bins have the following allele frequency cutoffs: (0, 0.0002,
0.0013, 0.0047, 0.0125, 0.033, 0.084, 0.18, 0.33, 0.5).

For each ASE site in each individual, we counted the
number of cis-heterozygous sites in each allele frequency
bin. We then estimated the average contributions of cis-
heterozygous sites in each bin to allelic imbalance using mul-
tiple regression, as described in Equation 13.

To explore the confidence level of these estimates, we first
permuted allelic imbalance measures across all individuals and
genes. Second, we permuted allelic imbalance measures across
all individuals within a gene. The first tests for global artifacts of
the multiple regression the second tests for variation in allele
frequency spectraandallelic imbalanceacrossgenes. Inall cases,
the total number of variants and the number of variants in each
allele frequency bin were retained as in the original data. We
performed100permutations foreachofconditionandcompared
the resulting estimates to those obtained in the original data.

Calculating genetic variance of ASE

One way to understand the strength of selection on gene expres-
sion is to ask what proportion of the genetic variance of allelic
imbalance isexplainedbyrarevariants.Wethereforecalculate, for
eachgene, thegeneticvarianceofallelic imbalancecontributedby
variants in each allele frequency bin. We then calculate the total
genetic variance of ASE as well as the proportion of that genetic
variance attributable to each allele frequency bin.

Each variable position contributes genetic variance to allelic
imbalance as follows:

2fið12 fiÞ
�
s2
HET

�
b; (14)

where fi is the frequency of SNP i in allele frequency bin b and
ðs2

HETÞb is the average variance in ASE contributed by a var-
iant in allele frequency bin b (as estimated above).

Foragivengene, thegenetic varianceofASEcontributedby
allele frequency bin b is therefore,

�
s2
g;ASE

�
b
¼

X
SNP i

in AF bin b

2fið12 fiÞ
�
s2
HET

�
b (15)

To calculate the genetic variance of ASE captured by our
model for each gene, we then sum the genetic variance
contributed by each allele frequency bin.

s2
g;ASE ¼

X
b

�
s2
g;ASE

�
b
: (16)

The totalgenetic varianceofASEcapturedbyourmodel canbe
written as

s2
g;ASE ¼

X
b

X
SNP i

in AF bin b

2fið12 fiÞ
�
s2
HET

�
b: (17)

The proportion of the genetic variance of ASE explained by
allele frequency bin b, then, is

�
s2
g;ASE

�
b

s2
g;ASE

¼

X
SNP i

in AF bin b

2fið12 fiÞ
�
s2
HET

�
b

X
b

X
SNP i

in AF bin b

2fið12 fiÞ
�
s2
HET

�
b

: (18)

Note thatwedonot directly estimate theheritability of allelic
imbalance. However, heritability is simply the proportion
of phenotypic variance that can be explained by genetic
variance ðs2

g=s
2
pÞ: Therefore, the proportion of heritability

explained by variants in a given allele frequency bin is
equivalent to the proportion of genetic variance explained
by those variants.

Data availability statement

RNA sequencing and genotype data used in eQTL calling
were accessed by application through the NIMH Center for
Collaborative Genomic Studies on Mental Disorders. Instruc-
tions for requesting access to data can be found at https://
www.nimhgenetics.org/access_data_biomaterial.php. Inqui-
ries should reference the “Depression Genes and Networks
study (D. Levinson, PI).”

Gene expression measurements (RPKM) across 12 tissues
for healthy individuals with CNVswere obtained from version
4 of the GTEx Project (GTEx Consortium 2017, dbGaP acces-
sion phs000424.v4.p1). RNA sequencing data for twins dis-
cordant for trisomy 21were accessed from theGene Expression
Omnibus (GEO) data repository (accession GSE55426).

The 1000 Genomes phase 3 data, used in polarizing geno-
types to the human ancestral allele,were obtained from ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.
sites.vcf.gz. Details regarding the determination of human-
chimp ancestral alleles are available from ftp://ftp.1000
genomes.ebi.ac.uk/vol1/ftp/release/20130502/README_
vcf_info_annotation.20141104.

Allele specific expression tables as well as genotype calls
fromwhole genome sequencing, used in estimating the effects
of rare regulatory variants on gene expression, were obtained
from version 6 of the GTEx Project (dbGAP accession
phs000424.v6.p1).

Allele frequencies from the gnomAD dataset (Lek et al.
2016) were obtained from VCFs available through the gnomAD
browser http://gnomad.broadinstitute.org/downloads. Sup-
plemental material is available at Figshare: https://doi.org/
10.25386/genetics.7396673.

Results

CNVs show dosage sensitivity

Geneduplications anddeletions are likely tohave large effects
on gene expression. If expression is under stabilizing selec-
tion, we would expect large-effect CNVs to be rare in the
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population.To testwhetherhumangenetic variation is affected
by selection against large changes in gene expression, we
analyzed the expression levels and allele frequencies of CNVs.

Using whole-genome and transcriptome sequencing of
147 individuals from version 4 of the GTEx Project (GTEx
Consortium 2017), we identified 694 genes whose entire
coding sequence had been duplicated in 196 polymorphic
CNVs, and obtained their expression across 12 tissues.

Despite high variance in expression ratios across genes,
when a duplication CNV is rare (present in one individual in
this sample), genes in the CNV are expressed at higher levels
in heterozygous carriers (with three gene copies) than in
noncarriers (with two gene copies; median expression ratio
1.31; Figure 2). By contrast, genes in common CNVs (for
which .5% of sampled individuals have a duplicate gene
copy) are expressed at similar levels in individuals with two
and three copies (median expression ratio is 0.95; Figure 2).

If eachgene copywereexpressedequally,wewouldexpect the
ratio of expression in heterozygous duplication carriers to that in
noncarriers to be 1.5. The observed ratio,, 1.5,may result from
a cellular bufferingmechanism that reduces expression in carriers
in an attempt to maintain stable expression levels.

To test for expressionbuffering,weobtainedRNAsequenc-
ing data from a set of monozygotic twins discordant for tri-
somy 21 (Letourneau et al. 2014). Importantly, as trisomy
21 is a de novo expression-altering event, selection cannot
affect the newly introduced expression changes.

We see that the average expression of genes on chromo-
some 21 is �50% higher in the trisomy 21 individual than in
their diploid twin (Figure 2). This suggests that, before selec-
tion has time to act, when the entire gene and cis-regulatory
region are duplicated, cellular buffering is negligible and ex-
pression increases proportionally with gene dosage. This is
consistent with previous work showing that, for common,
multi-allelic CNVs, gene expression scales linearly with copy
number (Handsaker et al. 2015).

The lack of apparent expression buffering suggests that the
negative relationship between the expression of duplicated
genes and CNV frequency is driven by constraint. In other
words, a gene duplication can become common only when
expression in carriers is comparable to that in noncarriers.

Three types of regulatory variation could generate this
relationship. First, during gene duplication, damage may
occur to cis-regulatory elements of the duplicated gene. Dam-
aged duplicates may lead to smaller expression increases and
are therefore more likely to survive. Second, CNVs may arise
on genetic backgrounds that vary in their expression. In this
case, duplicates that arise on low-expression backgrounds
(e.g., haplotypes with an expression-decreasing eQTL) are
more likely to spread in the population. Third, haplotypes
with a duplicate gene may acquire additional genetic varia-
tion; haplotypes on which compensatory, down-regulating
variants arise can become common.

Regardless of the mechanism, patterns of expression var-
iation at CNVs confirm that constraint on expression affects
large-effect regulatory variants.

However, many genetic variants may have smaller effects
on expression than a gene duplication. We therefore investi-
gatedwhether selection on expression is sufficiently strong to
affect smaller-effect variants.

Characterizing patterns of cis-regulatory variation
using eQTL

First, we carried out eQTL-mapping using genotype and
whole-blood RNA sequencing data from 922 European indi-
viduals from the Depression Genes and Networks cohort
(Battle et al. 2014). We called cis-eQTLs using stepwise re-
gression in 100 kb windows centered on the TSS of 12,794
autosomal, protein-coding genes (see Materials and Meth-
ods). This approach allows multiple, independent causal var-
iants per locus. In total, we tested 3,309,888 SNPs and called
6587 significant eQTLs associated with 4734 genes (37% of
genes tested).

To preserve interpretability of our effect size estimates, we
did not perform any principal component or latent factor
correction on our data, nor did we include any covariates in
our eQTL mapping. As these additions would have improved
our statistical power, the approximately twofold fewer eGenes
(genes with a significant eQTL) detected here relative to
previous studies is expected (Battle et al. 2014).

Figure 2 Expression of heterozygous carriers of a gene duplication (with
three gene copies) relative to noncarriers (with two gene copies). On the
left, each point corresponds to the expression level (RPKM) of one of
104 genes in an individual with trisomy 21 relative to the expression of
the gene in their diploid twin. On the right, each point corresponds to the
median expression of heterozygous duplication carriers relative to the
median expression of noncarriers for one gene in one tissue. To reduce
noise in the expression ratio, gene/tissue pairs with median noncarrier
RPKM,1 were excluded (891 gene/tissue pairs retained). Duplicate fre-
quencies obtained from GTEx. Black lines show median expression ratios
across genes in each bin.
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For 27.33%of eGenes, we calledmore than one eQTL (to a
maximumof 9). This suggests that, atmany loci, theremay be
multiple regulatory variants that would be missed when
considering only the most significant eQTL (two such loci
are shown in Figure 3).

The median expression of individuals heterozygous for an
expression-increasing eQTL was 21% higher than that of
homozygotes (218% for expression-decreasing eQTLs).

When polarizing effect sizes relative to the ancestral allele,
we detected similar numbers of eQTLs predicted to increase
and decrease expression (3284 expression-increasing and
3303 expression-decreasing eQTLs; not significantly differ-
ent by binomial test; P ¼ 0:82). Expression-increasing and
-decreasing eQTLs had comparable effect size distributions
(in terms of fold-change); however, the effects of expression-
increasing eQTLs tended to be slightly larger (Figure 4A;
P ¼ 0:0037 by two-sided Kolmogorov-Smirnov test). In par-
ticular, we called more large-effect, expression-increasing
eQTLs; 243 eQTLs were predicted to double gene expression,
139 to cut expression in half.

There are both technical and biological explanations for
this trend. Technically, we may have less power to detect
expression-decreasing eQTLs. Biologically, large decreases
in gene expression may be less well-tolerated than large
increases.

The joint distribution of allele frequency and effect size
shows that rare eQTLs tend to have larger effects than com-
mon eQTLs (Figure 4C). The median common eQTL [minor
allele frequency (MAF) . 0.1, n = 4949] was predicted to
increase expression by 18% (215% for expression-decreasing
eQTLs). For rarer eQTLs (MAF , 0.1, n = 1638), the median
predicted expression increasewas 40% (225% for expression-
decreasing eQTLs). This is consistent with purifying selection
acting against cis-regulatory variation.

However, eQTL effect sizes can be difficult to interpret.
First, previous work has discussed the challenges inherent in
estimating eQTL effect sizes when there are multiple causal
variants at a locus (Zeng et al. 2017). Second, power to map
eQTLs of the same effect varies with allele frequency. Third, a
statistical phenomenon referred to as “winner’s curse” can
induce a relationship between allele frequency and estimated
effect size (Göring et al. 2001; Lohmueller et al. 2003; Tung
et al. 2015). We explored the impacts of each of the above on
our effect size estimates.

First, univariate (independent) eQTL effect size estimates
were similar to those derived from our stepwise approach
(Figure 3). It is therefore unlikely that the presence of mul-
tiple causal variants per locus meaningfully impacted our
estimates.

Variable eQTL-detection power by allele frequency, how-
ever, did impact our calls. One might expect eQTL-based
analyses to be limited to relatively common regulatory vari-
ants. Indeed, our eQTLswere, onaverage,more common than
candidate SNPs (Figure 4B).

Further, as we lack power to call rare eQTLs of small effect,
one might expect the median effect size of rare eQTLs to be

inflated relative to common eQTLs. However, when consid-
ering only eQTLs with relatively large effects (that could be
detected at all frequencies; details in Supplemental Material,
Table S1), rare eQTLs were estimated to have larger effects
than common ones (Table 1). This suggests that decreased
power to detect rare eQTLs is not sufficient to explain the
observed relationship between frequency and effect size.

However, this relationship could also result from winner’s
curse. Conditional on a variant being called as an eQTL, we
expect its effect to be overestimated (Göring et al. 2001;
Lohmueller et al. 2003). This is particularly true for rare
variants.

To explore the effects of winner’s curse, we ascertained
eQTLs and estimated their effects in separate subsamples of
the DGN data. In the ascertainment set, eQTLs were esti-
mated to have a median effect of 22% (218% for expres-
sion-decreasing eQTLs) on expression. In the validation set,
however, the median effect was 18% (214% for expression-
decreasing eQTLs; P ¼ 9:51e2 15 by paired t-test; Figure S1).
This suggests that winner’s curse inflates eQTL effect size es-
timates. Comparing effect size estimates across rare (0.02 ,
MAF , 0.1) and common (MAF . 0.1) eQTLs revealed that
winner’s curse disproportionately inflates estimates at the low
end of the allele frequency spectrum (Table 1).

Indeed, effect size estimates from the validation set no
longer show any relationship with allele frequency (Figure
4D, further detail in Figure S1). This is consistent with Tung

Figure 3 cis-eQTLs called using forward-stepwise mapping from whole-
blood RNA sequencing in 922 European individuals. (A) eQTL mapping
for ADORA1. (B) eQTL mapping for RAP1GAP. Effect sizes are polarized
relative to the ancestral allele. Stepwise effect size estimates (green) are
compared to those obtained by testing each SNP independently (orange)
at two example loci. Vertical bars mark 6 2 SE around the estimated
effect size for each SNP. Lead eQTLs (smallest P-value) from indepen-
dent testing are marked with asterisks.
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et al. (2015), who also saw a significant impact of winner’s
curse on effect size estimates of rare eQTLs.We conclude that
eQTL effect size distributions fail to provide evidence for
constraint on gene expression.

However, absenceof evidence is notnecessarily evidenceof
absence. To more carefully test for a relationship between
eQTL effect size and allele frequency,we used an independent
dataset of ASE.

eQTL effects on ASE

ASE, or allelic imbalance, is measured using a heterozygous
site in a transcript. This site is used to identify reads from,
and quantify the expression of, each haplotype within an
individual.

Variation in expression across haplotypes captures the
regulatory effects of all cis-heterozygous sites in an individual,
regardless of their frequencies in the population. As a result,
analyses of ASE include genetic variants that are too rare to be
detected in eQTL studies.

On the other hand, eQTL mapping is better suited to
estimate the effects of individual variants on gene regulation.
ASE and eQTL mapping are, therefore, complementary tools
for measuring cis-regulatory variation.

To sidestep statistical challenges in eQTL effect size esti-
mation, we combined our eQTLs with ASE (data from GTEx
version 6, GTEx Consortium 2017). We measured ASE using
a squared Z-score of reads containing the alternative allele in
343,653 gene-individual-tissue trios (i.e., a gene expressed in
a given tissue in a given individual; seeMaterials andMethods
for QC filters).

Previous work has demonstrated that ASE measurements
are generally consistent with eQTLs (Pickrell et al. 2010). To
confirm that here, we show that at eGenes, eQTL-heterozygotes
(heterozygous for at least one eQTL) tend to have higher
allelic imbalance than eQTL-homozygotes (homozygous
for all called eQTLs; Figure 5A). In addition, eQTL effect sizes
were correlated with allelic imbalance in eQTL-heterozygotes
(Figure 5B).

To gain additional insight into the structure of the gene
regulatory landscape across tissues, we compared a single-
tissue analysis of blood to a combined-tissue analysis inwhich
reads spanning an ASE site in an individual were summed
across tissues.

In botheQTL-heterozygotes and -homozygotes, combined-
tissue ASE tended to be higher than ASE measured in blood
(Figure 5A). This shift can be explained by differences in read
depth; due to the summation of reads across tissues, average
read depth per ASE site was higher in the combined-tissue
data (median 130 for combined-tissue, 28 for blood; Figure
S7A). Increased read depth reduces sampling variance, thus
increasing our ability to detect bona fide allelic imbalance
(and increasing the resulting ASE Z-score).

However, summing reads across tissueswould increase ASE
only if allelic imbalance were concordant across tissues. Like
many other eQTL and ASE analyses (e.g., Flutre et al. 2013;
Wheeler et al. 2016; GTEx Consortium 2017), our findings
suggest that many gene regulatory effects are consistent (or,
at least, are unlikely to be inconsistent) across tissues.

Finally, we explored whether ASE provides evidence of
selection against eQTLs (Figure 5B). In both combined-tissue

Figure 4 cis-eQTLs called using forward-stepwise mapping in 100 kb
windows centered on the TSS of autosomal, protein-coding genes. Data
from whole-blood RNA sequencing in 922 European individuals (DGN).
Effect sizes polarized relative to the ancestral allele. (A) Cumulative dis-
tributions of estimated eQTL effect sizes, represented as the ratio of
eQTL-heterozygotes to eQTL-homozygotes. Expression-increasing eQTLs
(derived allele increases expression) shown in dark blue, expression-
decreasing eQTLs in light blue. (B) Allele frequency spectrum of eQTLs (gray)
relative to the background of all tested SNPs (white) (C) Joint distribution of
eQTL MAF and estimated effect size. Black points show eQTLs with effect
sizes that we are powered to detect at all frequencies (estimated effect
greater than the minimum effect of eQTLs with MAF,0.02), gray points
show eQTLs that are especially rare (MAF,0.02) and/or have effect sizes
that we are powered to detect only at higher frequencies. Blue lines show
loess-fits of MAF vs. effect size for well-powered expression-increasing and
-decreasing eQTLs (black points). (D) eQTLs called in an ascertainment set of
800 individuals, effect sizes estimated in validation set of 122 individuals.
Only well-powered eQTLs across allele frequencies and with MAF.0.02 are
plotted. Points colored by the direction of effect in the ascertainment set;
expression-increasing eQTLs in dark blue, expression-decreasing eQTLs in
light blue. Loess-fits of MAF vs. effect size for expression-increasing and
-decreasing eQTLs in black.
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and blood-specific ASE, there is a subtle, but significant, neg-
ative correlation between ASE in eQTL-heterozygotes (a
proxy for eQTL effect size) and the frequency of the corre-
sponding eQTL. This suggests that selection on eQTLs is pre-
sent, but weak.

Effects of cis-regulatory variants vary with
allele frequency

We next examined constraint on regulatory variants not
captured by eQTL mapping. We first sought to relate allelic
imbalance to the amount of cis-regulatory variation at a locus
within an individual. In our model, each cis-heterozygous site
contributes to the variance in the ratio of reads expressed
from each haplotype (detailed in Materials and Methods). In
this case, we expect the number of cis-heterozygous sites to
be linearly related to our ASE Z-score.

We then used linear regression to estimate the average
contribution of a heterozygous site (across all genes in all
individuals) to ASE. In single tissues and in a combined-tissue
analysis, we observed significant, positive relationships be-
tween genetic variation and ASE (Figure 6). This suggests
that variation in allelic imbalance across loci has a genetic
basis, rather than being driven solely by sampling noise or
environmental factors.

The average effect of a variant on ASE decreases as we
increase the cis-regulatory window under consideration (Fig-
ure 6). This likely reflects the spatial distribution of causal
regulatory variants; we and others find that eQTLs are
enriched near TSSs (Figure S2; Stranger et al. 2007;
Veyrieras et al. 2008). If this holds for rarer regulatory vari-
ants, widening the cis-windowwill decrease the proportion of
causal variants included in the model and so decrease the
average effect size per variant. For a given window, average
per-variant effect size estimates are similar across tissues
(Figure 6).

Next, we expanded our model to incorporate allele
frequency information. If purifying selection keeps large-
effect regulatory variants rare, we would expect a rare cis-
heterozygous variant to contribute more to allelic imbalance

than a common one. For each gene in each individual (indi-
vidual-gene pair), we counted the number of heterozygous
sites in each of nine allele frequency bins. We then used mul-
tiple regression to estimate the contribution of an average site
in each frequency bin to ASE.

Correlation between the numbers of heterozygous sites
across allele frequency bins would make it difficult to accu-
rately estimate average effects for each bin. However, in these
data, this correlation is very weak (maximum Pearson corre-
lation across pairs of frequency bins is 0.07; Figure S3).

We find that the average contribution of a singleton in the
GTEx dataset to the variance in ASE is �2.2 3 greater than
that of the average variant across allele frequency bins (1.83
greater than the average common variant (MAF.0.4); Fig-
ure 7A). Permutations of ASE measurements across individ-
uals and genes, as well as across genes within an individual,
suggest that this relationship between frequency and contri-
bution to ASE is significant.

As this dataset contains only 122 individuals, allele fre-
quency estimates may be noisy. Additionally, singletons in
GTEx may not be especially rare in the population. We
therefore repeated our analysis with variants binned by
their minor allele frequency in the much larger gnomAD
dataset (Lek et al. 2016; n = 7209 Europeans with whole
genome sequencing, Figure 7B). We see similar trends with
both binning strategies.

The relationship between allele frequency and contribu-
tion to allelic imbalance also persists when considering ge-
netic variants in amuch larger candidate cis-regulatory region
(Figure S5). As for the average per-variant effect across allele
frequencies (Figure 6), increasing the window size decreases
the estimated effect for variants in each allele frequency bin.
However, the average contributions of rare variants (single-
tons and doubletons) remain greater than those of common
variants.

Importantly, this trend is so subtle that it is detectable only
whenreadsarecombinedacross tissues; single-tissueanalyses
show no clear relationship between allele frequency and
estimated effect size (examples whole blood and skeletal

Table 1 Summary of the effects of variable power and winner’s curse on eQTL effect size estimates and their relationship with minor
allele frequency

Median eQTL effect

Full Data Ascertainment (validation)

Expression increasing 21% 22% (18%)
Expression decreasing 218% 218% (214%)

MAF
0.02–0.1

MAF
>0.1

MAF
0.02–0.1

MAF
>0.1

Expression increasing—filtered for power 48% 40% 52% (44%) 45% (45%)
Expression decreasing—filtered for power 228% 228% 229% (225%) 229% (229%)

Effect sizes reported as percent change of eQTL-heterozygotes relative to the homozygous ancestral. To explore the effects of winner’s curse, individuals were split into an
eQTL ascertainment set and an effect-size validation set. To explore the impact of variable power to call eQTLs of the same effect across allele frequency bins, eQTLs were
filtered to remove those with estimated effects that we would lack power to call at low allele frequencies. Here, we consider eQTLs with estimated effects larger than
the minimum magnitude of estimated effect for significant, rare eQTLs (MAF,0.02). To ensure conservative estimates of the relationship between effect size and allele
frequency, we also remove rare eQTLs (MAF,0.02) from comparisons across allele frequency bins.
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muscle shown in Figure S6). This is likely due to the fewer
genes, fewer individuals sampled per gene, and lower read
depthper individual-gene pair in single tissues as compared to
the combined set (for sample size comparisons, see Figure S7;
for read depth comparisons, see Figure S8).

From this, we conclude that constraint on gene expression
reshapes patterns of regulatory genetic variation. However,
the subtlety of this signal suggests that selection on gene
expression is weak.

Proportion of heritability (genetic variance) explained
by rare variants

Another way to understand the strength of selection on
expression is to ask what proportion of the heritability (or,
what proportion of the genetic variance s2

g) of expression can
be explained by rare variants.

Two components determine how much genetic variance
is explained by a variant: the variant’s squared effect size
and its allele frequency (particularly its contribution to het-
erozygosity, 2pq). When considering the proportion of genet-
ic variance explained by a group of variants at a given allele
frequency, the allele frequency spectrum (the proportion of
variants in each allele frequency bin) is also important.

Many polygenic trait models assume that all variants, re-
gardless of their allele frequency, contribute equally to genetic
variance (2pqb2; e.g., Yang et al. 2011; Bulik-Sullivan et al.
2015). As their low allele frequencies cause rare variants to
contribute less to heterozygosity ð2pqÞ; this type of model
implicitly assumes that rare variants have larger effects ðb2Þ
than common ones.

Others (e.g., Speed et al. 2012) more explicitly account for
the relationship between allele frequency (and correspond-
ing differences in LD) and variance explained. For a more
detailed comparison of heritability estimation and variance
partitioning methods, see Evans et al. (2018).

While these models were not designed with singletons
in mind, their varying assumptions about allele frequency,
effect size, and heritability led us to consider what impact the
observed 2.2 3 greater effect size of singletons would have
on the proportion of heritability explained by rare variants.

To explore this, we combined our average effect size
estimates with allele frequency spectra at each gene to esti-
mate the genetic variance of allelic imbalance captured by our
model ðs2̂

g;ASEÞ as well as the proportion of s2̂
g;ASE explained by

variants in each allele frequency bin (summary of allele fre-
quency spectra in Figure S9). Across genes, we find the me-
dian heritability explained by singletons (in a sample of
122 individuals) to be a mere 5% (Figure 8). Table 2 shows
comparisons of our model to two extreme cases: (1) rare
variants (singletons) and common variants (MAF.0.4) con-
tribute equally to genetic variance ð2pqb2Þ; (2) rare and com-
mon variants have equal effects on gene expression ðb2Þ:

Our model suggests that singletons explain more of the
heritability of gene expression than expected under neutrality
(effect size independent of allele frequency). This is due to
singletons’ increased average effect size relative to common
variants. However, in these data, the relative effect size dif-
ference between singletons and common variants is far less

Figure 5 eQTL effects reflected in ASE at eGenes. “Blood” shows ASE in
whole blood, “Combined” shows combined-tissue ASE, measured by
summing reads spanning an ASE site in the same individual across tissues.
(A) Cumulative distributions of ASE measured in whole blood (solid)
and combined-tissue ASE (dotted), separated into eQTL-heterozygotes
(green), and -homozygotes (homozygous for all called eQTLs, yellow).
(B) Rank correlation between allelic imbalance and eQTL effect (left)
or minor allele frequency in gnomAD (right). The effect/MAF of the most
significant heterozygous eQTL (or, for eQTL-homozygotes, the most sig-
nificant eQTL) was used. To determine the robustness of these correla-
tions, each point shows the rank correlation in one of 1000 samples
generated by bootstrapping over genes. Median correlations of bootstrap
samples marked in black, 95% quantiles in white.

Figure 6 Average effect of a cis-genetic variant on allelic imbalance.
Estimates are based on linear regression of an individual’s number of
cis-heterozygous sites within (A) 10 kb and (B) 50 kb of the TSS of a
gene and measured ASE for each of the nine best sampled GTEx tissues.
Vertical lines show 95% confidence intervals, estimated using a weighted
jackknife as described in Busing et al. (1999). For reference, the dotted
line marks zero estimated effect.
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than what would be required for a singleton to contribute
as much as a common variant to the heritability of gene
expression.

While these findings are consistent with previous evidence
of constraint on gene expression (Hernandez et al.2017; Zeng

et al. 2018), Hernandez et al. (2017) estimate a much greater
contribution of singletons to expression variance, suggesting
a much greater role of purifying selection on gene-regulatory
variants, than we see here. At this time, we do not know the
source of the discrepancy between the studies; however, the
two approaches involve different analytical methods, differ-
ent gene expression measurements (ASE vs. RNASeq), and
samples of different sizes.

Future work will be required to understand why different
approaches appear to support different conclusions with re-
spect to the importance of rare variants on gene expression.
However, in our analysis of allele-specific expression, we
do not find support for rare variants being major drivers of
expression variance.

Although the median heritability explained by singletons
is small, we detect notable variation in singleton-heritability
across genes (Figure 8). As we estimate a single, average
singleton effect across all genes, this variation is due entirely
to differences in allele frequency spectra.

This variation led us to wonder howmuch of the observed
constraint (i.e., relative effect size differences between rare
and common variants) is driven by a subset of particularly
tightly constrained genes.

Patterns of eQTLs and ASE suggest variable constraint
on expression across gene classes

Tounderstand variation in constraint on expression across the
genome, we compared patterns of regulatory variation across
gene sets.

We expect genes with greater constraint on expression to
have lower levels of cis-regulatory variation than genes with

Figure 8 Partitioning the genetic variance of allelic imbalance by allele
frequency. For each gene, we combine the average heterozygosity (2 pq)
and number of segregating sites in each allele frequency bin with the
estimated average effect size of variants in that bin to calculate the total
genetic variance of allelic imbalance captured by our ASE-model ðs2̂

g;ASEÞ:
We then calculate the proportion of s2̂

g;ASE explained by each allele fre-
quency bin (variants binned by minor allele frequency in GTEx). Each
vertical bar represents a single gene for which we measured ASE, colors
represent the proportion of genetic variance attributed to variants in each
allele frequency bin.

Figure 7 Effects of cis-genetic variants on allelic imbalance given their
allele frequencies. Estimates are obtained from multiple regression on
allelic imbalance using the number of cis-heterozygous sites in each allele
frequency bin as predictors. Here, we include sites in a 20-kb window
centered on the TSS of a gene with measured allelic imbalance. Estimates
from combined-tissue ASE (reads spanning each ASE site in a single in-
dividual are summed across all tissues sampled) are shown in black. Col-
ored points represent estimates from 100 permutations of (1) ASE
measurements across genes and individuals (red) and (2) ASE measure-
ments across genes within an individual (orange). Horizontal lines mark
zero effect (dashed) and the average variant effect estimated by regress-
ing allelic imbalance on the total number of cis-heterozygous sites (solid).
(A) Estimates with variants binned by minor allele frequency in Europeans
in the GTEx data (n = 122). (B) Estimates with variants binned by minor
allele frequency in Europeans in gnomAD (n = 7509).
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less-constrained expression. To test this, we compared eQTLs
across gene sets predicted to have varying tolerance to large
changes in gene expression. Specifically, we utilized Proba-
bility of Loss-of-Function Intolerance (pLI) (Lek et al. 2016).
pLImeasures, for each gene, the relative depletion of protein-
truncating variants (PTVs) observed in healthy individuals
compared to the expectation under a detailed mutation
model.

In heterozygotes, PTVs are expected to decrease gene
expression by half. Certain genes may therefore be depleted
for PTVs because they are intolerant to such large expression
changes. We stratified genes into two classes based on their
pLI-predicted level of constraint on expression (low: pLI ,
0.1, high: pLI . 0.9), and tested for differences in cis-regula-
tory variation.

In total, 4401 eQTLs were mapped around 3103 unique
low-pLI genes (of 6813 genes tested), and 688 eQTLs were
mapped around 511 high-pLI genes (of 2576 genes tested).
We detected fewer eQTLs per gene for dosage sensitive,
high-pLI genes than for less constrained, low-pLI genes (Fig-
ure 9A). This is consistent with prior analysis of eQTLs called
in GTEx (Lek et al. 2016).

These differences are reflected in the amount of genetic
variance captured by eQTLs ðs2

g;eQTLÞ for low- and high-pLI
genes (Figure 9B; P, 2:2e2 16 by two-sided Kolmogorov-
Smirnov test). Based on genotypes at called eQTLs, we pre-
dicted the genetically regulated component of expression for
each individual in the DGN dataset. We then estimated ge-
netic variance as the variance of predicted expression across
individuals.

We also used these eQTLs to predict expression and esti-
mate s2

g;eQTL in 122 European individuals from GTEx. The
differences in s2

g;eQTL between gene sets are consistent across
the two datasets (Figure S10).

To quantify these differences in genetic variance, we com-
pared the median eQTL-estimated genetic variance for genes
in each pLI class. We assumed log-normally distributed ex-
pression values to estimate ranges of gene expression in the
population.

Across genes with at least one called eQTL, we estimate
that 95% of individuals possess genetic variation resulting in
expression levels between 0:83 and 1:213 the population
mean. However, for the median low-pLI gene, these ranges

are 0:822 1:223 and, for the median high-pLI gene, they
are 0:852 1:183 : This may suggest that constraint on ex-
pression removes more regulatory variation around dosage-
sensitive high-pLI genes than less sensitive low-pLI genes.

This observation could also be explained by differences
in background selection. High-pLI genes experience greater
coding sequence constraint than low-pLI genes. We might
therefore expect background selection to decrease the
amount of genetic variation (regulatory or not) around high-
pLI genes.

As shown in Figure S2A, there are fewer common SNPs in
cis to low-pLI genes (MAF.0.05, within 50 kb of the TSS)
than to high-pLI genes. SNPs around low-pLI genes also tend
to be more common than those around high-pLI genes (Fig-
ure S2C). Finally, low-pLI eQTLs tend to be closer to the TSS
(Figure S2, B and D). These trends suggest that background
selection shapes patterns of genetic variation; however, they
are unlikely to explain the striking differences in eQTL-based
genetic variance across gene sets.

Variation in genetic variance across genes can also be seen
in allele-specific expression. As high-pLI genes tend to be
more highly expressed and have more sampled reads than
low-pLI genes (read depth information in Figure S8), we
might expect to more confidently call ASE (i.e., higher
Z-score) in high-pLI genes. However, we observed the oppo-
site pattern; ASE Z-scores for high-pLI genes tended to be
lower than those for low-pLI genes (Figure 9D).

In blood, 18.6% of 73,246 individual-gene pairs involving
low-pLI genes have an ASE Z-score .3. This level of allelic
imbalance is unlikely to arise from read sampling. We infer
that, in these individual-gene pairs, the two haplotypes are
differently cis-regulated. By contrast, only 13.3% of 36,457
individual-gene pairs involving high-pLI genes have Z-scores
.3 (significantly different by binomial test, P, 2:2e2 16).
Given the difference in average read depth between high-
and low-pLI genes, this likely under-represents the difference
in expression variance between gene classes.

These differences in expression variance are reflected in
genetic variation; high-pLI genes tend to have fewer cis-
heterozygous sites than low-pLI genes (Figure 9C). This sug-
gests a link between expression variance and genetic variation.

We also detected differences across gene sets in the genetic
variance captured by our ASE-model (calculated according to

Table 2 Singleton contributions to heritability

Singletons vs. common variants (MAF>0.4) Estimates Models

cb2 from ASE b2}½pq�21 b2 independent of p

Proportion s2̂
g;ASE explained by singletons 4.7% 36% 2.4%

Relative squared effect size �1.8 �60 1
Selection strength Weak Strong None

Estimates based on GTExV6 ASE data (cis-regulatory region 12 10kb from TSS) “cb2 from ASE” shows estimates of the median proportion of s2̂
g;ASE explained by singletons

based on effect sizes estimated from our ASE-model. “b2}½pq�21
” shows the median expected per-gene heritability explained by singletons if singletons and common

variants contributed equally to genetic variance. This is driven by the fact that 36% of all variants (median 36% of variants per gene) are singletons. The large relative effect
size required for singletons to explain this proportion of heritability reflects the low variance contribution of rare variants as a consequence of their low allele frequency (2 pq).
“b2 independent of p” shows estimates of the median proportion of heritability explained by singletons if effect size and allele frequency were independent (i.e., singletons
and common variants had equal effects on gene expression).
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Calculating genetic variance of ASE inMaterials and Methods).
The median estimated genetic variance for high-pLI genes is
2:0e2 4; for low-pLI genes it is 2:4e2 4 (P, 2:2e2 16 by
Wilcoxon rank sum test). However, a larger proportion of
the genetic variance of high-pLI genes is explained by single-
tons (median 0.053 for high-pLI genes, 0.045 for low-pLI

genes; P, 2:2e216 by Wilcoxon rank sum test). These ob-
servations suggest that selection reduces variance in the ex-
pression of tightly constrained genes both by reducing the
number of segregating cis-regulatory sites and by keeping
larger-effect regulatory variants more rare.

However, it remainsunclearhowmuchof thegenome-wide
signal of constraint on regulatory variants can be attributed to
strong constraint on a subset of genes, like high-pLIgenes, and
how much is due to weak constraint subtly shifting the joint
distribution of allele frequency and regulatory effect genome-
wide. The extremely small number of genes with large con-
tributions from rare variants (88% of genes have ,10%
genetic variance explained by singletons, 98% have ,20%)
may suggest that the bulk of the relationship between allele
frequency and effect size is driven by weak selection on many
genes, but further work is required to corroborate this inter-
pretation. In particular, larger datasets of paired whole ge-
nome and RNA sequencing will increase the sampled genetic
diversity between individuals at a locus and provide additional
insight into the landscape of selection on gene expression.

Discussion

Our analyses of eQTLs andASE suggest that selection on gene
expression has detectable, but weak, effects on regulatory
variants. However, much work remains to understand the
connection between expression, complex traits, and fitness.

A central limitation of our approach is that we assume all
heterozygous sites in an allele frequency bin have the same
effect on allelic imbalance, regardless of the gene they regu-
late or their position relative to the TSS. In other words, we
estimate the genome-wide average effect size of variants at a
given allele frequency.

As a result, our model does not capture heterogeneity
across regulatory variants at similar frequencies, nor does it
reflect heterogeneity in regulation across genes. For example,
the expression of a specific gene may be affected by a rare
variant of very large effect. However, if most rare variants
have negligible effects on the expression of their target genes,
the average effect estimated for rare variants will remain
moderate.

Our approach cannot, therefore, accurately estimate the
effect of a particular variant on gene expression. Nor can
we accurately estimate the proportion of genetic variance
explained by singletons for a particular gene. What we can
conclude is that, in general, much of the variation in gene
expression is explained by common variants.

Obtaining per-variant, or average per-gene effect size
estimates (rather than genome-wide averages per allele fre-
quency bin) would provide additional insight into the gene-
regulatory landscape and the effects of selection on gene
expression. However, we show that statistical limitations de-
crease the applicability of per-variant effect size estimates
from eQTL mapping to questions of constraint. New ap-
proaches and larger whole-genome and transcriptome data-
sets will be required to achieve this additional resolution.

Figure 9 Regulatory genetic variation across gene sets with varying levels
of constraint on gene expression as predicted by pLI class. (A) Histogram
of the number of cis-eQTLs called per gene by pLI class. (B) Cumulative
distributions of eQTL-estimated genetic variance by pLI class. For each
gene in each individual, expression levels were predicted using genotypes
and effect size estimates of called eQTLs. Genetic variance was then
estimated as the variance of eQTL-predicted expression levels across in-
dividuals. (C) Histogram of the number of cis-heterozygous sites (per in-
dividual-gene pair) within 50 kb of the TSS by pLI class. (D) Cumulative
distributions of allelic imbalance, measured in whole blood, by pLI class.
(E) Cumulative distributions of the genetic variance of allelic imbalance
captured by our model, estimated using combined-tissue ASE and allele
frequencies binned according to GTEx, by pLI class. (F) Cumulative distri-
butions of the proportion of the genetic variance of ASE attributable to
singletons by pLI class.
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Further, in seeming contrast to our findings regarding
eQTLs andASE, analyses of loss-of-function andCNVs suggest
that selection on expression changes of 1.5 3 is, at least in
some cases, sufficient to alter patterns of expression and reg-
ulatory variation. These results indicate that gene expression
has notable fitness consequences.

These observations can be reconciled with the weak selec-
tion observed here by arguing that the 1.2 3 expression
changes caused by the average eQTL and the 1.5 3 changes
in expression caused by a gene duplication have very differ-
ent effects on fitness. One might also argue that the effects
seen in loss-of-function and copy number variant analyses are
driven by a small set of tightly constrained genes, or that loss-
of-function and CNVs have effects on fitness that are unre-
lated to their effects on gene expression.

These arguments might lead us to conclude that gene
expression has limited downstream effects on human traits
and onfitness. However, if gene regulation is highly polygenic
and/or pleiotropic, selectionmay be unable to cause dramatic
changes in the frequencies of regulatory variants (regardless
of the fitness consequences of expression changes).

Rampant polygenicity is likely todecrease the effectiveness
of selection on individual regulatory variants. Ifmanyvariants
affect the expression of a gene, a new mutation with a large
effectmay arise on a backgroundwith existing, compensatory
genetic variation. Such background-effects may explain how
theexpressionof commonCNVs is similarbetween individuals
with two and three gene copies.

Additionally, if gene regulation is highly polygenic, an
eQTL may not reflect a single causal variant with the effect
estimated during mapping. If multiple causal variants with
concordant effects are in linkage disequilibrium in a sample,
their effects may be aggregated into a single “synthetic” eQTL
with a large effect [for more on synthetic associations, see
Dickson et al. (2010)]. If the variants that comprise such a
synthetic eQTL are not in linkage disequilibrium in the pop-
ulation, their effect sizes may individually be sufficiently
small as to be nearly neutral. Future work is required to de-
termine to what degree eQTLs represent groups of concor-
dant, small-effect variants.

This challenge of polygenicity is not limited to the regula-
tion of a single gene. If afitness-relevant trait is affected by the
expression ofmanygenes, thefitness consequence of a variant
that regulates a single gene is likely to be small. On the other
hand, if a variant regulates multiple genes, and the resulting
expression changes each affect fitness, the selection experi-
enced by the variant will be a combination of the selection on
each expression trait.

Such regulatory pleiotropy may also arise if the expression
of a single gene affects multiple fitness-relevant traits. For
example, alteredgene expressionmayhavedifferent effects in
different tissues. Therefore, a variant that affects the expres-
sion of a single gene may have multiple (and possibly oppos-
ing) effects on fitness. Interestingly, as the polygenicity of
fitness-relevant traits (e.g., the number of genes whose ex-
pression modulates the trait) increases, the likelihood that a

single regulatory variant causes pleiotropic effects on multi-
ple traits also increases.

In summary, a complex, pleiotropic gene expression net-
work may make it difficult for selection to precisely alter the
allele frequency of a single regulatory variant, even when its
effects might be large and deleterious from the perspective of
one gene expression trait in one tissue context. While there is
much work to be done to connect gene expression to the one,
ormany, phenotypic traits seen by selection, we conclude that
constraint has subtle, but detectable, effects on the genetic
architecture of gene regulation.
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