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Identifying the early 2000s hiatus 
associated with internal climate 
variability
Xin-Gang Dai   1 & Ping Wang2

This study focuses on re-examining the early 2000s hiatus and the associated key components of 
the global mean surface temperature (GMST) using multiscale statistics for five well-known gridded 
surface temperature and two reanalysis datasets. The hiatus is characterized as a near-zero trend on 
the decadal scale corresponding to the maximum P-value via an F-test in statistics. The results reveal 
that the hiatus exists in both the GMST and global mean air temperature (GMAT) time series, rather 
than in global warming component, which has maintained an approximately constant rate of change 
of approximately 0.08 °C/decade over the past three decades. The hiatus’s duration is different from 
that of time series such as 2002–2012/2001–2013/2002–2014 in HadCRUT4, NOAA-old, ERA-Interim 
and NCEP-R2. The newly gridded datasets with data infilling or bias correction for interpreting the 
sea surface temperature (SST) measurement from the old versions show a slightly higher trend from 
2002–2012 than the hiatus, which is thus regarded as a slowdown. Comparison suggests that the 
hiatus should be during the period 2002–2012. Orthogonal wavelet decomposition of the temperature 
time series shows that the hiatus was merely a decadal balance between cooling from interannual 
variability and global warming, in addition to weak warming from interdecadal and multidecadal 
climate oscillations. In addition, the evolutions of the GMST’s interannual composites are well coincided 
with Niño3.4 SST anomalies, which is consistent with the numerical simulation performed by Kosaka 
and Xie in 2013. Hence, it is the anomalous El Niño Southern Oscillation (ENSO) events in the early 
2000s that caused the hiatus despite a constant rate of global warming and the maximum magnitude 
of the multidecadal composite that led to the limited contribution to the trend during this period. The 
multidecadal composite follows a downward path, which implies that future climate conditions will 
likely rely on competition between multidecadal cooling and global warming if the multidecadal climate 
cycle repeats, as was experienced during the second half of the twentieth century.

Global warming has been attributed to persistent increase in atmospheric greenhouse gasses (GHGs), especially 
in CO2, since the beginning of the Industrial Revolution1,2. Nevertheless, the upward trend in the global mean 
surface temperature (GMST) slowed or even paused during the first decade of the twenty-first century3, even 
though CO2 levels continued to rise and reached nearly 400 ppm in 2013 (https://www.climate.gov/news-features/
understanding-climate/2013-state-climate-carbon-dioxide-tops-400-ppm). This episode has typically been 
termed the global warming hiatus (GWH)4. The GWH is often attributed to internal climate variability, external 
forcing, or both. Recent cooling in the middle and eastern regions of the tropical Pacific has seemingly involved a 
phase change of the Interdecadal Pacific Oscillation (IPO)5,6 accompanying intensified trade winds7,8. The GWH 
may also be associated with an increase in aerosols in the stratosphere during the period 2000–2010 because aer-
osols can increase optical depth, which generates countervailing forces against global warming9,10. The GWH may 
also be explained in part by extensive heat uptake by the deep ocean11,12 or an extremely low number of sunspots 
during the latest solar activity cycle13,14.

Since the surface of the globe warms unevenly, the GMST is sensitive to data coverage, interpolation, obser-
vation bias, and even the techniques used to interpret sea surface temperature (SST) measurements15,16 because 
the GMST anomaly is the offset of positive and negative anomalies at every grid on the surface, and any spuri-
ous increase in the temperature resulting from insufficient data coverage or the interpretation technique in SST 
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observation that could influence the GMST. Two noticeably updated datasets were released near the end of the 
hiatus. The first dataset (hereafter Cowtan & Way)17 was updated via infilling over the Arctic region and the 
African continent from the Hadley Centre–Climatic Research Unit Version 4 (HadCRUT4)17–20, and the second, 
which was a new bias-corrected dataset (hereafter NOAA-new)21, was updated from an older with infilling and 
bias-correction from the National Oceanic and Atmospheric Administration (NOAA) global surface temperature 
dataset (hereafter NOAA-old)22,23. The presence of the hiatus in HadCRUT4 was regarded as the result of sparse 
data over the Arctic region and African continent, which suppressed the GMST trend17, while the hiatus was 
considered to even possibly be an artifact created by data biases in the NOAA-old dataset or its earlier version21. 
These problems affect observation and the definition and identification of the hiatus24,25. Thus far, two approaches 
have been used to identify the hiatus or slowdown26: (i) when the trend in GMST is observed to be approximately 
zero or nonsignificant at the 0.05 significance level and (ii) when the decadal trend is observed to be less than the 
long-term trend, in addition to the identification of the change point (CP) in the trend27. The first approach is 
a well-known general measure for trend in scientific literature. The second approach seems to be unsuitable for 
assessing the hiatus or slowdown at a decadal scale because the decadal trend during the hiatus period is com-
pared with the long-term trend from 1951 to 20121, which can be influenced by interdecadal and multidecadal 
climate oscillations. The additional approach involves identifying the CP in the trend and may be difficult to use 
in identifying the early 2000s hiatus because the formation of the hiatus (in terms of trend) occurred gradually 
from the previous maximum warming trend to the following minimum trend. Hence, arguments seem to result 
not only from the biases in the SST measurements16,21 or sparse data in the datasets17,20 but also from the absence 
of properly quantitative assessments of the contributions of multiscale components to GMST, which are easily tied 
to the mechanisms responsible for the hiatus (e.g., internal factors or external forcing). This study first quantita-
tively re-examines the existence of the hiatus in the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, NASA 
GISS Surface Temperature (GISTEMP)23, ERA-Interim28 and NCEP-DOE Reanalysis 2 (hereafter NCEP-R2)29 
series and the reanalysis global mean air temperature (GMAT) series. Furthermore, it compares the potential 
hiatus in the gridded instrumental data and reanalysis datasets to obtain an overarching statement, where the 
former series are based on some kind of three dimensional interpolation methods, and the latter are produced 
by a four-dimensional data assimilation system with many more four-dimensional observations (regular and 
irregular) than the former, leading to datasets that are dynamically consistent. Second, the contributions from the 
multiscale components are analyzed using orthogonal wavelet decomposition30 to distinguish the key compo-
nents in terms of their contributions to the hiatus and their potential links with the El Niño/Southern Oscillation 
(ENSO) cycle in the equatorial eastern Pacific31.

Results
The hiatus or slowdown can be identified by comparing the statistical characteristics of the GMST/GMAT series 
during the early 2000s with those for the decades during the late twentieth century (e.g., decadal trends and 
standard deviations). Figure 1a shows that a decadal platform appears in all of the 3-yr (year) smoothed GMST 
series of the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, GISTEMP, ERA-Interim and NCEP-R2 data-
sets since the 21st century after the rapid warming period in the two or three decades of the late twentieth century. 
Differences among these series can be found throughout these platforms, in which the GISTEMP contains the 
maximum values and the ERA-Interim contains the minimum values. The NOAA-new dataset has values greater 
than the NOAA-old dataset, while the Cowtan & Way dataset has values greater than the HadCRUT4 dataset, 
which indicates that infilling and bias correction in the datasets increase the temperature, especially during the 
early 2000s, probably due to rapid warming in the Arctic region32,33. In addition, the decadal platform corre-
sponds to a minimum standard deviation (STDEV) from 2001–2013, where the datasets of NOAA-new and 
Cowtan & Way are greater than those of the NOAA-old and HadCRUT4 (Fig. 1b), which reflects the effects of 
infilling or bias correction on the STDEV. In addition, the NCEP-R2 shows the largest STDEV of all the datasets, 
especially circa 2004. Further calculations show that the STDEVs from 2002–2012 and 2000–2014 are all larger 
than those from 2001–2013. Thus, the platform represents a unique period in which the interannual variabilities 
of the GMSTs become the weakest throughout all the seven series since the 1980s.

However, whether the early 2000s temperature platform can be regarded as the early 2000s hiatus or slow-
down requires further assessment of the temperature trends surrounding this period at different scales. Linear 
trends in the seven series are estimated by using moving windows with widths of 11, 12, 13, 14, and 15 years 
using linear regressions based on the ordinary least squares (OLS) method (see data and method) to determine 
the location and duration of the hiatus. Figure 2a shows that the 11-yr trends in the series all reached their min-
imums during the period 2002–2012, and the minimum trends in the ERA-Interim are near zero, while those 
of NOAA-new, Cowtan & Way and GISTEMP are slightly greater than zero, corresponding to the maximum 
P-values obtained via an F-test and representing the most nonsignificant trends over the period. Those from the 
HadCRUT4, NOAA-old and NCEP-R2 are negative (below bottom axis; Fig. 2a), which correspond to a valley 
between two P-value peaks (Fig. 2c), implying that the period (2002–2012) for the minimum trends is shorter 
than the period that should be expected in the three series, except in the ERA-Interim series, in which it has the 
smallest trend (−0.0011 °C/decade) and the largest P-value (0.9885) among the series (Fig. 2c). For the 13-yr 
window, the trends of HadCRUT4, NOAA-old and NCEP-R2 become 0.0076 °C/decade, 0.0010 °C/decade and 
0.0047/decade, with P-values of 0.8393, 0.9758 and 0.9271, respectively, indicating that the trends are all most 
nonsignificant (Fig. 2b,d). Hence, the minimum trends of ERA-Interim, HadCRUT4, NOAA-old and NCEP-R2 
may become the potential candidates for the early 2000s hiatus, while those of NOAA-new, Cowtan & Way and 
GISTEMP can to some extent be regarded as a slowdown. However, further tests at different scales under moving 
windows are needed to identify whether the minimum trends in the windows of 11 years and 13 years are the 
smallest relative to longer or shorter windows.
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Figure 3a shows that the minimum trends within a window increase with the width of the window, which 
corresponds to a decreasing in the P-value for the NOAA-new, GISTEMP, Cowtan & Way and ERA-Interim 
datasets; however, the P-values for the HadCRUT4, NOAA-old and NCEP-R2 first increase to their maximums in 
the 13-yr window (2001–2013; 2002–2014 for NCEP-R2) and then decrease (Fig. 3b). The weakest trend (of near 
zero) for the period 2002–2012 comes from the ERA-Interim, with a P-value much greater than those of the other 
datasets, while HadCRUT4 and NOAA-old have the weakest trends for the period 2001–2013, and the NCEP-R2 
dataset from 2002–2014 had the largest P-value over the window. Hence, the four smallest trends, circled in yel-
low, from 2002–2012/2001–2013/2002–2014 should be regarded as the hiatus, while the others, circled in pink, 
from 2002–2012 (Fig. 3a) may be regarded as slowdowns, with maximum P-values less than those of the hiatus 
(Fig. 3b). Figure 3c depicts the minimum trends in yellow and pink circles in Fig. 3a along with uncertainties.

The smallest trends and durations and their uncertainties are listed in Table 1. By comparing the trends with 
their uncertainties, one can see that the trends with the P-values can be separated into two groups: 1) those 
for HadCRUT4, NOAA-old, ERA-Interim and NCEP-R2, with trend norms below 0.01 °C/decade and P-values 
above 0.8, and 2) those for NOAA-new, GISTEMP and Cowtan & Way, with trend norms above 0.01 °C/decade 
and P-values below 0.8. Hence, a group’s trends over the period 2002–2012 or 2001–2013 or 2002–2014 (circled 
in yellow in Fig. 3a) should be regarded as the early 2000s hiatuses, and the rest (circled in pink in Fig. 3a) over the 
period 2002–2012 may be referred to as slowdowns. The hiatus periods we found differ from those estimated by 
Easterling and Wehner due to the limitations of the temperature series length they used34.

In addition, a similar hiatus can also be found in the GMAT from the ERA-Interim and NCEP-R2 reanalyses, 
which are dynamically consistent and have full data coverage of the surface. Figure 4a shows that there is also a dec-
adal platform similar to that observed for the GMST (Fig. 1a) during the first decade of the 21st century, and a corre-
sponding minimum STDEV appears for the period 2001–2013 for the ERA-Interim and for the period 2002–2014 
for the NCEP-R2 in comparison with the trends over the larger or smaller window widths surrounding these peri-
ods (Fig. 4b). These results indicate that the interannual variability of the GMAT also became much weaker during 
the platform period than during previous decades when the interannual variability of the GMAT greatly intensified 
in approximately 2000. Hence, 2001–2014 can be regarded as a potential hiatus period to be tested further.

Figure 1.  Global mean surface temperature (GMST) anomalies with reference to the period 1961–1990 and 
their running standard deviations (STDEVs). (a) The 3-yr running mean GMSTs from 1980–2016 and (b) the 
13-yr running STDEVs in GMSTs from the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, GISTEMP, 
ERA-Interim and NCEP-R2 datasets. The figures were generated using Excel (https://www.microsoft.com/
zh-cn/download/office.aspx).

https://www.microsoft.com/zh-cn/download/office.aspx
https://www.microsoft.com/zh-cn/download/office.aspx
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Figure 5 shows that the 11- and 13-yr running trends in the GMAT series are similar to those of the GMSTs 
(Fig. 2a,b). The trends increased following the 1990s, reached their maximums in approximately 2000, and tran-
sitioned to decreasing to minimums over the period 2002–2012, and the corresponding P-values obtained via 
an F-test reached their maximums during the same period (2002–2012), which also contained their minimum 
STDEVs. The minimum trends for the two reanalysis datasets are also the smallest relative to those over wider 
windows, for example 12- or 13-yr windows. The minimum trend (with uncertainty) of the ERA-Interim dataset 
over the period 2002–2012 is approximately −0.0001 ± 0.0361 °C/decade, with a maximum P-value of 0.9885 
(Table 1; Fig. 5a), while that of the NCEP-R2 dataset is 0.0082 ± 0.0337 °C/decade, with a maximum P-value 
of 0.9057 (Fig. 5b), which indicates that the minimum trends were the most nonsignificant. Over the period 
2001–2013, the minimum trend is approximately 0.0216 ± 0.0259 °C/decade, with a maximum P-value of 0.6848 
for the ERA-Interim dataset (Table 1; Fig. 5a), while the trend for the NCEP-R2 is 0.0377 ± 0.0245 °C/decade from 
2002–2014 dataset, with a maximum P-value of 0.4581 (Fig. 5b). These trends are all greater than those from the 
period 2002–2012, and their corresponding P-values are also less than those from the period 2002–2012. Hence, 
the trends over the period 2002–2012 should be regarded as the early 2000s hiatuses based on the two reanalysis 
datasets because their minimum trends are all below 0.01 °C/decade.

Multiscale decomposition.  The hiatus is associated with contributions from temperature components at 
various scales, which can easily be associated with either external forces or the internal variability of the climate 
system. To include the reanalysis datasets, two new time series of the GMST from the period 1889/1901–2016 
are established in addition to the five time series from the gridded HadCRUT4, Cowtan & Way, NOAA-old, 
NOAA-new and GISTEMP datasets. The first is a combination of the 20th-century Coupled European Centre 
for Medium-Range Weather (ECMWF) Reanalysis (CERA-20C) dataset and the ERA-Interim (hereafter 
CERA-Interim), and the second is created by merging the NCEP-R2 and NOAA-CIRES Twentieth Century 
Reanalysis (V2c) (NOAA20C-NCEP-R2, hereafter) after bias corrections between them (see data and methods 
and Supplementary materials), where the ERA-Interim or NCEP-R2 is regarded as the standard reference in the 
correction. The seven series are decomposed into a series of orthogonal wavelet components at the cascade scales 
of 2a, 4a, 8a, 16a, 32a, 64a (a refers to year in wavelet analysis) and beyond (i.e., nonlinear trends at the century 
scale) based on the Daubechies-4 (Daub4) wavelet basis30 (see data and methods). The components are sorted 
into three parts: the interannual composite, with the scale of 2–8a; the multidecadal composite, with the scale of 
16–64a; and the nonlinear trend at the century scale. Here, the nonlinear trend may be defined as a component 
of global warming because it represents the evolution of temperature at the century scale since 1889. This is after 
1870, which is regarded as the beginning of the global Industrial Revolution epoch.

Figure 2.  Running global mean surface temperature (GMST) trends with P-values obtained via an F-test. (a) 
11-yr running trend; (b) 13-yr running trend; (c) P-values for the 11-yr running trends; and (d) P-values for the 
13-yr running trends. The GMSTs refer to the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, GISTEMP, 
ERA-Interim and NCEP-R2 datasets, in sequence. The figures were generated using Excel (https://www.
microsoft.com/zh-cn/download/office.aspx).

https://www.microsoft.com/zh-cn/download/office.aspx
https://www.microsoft.com/zh-cn/download/office.aspx
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Global warming.  Figure 6a shows that nonlinear trends increased monotonically from the 1900s to the 2000s, 
which implies that the global climate at the century scale warmed gradually over the past hundred years. Fig. 6d shows 
that global warming started in the 1900s rather than in 1870, which was the first year of the Industrial Revolution 
epoch, as is well known, and that the warming gradually accelerated towards its maximum value just after World 
War II (1950s). And the warming turned to declining until the 1980s and then exhibited almost constant trends 
for approximately three decades (excluding the trends in NOAA-old). Almost all of the maximum trends appeared 
over the period 1945–1957 in the 13-yr running trend, except for those in the NOAA-old, where a maximum 
trend was found for 1943–1955 (0.1142 °C/decade). Other maximum trends were 0.10267, 0.0998, 0.1175, 0.1250, 
0.1065 and 0.1193 °C/decade for the HadCRUT4, Cowtan & Way, NOAA-new, GISTEMP, CERA-Interim and 
NOAA20C-NCEP-R2 datasets, respectively. In addition, their constant trends were approximately 0.08 °C/decade,  

Figure 3.  The minimum trends in global mean surface temperature (GMST) with five window widths for the 
HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, GISTEMP, ERA-Interim and NCEP-R2 datasets. (a) 
The minimum trends in GMST with the 11-yr, 12-yr, 13-yr, 14-yr, and 15-yr windows; (b) the corresponding 
P-values obtained via an F-test; and (c) the smallest trends that correspond to the points circled by dashed 
yellow and pink rings in (a) and (b), as well as their uncertainties. The figures were generated using Excel 
(https://www.microsoft.com/zh-cn/download/office.aspx).

Time series Temperature Trend °C/decade Uncertainty °C/decade P-value Duration

HadCRUT4 GMST 0.0076  ± 0.0183 0.8393 2001–2013

Cowtan & Way GMST 0.0482  ± 0.0296 0.6602 2002–2012

NOAA-old GMST 0.0010  ± 0.0212 0.9758 2001–2013

NOAA-new GMST 0.0255  ± 0.0212 0.5626 2002–2012

GISTEMP GMST 0.0200  ± 0.0264 0.7137 2002–2012

ERA-Interim GMST −0.0011  ± 0.0361 0.9885 2002–2012

NCEP-R2 GMST 0.0179  ± 0.0025 0.9271 2002–2014

ERA-Interim GMAT −0.0001  ± 0.0361 0.9885 2002–2012

NCEP-R2 GMAT 0.0082  ± 0.0337 0.9057 2002–2012

Table 1.  The smallest trends in the global mean surface/air temperature (GMST/GMAT) time series over a 
period (duration) with uncertainty, P-value and duration.

https://www.microsoft.com/zh-cn/download/office.aspx


www.nature.com/scientificreports/

6ScIentIfIc RePorts |  (2018) 8:13602  | DOI:10.1038/s41598-018-31862-z

on average, from the 1980s to the 2000s, while the NOAA-old trend kept decreasing during the last three decades 
at a rate similar to that during previous decades after World War II. There was no GWH in the early 2000s in the 
century-scale component of the GMSTs of the seven series. In addition, data infilling or bias correction in the SST 
measurements caused the NOAA-new trend to be higher than that of the NOAA-old in the component, while no 
significant difference was found among those from the 1940s–1990s for HadCRUT4 and Cowtan & Way, except for 
in the 2000s, when the latter’s trend became higher than the former’s, which may reflect accelerated warming in the 
Arctic region in recent decades. Furthermore, the trend of NOAA20C-NCEP-R2 is above that of CERA-Interim 
and coincides with the NOAA-new after World War II. The difference may result from the data assimilation sys-
tems of the two reanalysis datasets. As the relative strength of the warming differs before and after World War II, 
this may reflect the influences of the different interpolation approaches on the properties of the datasets, as there 
was extremely sparse data coverage in the early part of the time series.

Interannual and multidecadal oscillations.  Figure 6b shows that there is an apparent oscillation with 
a large magnitude at the scale of approximately 16–64 a for all the GMST series, in which the negative phases 
in the 1960s-1970s correspond to a relatively cool period in the global climate during the twentieth century, as 
is well known, and then the composites increased to a new maximums in 2016. As shown in Fig. 6a and b, the 
hot global climate experienced since the 1980s resulted from an overlap in global warming and a positive phase 
in the multidecadal composite, while the cool decades (1960s-1970s) appeared only with the negative phase of 
the multidecadal composite (Fig. 6b). However, Fig. 6b also shows that there are short-term oscillations in the 
composite, where the last oscillation coincides with the hiatus period (2001–2013/2002–2012) and the mini-
mum trend from the period 2001–2013/2002–2012 for all of the series (Fig. 6e). This result indicates that the 
multidecadal composite makes a minimal contribution to the GMST trend during the hiatus period, except for 
that of the HadCRUT4, which exhibits a small cooling trend during the period that works against a trend of 
global warming. Hence, the global warming trend cannot be balanced by the trend in the multidecadal composite 
during this period. However, the variability of the interannual composite (2–8 a) becomes weak over the period 
2001–2013, with an apparent cooling trend (Fig. 6c,f). By comparing Fig. 6d,e, and f, one can see that the early 
2000s hiatus results from an overlap of the three trends (i.e., a nonlinear trend and those of the multidecadal and 

Figure 4.  Global mean air temperature (GMAT) anomalies (for reference over the period 1981–2010) and 
their decadal standard deviations (STDEVs). (a) GMATs with the 3-yr running means of the ERA-Interim and 
NCEP-R2 reanalysis and (b) 13-yr running GMAT STDEVs. The figures were generated using Excel (https://
www.microsoft.com/zh-cn/download/office.aspx).

https://www.microsoft.com/zh-cn/download/office.aspx
https://www.microsoft.com/zh-cn/download/office.aspx
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the interannual composites) over the period 2001–2013. Thus, the development of a hiatus or slowdown results 
primarily from the balance between the cooling of the interannual composite and global warming, which keeps 
the warming at a constant rate. Similar results can also be found from the time series for the period 2002–2012. 
Additionally, there is a significant difference between the multidecadal composites of the two reanalysis datasets 
and between their trends, which may reflect the different data assimilation systems and SSTs because the compos-
ite may be correlated with the interdecadal and multidecadal modes of climate, such as the Atlantic Multidecadal 
Oscillation (AMO)35, Pacific Decadal Oscillation (PDO)36 or Interdecadal Pacific Oscillation (IPO)37. Similarly, 
the differences between NOAA-new and NOAA-old are larger than those between HadCRUT4 and Cowtan & 
Way, reflecting the importance of bias correction in the SST measurement.

Figure 7a and b clearly show the differences in the three composite trends for the seven time series, which 
seemingly result from different interpolation approaches/data assimilation systems, bias corrections or numbers 
of observation records used. For example, the infilling and bias correction both increased warming and reduced 
cooling of the composite at the interannual scale from 2002–2012, but for 2001–2013. The increase in the trend 
in NOAA-new relative to NOAA-old is larger than that in Cowtan & Way relative to HadCRUT4, which reflects 
the effect of bias correction on the reported warming (Fig. 7). In addition, the infilling or bias correction has more 
influence on the trends in the multidecadal composites than in other composites over the same periods, imply-
ing that temperature changes in the oceans, Arctic region and African continent are important contributors to 
global mean climate change, which leads to the slowdown observed over the period 2002–2012 in the NOAA-new 
and Cowtan & Way (Fig. 7c) datasets rather than the hiatus observed over 2001–2013 in the HadCRUT4 and 
NOAA-old datasets (Fig. 7d). In addition, the hiatus can also be found in the CERA-Interim dataset over the period 
2002–2012, which implies that infilling and bias correction may lead to overestimated warming trends in the inter-
decadal and multidecadal composites and underestimated cooling trends in the interannual composite during 
the early 2000s (Fig. 7a) if the reanalysis is taken as a reference, because the reanalysis is dynamically consistent 
and incorporates many more four-dimensional observation records (regular or irregular) using the state-of-the 
art four-dimensional data assimilation system28. This system is generally regarded as more advanced than any 
three-dimensional interpolation method used in gridded datasets. Thus, an early 2000s hiatus exists in the GMSTs 
of the HadCRUT4, NOAA-old and the reanalysis datasets during the periods 2002–2012/2001–2013, while the 
slowdown is found with slightly higher trends in the Cowtan & Way, NOAA-new and GISTEMP datasets.

Figure 5.  The 11-yr and 13-yr running trends and their P-values for global mean air temperature (GMAT) 
anomalies for (a) ERA-Interim and (b) NCEP-R2. The blue dashed circles represent the hiatus location, and the 
black bars represent their uncertainties (units: °C/decade). The figures were generated using Excel (https://www.
microsoft.com/zh-cn/download/office.aspx).

https://www.microsoft.com/zh-cn/download/office.aspx
https://www.microsoft.com/zh-cn/download/office.aspx
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Figure 8a shows that the evolutions of the interannual composites coincide well with the Niño3.4 SST anom-
alies for the period 1950–2016. Their correlation coefficients all exceed the critical value (0.317) at a significance 
level of α = 0.01 for an effective number of degrees of freedom (63; see data and methods). The coefficients are 
0.480, 0.408, 0.404, 0.466, 0.381, 0.403 and 0.328 for the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, 
GISTEMP, CERA-Interim and NOAA20C-NCEP-R2 datasets, respectively. The interannual variability of the 
GMST essentially results from an ENSO cycle that is typically described by Niño3.4 SSTA or the Niño 3 SST 
anomaly (see data and methods). There is also an extremely low STDEV for the period 2000–2013 for every tem-
perature series and Niño3.4 SSTA during the second half of the twentieth century, except for CERA-Interim, in 
which extremely low STDEVs appeared approximately in the early 2000s and 1960s (Fig. 8b). This result reveals 
that the interannual variability of the GMST became extremely weak during the hiatus period (2001–2013), 
which was coupled with an extremely weak ENSO cycle in the east equatorial Pacific. Furthermore, the 13-yr run-
ning trends of the composites of the time series also coincide with the trends of the Niño3.4 SSTA38,39, especially 
those in the period 2001–2013. Hence, the cooling trend of the interannual composite most likely results from 
the ENSO cycle, because this result is consistent with the numerical experiment forced only by SSTAs in the east 
equatorial Pacific5. Calculation confirmed that the extreme cooling during the hiatus period results from warmer 
SST in the first half of the hiatus period (2001–2013) and cooler SST in the second half, which is associated with 
asymmetrical ENSO events around the middle of the period.

Figure 6.  Orthogonal wavelet decomposition of the global mean surface temperature (GMST) and the 13-yr 
running trends during 1889–2016/1901–2016 via the HadCRUT4, Cowtan & Way, NOAA-old, NOAA-new, 
GISTEMP, CERA-Interim and NOAA20C-NCEP-R2 datasets. CERA-Interim are combined via the 1901–1978 
CERA-20C and the 1979–2016 ERA-Interim datasets, and NOAA20C-NCEP-R2 is combined with 1889–1978 
NOAA-CIRES Twentieth Century Reanalysis (V2c) and 1979–2016 NCEP-R2 (see data and methods). (a) 
Nonlinear trends with scales greater than 64a; (b) multidecadal composite (16–64a); (c) interannual composite 
(2–8a); and (d–f) 13-yr running trends of the three composites. The brown dashed line denotes the location of 
the end year (2013) of the hiatus, and the pink dashed line denotes the middle year (2007) of the hiatus for the 
period 2002–2012 or for the period 2001–2013. The figures were generated using Excel (https://www.microsoft.
com/zh-cn/download/office.aspx).
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Discussion
The early-2000s hiatus ended as soon as a sharply warming appeared in 2015–2016 with a new extreme El Niño 
event developing in the east equatorial Pacific. Under such circumstances, we quantitatively examined the exist-
ence of the hiatus and its duration in various data sources, including gridded and reanalysis datasets. The results 
demonstrate that the hiatus has a decadal duration with minimum STDEV on average and a near-zero trend over 
2002–2012/2001–2013/2002–2014 at the most nonsignificant level that corresponds to the maximum P-value 
obtained via an F-test. The hiatus identified here differs from that shown in published literature3–6, in which 
the hiatus or slowdown began with the great 1997/1998 El Niño event40, as is well known. The hiatus of 2002–
2012/2002–2014 is found in the GMST/GMAT of ERA-interim and NCEP-R2 datasets, while that in the period 
2001–2013 is in the GMSTs of HadCRUT4, NOAA-old. The minimum trends for the period 2002–2012 in the 
NOAA-new, GISTEMP and Cowtan & Way datasets are slightly higher than their counterparts in the NOAA-old 
and HadCRUT4 datasets, as a result of the infilling of data coverage and the bias correction of the SSTs, and their 
trends over the period 2002–2012 are thus regarded as slowdowns, following prior arguments on the definition 
of the hiatus17,21. A slowdown may be also regarded as a hiatus if the trends (0.0255, 0.02 and 0.0482 °C/decade) 
are considered smaller or near zero. As the 2002–2012 hiatus is included in the 2001–2013 or 2002–2014 or 
2002–2012 periods, the last can be suggested as the common hiatus duration in the all GMSTs/GMATs of the nine 
time series included in this study. Additionally, statistical analysis reveals that the hiatus or slowdown was accom-
panied by a minimum STDEV, which is an additional characteristic of the hiatus that indicates that the near-zero 
trend over the hiatus period resulted from a platform-like segment of the time series rather than a decadal valley 
or ridge of a GMST/GMAT wave.

Multiscale decomposition reveals that the hiatus essentially results from a decadal balance between cooling 
from the interannual composite and global warming, in addition to weak warming from the interdecadal and 
multidecadal composite because their maximum magnitudes appeared in the positive phase after 2000. This is 
somewhat different from the argument that proposes the negative phase of the Interdecadal Pacific Oscillation 
(IPO) as the major mechanism for hiatus formation on PCA analysis6. Further decomposition shows that only 
the interdecadal component (scale: 16 a) makes a small contribution (through cooling) to the hiatus, while the 
multidecadal composite contributes weak warming. The most important finding is that the variability of the 
interannual composite well coincides with the Niño3.4 SST anomaly, which is of almost the same statistical 
characteristics as the composites, such as the running STDEV and trend, especially over the period 2001–2013 
(Fig. 8b,c). This indicates that the interannual variability of the GMST is coupled with the ENSO cycle38,39, and 
thus, the hiatus results mainly from the east equatorial Pacific SST anomalies41, as the numerical experiment that 
reproduced the early 2000s hiatus was performed by using a climate model forced only by the SST anomalies in 
the east equatorial Pacific5.

Figure 8b and c also shows that there were several cooling events at decadal or even multidecadal scales during 
the period 1950–2016, while there were three minimum trends in the interdecadal and multidecadal composite 
(Fig. 6e), in which only the last one encountered strong cooling from the interannual composite during the 2000s, 

Figure 7.  Minimum trends in the wavelet components of the seven GMST series during the early 2000s. (a) The 
component trends are for the period 2002–2012; (b) the component trends from 2001–2013; and (c) trends in 
the composites are for the period 2002–2012 and (d) trends in the composites are for the period 2001–2013. The 
points (i.e., trends) circled in Figures c and d with dashed yellow rings are regarded as the hiatuses, while those 
circled with pink dashed rings are regarded as the slowdowns (unit: °C/decade) in this study. The figures were 
generated using Excel (https://www.microsoft.com/zh-cn/download/office.aspx).

https://www.microsoft.com/zh-cn/download/office.aspx


www.nature.com/scientificreports/

1 0ScIentIfIc RePorts |  (2018) 8:13602  | DOI:10.1038/s41598-018-31862-z

which implies that the early-2000s hiatus was a transient event, in comparison with the long-term cooling event 
observed during 1960s-1970s, which was caused by the negative phase of the interdecadal and multidecadal com-
posite (Fig. 6b) with extreme cooling that was much stronger than global warming at a two-decade scale during 
this period (Fig. 6b,e). Figure 6b also shows that the multidecadal composites reached their maximums in magni-
tude in 2016 and then will probably turn onto a downward path, i.e., a cooling phase will soon be observed. This 
suggests the beginning of a new multidecadal cycle of global climate similar to that experienced in the second half 
of the twentieth century following the hiatus. Hence, future multidecadal climate changes should depend on the 
competition between global warming and cooling at the multidecadal scale if global climate repeats the last cycle 
observed at multidecadal scales in the coming decades.

Data and methods.  Seven GMST series and two GMAT anomalies were used in this investigation, includ-
ing the 1889–2016 HadCRUT4 dataset18,19, which was downloaded on 10/10/2017 from the Climate Research 
Unit (CRU) at the University of East Anglia (UEA, https://crudata.uea.ac.uk/~timo/diag/tempdiag.htm), 
along with its updated dataset (version 2) that includes infilling over the Arctic region and African continent 
(hereafter, Cowtan & Way17), which was downloaded on 18/11/2017 from the Department of Chemistry at 
the University of York (http://www-users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.
txt); the old version21 of the bias-corrected GMST series from 1887 to 2014 (hereafter NOAA-old), or NOAA’s 
merged land-ocean surface temperature dataset, which was downloaded on 16/07/2015 at ftp://ftp.ncdc.noaa.
gov/pub/data/scpub201506/OldAnalysis/, and its new version, which is the bias-corrected GMST series (here-
after, NOAA-new23) that was downloaded on 17/11/2017 from the NOAA National Centers for Environmental 

Figure 8.  Interannual composites (2–8a) with 13-yr running standard deviations (STDEVs) and trends. 
(a) Interannual composites of the GMST series, with annual mean Niño3.4 SST anomalies; and (b,c) 13-yr 
running STDEVs and trends. The vertical pink dashed line indicates the middle year (2007) of the hiatus or the 
slowdown, and the vertical yellow dashed line denotes the end year (2013) of the STDEV or trend for the period 
2001–2013. The figure was generated using Excel (https://www.microsoft.com/zh-cn/download/office.aspx).
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Information (NCEI) (https://www1.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational/timeseries/); the 
GISS Surface Temperature Analysis (GISTEMP Team, 2018) dataset from the NASA Goddard Institute for Space 
Studies, where the dataset was accessed on 18/11/2017 at https://data.giss.nasa.gov/gistemp/; and the 1979–2016 
GMST/GMAT time series via the ERA-Interim dataset (hereafter, ERA-Interim), which combined land temper-
atures at 2 m and SSTs at 1°x1° meridional and latitudinal grids28 and was downloaded on 06/11/2017 from the 
ECMWF at http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/. In addition, GMST/GMAT 
anomaly series are calculated from the reanalysis dataset of NCEP-DOE Reanalysis 2 (hereafter NCEP-R2)29 
with a resolution of 192 × 194 on a Gaussian grid, which was provided by the NOAA/Oceanic and Atmosphere 
Research/Earth System Research Laboratory (NOAA/OAR/ESRL) Physical Sciences Division (PSD) in Boulder, 
Colorado, USA and downloaded on 28/11/2017 from http://www.esrl.noaa.gov/psd/. To compare the multiscale 
characteristics of the gridded datasets with those of the reanalysis, a twenty-first century reanalysis dataset 
(CERA-20C, 1901–2010) was introduced with 1° × 1° meridional and latitudinal grids, which was downloaded 
on 04/02/2017 from ECMWF at http://apps.ecmwf.int/datasets/data/cera20c/levtype=sfc/type=an/. Thus, 
a new reanalysis series from 1901–2016 was established by combining the GMSTs of the CERA-20C and 
ERA-Interim datasets, where the 1979–2016 period was infilled with ERA-Interim GMST and the 1901–1978 
period was infilled with CERA-20C (hereafter CERA-Interim) with bias correction of the mean difference 
between their GMSTs for the period 1979–1983, because their difference gradually decreased over time from 
1979 to 2010. A similar strategy was employed in establishing the NOAA20C-NCEP-R2, which is a combi-
nation of the 1979–2016 NCEP-R2 and 1889–1978 NOAA-CIRES Twentieth Century Reanalysis Version 2c, 
using resources of the National Energy Research Scientific Computing Center managed by Lawrence Berkeley 
National Laboratory and supported by the Office of Science of the U.S. Department of Energy under Contract 
No. DE-AC02–05CH11231 (Support for the Twentieth Century Reanalysis Project version 2c dataset is pro-
vided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and 
by the National Oceanic and Atmospheric Administration Climate Program Office)42–47, and the dataset was 
downloaded from https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.monolevel.mm.html on 
21/07/2018. In addition, the Niño3.4 SSTA is represented by the averaged SSTA over the east equatorial Pacific 
(5°N-5°S, 170°W-120°W), which was obtained from the Global Climate Observing System (GCOS) Working 
Group on Surface Pressure (WG-SP) at https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/ on 
20/01/2018.

The linear trend in temperature within a moving window is estimated using a linear regression (Excel func-
tion: slope) based on the OLS method48–50, which is used to search for the location of the hiatus or slowdown. The 
null hypothesis is that no trend exists, and the significance of the trend is measured by P-values obtained via an 
F-test using an effective degree of freedom Ne. Ne is estimated as follows
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where e2(t) represents the residual of the linear regression equation, and N represents the sample size rather than 
the corresponding effective degree of freedom, Ne

21, due to the small sample size in the moving window in which 
the trend is estimated. The decadal STDEV is calculated with the Excel function STDEV.

In addition, the seven long-term GMST time series involved are also decomposed into series of orthogonal 
wavelet components at cascading scales of 2a, 4a, 8a, 16a, 32a, 64a and beyond (i.e., the century scale) for 128 
sampling points (1889–2016/1887–2014) based on the orthogonal wavelet decomposition with a regional basis 
of Daub430.

The signal S(t) can be reconstructed as

∑= + =A DS(t) , (4)k k5 1
5

where Dk represents the k-th detail of the signal at decomposition level k, and A5 represents the approximate 
signal at the highest level (5) for 128 samples, which is usually regarded as the nonlinear trend in the signal. The 
wavelet time scales of (2–8a), (16–64a) and beyond 64a represent the interannual scales, multidecadal scales 
and the scales beyond 64a, respectively. Here, the last one (A5) represents the global warming component of the 
GMST for 128 samples (1889–2016 or 1887–2014 for the NOAA-old dataset). The scale is usually proportional 
to the period of a periodic signal. The wavelet decomposition is conducted using Python45 (https://www.python.
org/).
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