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Abstract
Background: For many RNA molecules, secondary structure rather than primary sequence is the
evolutionarily conserved feature. No programs have yet been published that allow searching a
sequence database for homologs of a single RNA molecule on the basis of secondary structure.

Results: We have developed a program, RSEARCH, that takes a single RNA sequence with its
secondary structure and utilizes a local alignment algorithm to search a database for homologous
RNAs. For this purpose, we have developed a series of base pair and single nucleotide substitution
matrices for RNA sequences called RIBOSUM matrices. RSEARCH reports the statistical
confidence for each hit as well as the structural alignment of the hit. We show several examples in
which RSEARCH outperforms the primary sequence search programs BLAST and SSEARCH. The
primary drawback of the program is that it is slow. The C code for RSEARCH is freely available
from our lab's website.

Conclusion: RSEARCH outperforms primary sequence programs in finding homologs of
structured RNA sequences.

Introduction
Ribonucleic acid (RNA) can fold back onto itself to form
a base-paired secondary structure. This phenomenon con-
fers functional specificity to a wide range of RNA mole-
cules. For some protein-coding genes, secondary structure
signals present in the messenger RNA help regulate the
gene. Examples of such control elements include the iron-
responsive element in genes involved in iron metabolism,
the selenocysteine insertion sequence that signals seleno-
cysteine should be incorporated into the amino acid, and
riboswitches that directly alter gene expression in
response to the concentration of small molecules such as
thiamin [1–7]. Other genes do not code for protein; the
transcripts of these noncoding RNA (ncRNA) genes are
the biochemically functional end product in the cell [8,9].

We are interested in the problem of finding homologs of
such RNA sequences. For both protein and RNA, homol-
ogy is most readily inferred at the tertiary structure level.
For most proteins and RNAs, however, we only have pri-
mary sequence data and do not know the tertiary struc-
ture. For RNA, secondary structure confers much
functional specificity, and potential folds are readily dis-
cernible from the primary sequence. Therefore, we can
obtain increased power in homology searching by consid-
ering the secondary structure of RNA sequences [10].

It is useful to distinguish three classes of alignment algo-
rithms that can be used to find homologs of RNA
sequences. The first class only uses primary sequence
information to align the query sequence to the target data-
base. Such searches are exemplified by the Smith-Water-
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man algorithm and its heuristic approximations found in
programs like BLAST and FASTA. These sequence align-
ment programs are O(N2) in time and memory [11–13],
where N is the length of the sequences being analysed. The
second class consists of a search with a known RNA struc-
ture against a sequence database. Such searches have been
implemented with profile stochastic context free gram-
mars (SCFGs) and require O(N3) memory and O(N4)
time [14–18]. Alternatively, such searches can be per-
formed by defining an RNA structural pattern, though this
approach works best on highly conserved secondary struc-
tures, and patterns have to be developed by hand [19–22].
A third type of approach consists of a search with a query
sequence with an unknown secondary structure, where
the algorithm searches over all possible foldings of the
query aligned to the target. Sankoff described such an
algorithm, which is O(N4) in memory and O(N6) in time
[23].

While it is convenient to distnguish among these three
classes of algorithms, the boundaries between them are
not absolute. Various constrained versions of the Sankoff
algorithm have been published that allow it to run in a
reasonable amount of time [24–26]. One such algorithm
constrains the possible alignments [25], while the other
two constrain the foldings allowed [24,26]. Holmes and
Rubin introduced the idea of a "fold envoelope," which
allows the algorithm to be constrained to a subset of folds.
It can be argued that the profile SCFG approach to search-
ing a database with an RNA of known structure is the lim-
iting case where the fold envelope only includes one
structure.

Three types of scoring functions can be used with these
search algorithms. When only a single query sequence is
given, log-odds position independent substitution matri-
ces are used to give the alignment scores. These are analo-
gous to the BLOSUM matrices used in protein searches
[27]. In the pattern search approach, a binary match/
doesn't match scoring function is generally used where all
allowed letters at each position are enumerated. This is
analogous to PROSITE patterns used to analyze amino
acid sequences [28]. Finally, a profile-based scoring
scheme can be used where position dependent log-odds
scores are derived from the observed frequencies in a mul-
tiple sequence alignment. This is analogous to the profile
approach used in many protein database search programs,
including profile hidden Markov models [29–31]. For
RNA sequences, only the pattern approach [19–22] and
the profile approach [14,15,17,18] to finding homologs
of an RNA sequence in a nucleotide sequence database
have been described to date.

Here we are specifically interested in the problem of find-
ing structural homologs of a single RNA sequence. Since

the alignment algorithm is essentially independent of the
scoring system, developing such a tool is just a matter of
developing an appropriate pairwise substitution matrix
and combining it with one of the aforementioned align-
ment algorithms. We could, for example, derive a single
nucleotide matrix and use it in BLASTN searches. Such a
primary sequence search would lose much information,
much like doing a BLASTN search for homologs of a pro-
tein-coding sequence would. When RNAs have conserved
secondary structure, we want to consider the intramolecu-
lar base pairs that provide this structure to find homologs
optimally [10]. While using the Sankoff algorithm would
be ideal, as we often do not know the correct secondary
structure of a single query RNA sequence, its cost in time
and memory is so prohibitive as to make it impractical at
this time for sequence database searching. Therefore, we
have chosen to focus on the case where we know the sec-
ondary structure of the query sequence.

Here we describe RSEARCH, a program that, given a query
sequence with a known secondary structure, searches a
nucleotide sequence database for similar RNAs on the
basis of both primary sequence and secondary structure.
Its core alignment algorithm is identical to profile SCGG
alignment [14,16,18]. Since alignments are pairwise,
alignments are scored using appropriate pairwise substitu-
tion matrices. Furthermore, analogous to BLAST, the pro-
gram calculates statistical confidence values for all hits
[32]. It is still quite slow; for the time being, we deal with
this problem through brute force by parallelizing the
search program for clustered computing using the Mes-
sage Passing Interface (MPI) library [33].

Implementation
RIBOSUM substitution matrices
In order to perform database searches with a single, folded
RNA sequence query, a 16 × 16 substitution matrix for
scoring aligned base pairs and a 4 × 4 matrix for single
aligned nucleotides are needed. Such matrices should give
the log-odds ratio for observing a given substitution rela-
tive to background nucleotide frequencies [34]. Specifi-
cally, for the 4 × 4 single nucleotide matrix, the individual
scores are given by

where i and j are the two aligned nucleotides, fij is the
empirically observed frequency of i aligned to j in homol-
ogous RNAs, and gi and gj are the background frequencies
of the individual nucleotides. Similarly, for the 16 × 16
base pairing matrix, the individual scores are given by

s
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g gij
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i j
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where i is basepaired to j, k is basepaired to l, i is aligned

with k, and j is aligned with l. In this case,  is the
observed frequency of the two base pairs i - j and k - l
aligned to each other in homologous RNAs. g again is the
background frequency of the individual nucleotides. Note
that g is used for individual nucleotides and not base
pairs; the null model in this case is an identical and inde-
pendently distributed (i.i.d.) model consisting of una-
ligned random sequences that do not base pair.

The key question, then, is how to find the values for f, f',
and g needed to calculate these matrices. The values in f
and f' are conditional on evolutionary divergence time; a
shorter divergence time implies higher scores for identi-
ties and lower scores for mismatches. Two methods exist
to account for evolutionary divergence time. The first
method, used by Dayhoff to construct the PAM matrices,
infers a rate matrix from closely related sequences. This
rate matrix is then used to calculate an exponential family
of matrices at different evolutionary distances [35]. The
second method, used to construct the BLOSUM family of
matrices, filters and weights sequences in a multiple
sequence alignment to approximate a range around some
time point [27]. Matrices produced using the latter
method have been found to perform better [36], though
it is in dispute whether this is an effect of the algorithm or
the underlying data used to generate the matrices [37].
Several evolutionary models and a rate matrices have been
published for RNA evolution [38–40]. Because BLOSUM-
style matrices are argued to be better for finding distant
homology relationships [36], we have chosen to forgo the
pre-existing RNA rate matrices and construct BLOSUM-
style matrices instead.

The algorithm starts with a structurally annotated align-
ment of multiple RNA sequences to be used as training
data. The consensus secondary structure is mapped onto
individual sequences by removing any base pairs from the
secondary structure for an individual sequence that align
with a gap in that sequence. Sequences are then weighted
by grouping all sequences more than a certain percentage
identical using single-linkage clustering; all sequences in a
group are given equal weights that sum to 1. This is iden-
tical to the clustering used in constructing the BLOSUM
matrices [27]. The percent identity used in this clustering
is the first number in the matrix name. In order to allow
for a shorter evolutionary distance than would be allowed
by following the BLOSUM algorithm exactly, we added a
second percentage identity cutoff not found in the origi-
nal BLOSUM algorithm. Only pairs of sequences whose
percent identity meet or exceed this cutoff are counted at

all. This threshold is the second number in the matrix
name. It should be noted that this second threshold does
not necessarily have to be less than the first, clustering per-
cent identity. If that is the case, then one would be count-
ing weighted pairs within clusters; no intercluster pairs
would be counted.

Let each of i, j, k, l represent a nucleotide (1 ≤ i, j, k, l ≤ 4).
Then, two triangular count matrices are initialized using cij

= 0 (1 ≤ i ≤ j ≤ 4),  = 0 (1 ≤ 4i + j ≤ 4k + l ≤ 16), where
c is the count matrix for single-stranded regions and c' is
the count matrix for basepaired nucleotides (an ij basepair
aligned to a kl basepair). Triangular matrices are used
because nucleotide (base pair) X in sequence 1 aligned to
nucleotide (base pair) Y in sequence 2 should count the
ssame as nucleotide (base pair) Y in sequence 1 aligned to
nucleotide (base pair) X in sequence 2. However, we
assume that an X-Y base pair may not be equivalent to a
Y-X base pair in the context of the entire RNA molecule
and therefore count these pairs separately. A count vector
di = 0(1 ≤ i ≤ 4) is also initialized for background nucle-
otide frequencies. Each pair of sequences is then exam-
ined. If the pair does not meet the minimal percent
identity criterion, it is skipped and the next pair is exam-
ined. Otherwise, the weight of this pairing, w is set to be
the average of the weights given to the two individual
sequences. (Arguably, this weight should be set to be the
product rather than the average of the individual weights.
Though we did not fully explore this possibility, prelimi-
nary evidence suggests the method of calculating this
weight does not appreciably influence performance.) For
each aligned base pair (ij, kl) in the alignment, w is added

to , di, dj, dk, and dl; for all other aligned nucleotides
(i, j), w is added to cij, di, and dj. The counts are then con-
verted to empirical frequencies using:

The score matrices s and s' are then calculated using equa-
tions 1 and 2.
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In order to collect these counts, we need high-quality
structure-annotated alignments. We decided to use the
small subunit ribosomal RNA alignment from the Euro-
pean Ribosomal RNA Database [41]. Specifically, we
pruned the 1995 version of the database by removing
sequences in which either more than 5% of the nucle-
otides are ambiguous or less than 50% of the base-paired
positions are present. The resultant alignment consists of
2492 sequences ranging from 610 to 2305 nucleotides in
length. When all pairs of sequences are counted, approxi-
mately 2.30 × 109 aligned single nucleotides and 1.06 ×
109 aligned base pairs are counted and used to calculate
the matrix. We created 170 unique matrices by varying the
percent identity level at which clustering occurs and the
minimal percent identity for a pair of sequences to be
counted. We have chosen to call this series of matrices the
RIBOSUM matrices (RIBOsomal rna Substitution Matrix).

Construction of a covariance model from a single RNA 
query
For these matrices to be useful, we need a good algorithm
to perform alignment between an RNA query and a nucle-
otide database. Like primary sequence alignment, we need
to consider both homologous regions of sequence that
align and insertion and deletion events that put gaps into
the alignment. Unlike primary sequence alignment, we
also have to consider the nucleotide correlations within
each sequence that make up the secondary structure. This
structure can be modeled as a bifurcating tree, with each
branch terminating in the loop of a stem-loop. Whatever
algorithm we use must unambiguously pair each nucle-
otide in the query with either a nucleotide in the target or
a gap, and vice versa. Our algorithm is based on profile
stochastic context-free grammars (SCFGs) [14,16,18].
While this formulation was initially described in the
framework of probabilisitc modeling of profiles, it can
deal with arbitrary, non-probabilistic scores just as well.
We therefore use the term "covariance model" to describe
both the profile SCFG form of the model [14,16,18], and
the single-sequence, non-probabilistic form presented
here.

A covariance model produces ("emits") a nucleotide
sequence. The model consists of a set of interconnected
states. The states form a tree-like structure, with the root
customarily being drawn at the top. As one moves down
the tree, nucleotides are filled in from both the left and the
right until they meet in the middle. Each state can emit
either no nucleotides, a nucleotide on the left side, a
nucleotide on the right side, or a base pair consisting of
two nucleotides, one on each side. Bifurcations result in a
split in the sequence, with each half being filled in from
both sides along one of the two bifurcated branches. The
model is traversed by following a series of transitions
from one state to the next after each emission. Each tran-

sition is governed by a score, and only a limited set of
transitions are allowed at all. Given a parameterized cov-
ariance model, algorithms exist for searching a database
for homologous sequences and aligning the model to hits
found in the database [14,16,18].

For our purposes, there are two separable steps in the cre-
ation of a covariance model. First, the model architecture
needs to be determined from the given secondary struc-
ture. It is easiest to think of the model as being composed
of modular nodes, where each node contains a character-
istic arrangement of states. The node architecture of the
model follows from the secondary structure of the query.
A sample RNA secondary structure and its corresponding
"guide tree" of nodes is given in Figure 1. There are eight
types of nodes. A ROOT node marks the start of the
model. A BIF node marks a bifurcation in the tree, and is
always followed by a BEGL node on the left branch and a
BEGR node on the right branch. All branches end with an
END node. The remaining nodes are match nodes; these
nodes represent either a base-pair (MATP) or a single
nucleotide (MATL and MATR) in the secondary structure.
(For a profile SCFG built from a multiple sequence align-
ment, only those positions thought to be conserved by
some measure correspond to match nodes; for our single-
sequence covariance models, all positions correspond to
match nodes.) For consistency, MATL is always preferred
over MATR when possible. Each secondary structure yields
one and only one model architecture, and a model archi-
tecture implies a unique secondary structure. As each
node is associated with a static arrangement of states, this
architecture also gives the final arrangement of states in
the model. A more detailed exposition of this algorithm
for profile SCFGs is given in reference [18] and the C code
used to construct a covariance model from a given second-
ary structure can be found in the modelmaker.c file of the
Infernal package [42].

The second step in the algorithm is parameterization of
the model. This is best thought of in terms of the possible
"node-states," i.e. the various state types present in each
node type. A list of all possible node-states is given in
Table 1, along with what they signify in the pairwise align-
ments we are creating here. In a profile SCFG, emission
scores are log-odds scores as shown in Table 1. When we
only have a single sequence, we cannot infer emission
probabilities from the data given. We instead set these
scores from the log-odds RIBOSUM matrix (Table 1). In
the MP (match pair), ML (match left), and MR (match
right) states, emission scores are log-odds scores for both
profiles and single sequence models. In the IL (insert left)
and IR (insert right) states, emission scores for a profile
SCFG are based on observed nucleotide frequencies in
insertions. For our single-sequence model, emission
Page 4 of 16
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scores are 0 because we assume that the nucleotide distri-
bution in insertions follows the null model.

Transition scores are set for transitions from one node-
state to another node-state. In a profile SCFG, the log tran-
sition probabilities are derived from the observed fre-

quencies of the various transitions. In the single-sequence
case, we derive a transition score using the standard affine
gap penalty formulation. We parameterize the overall
penalty for a gap as α + βn where α is the gap open pen-
alty, β is a gap residue penalty, and n is the size of the gap.
We take half the α penalty on opening a gap and the other

An example SCFG architectureFigure 1
An example SCFG architecture. The sequence at the top folds into the specified secondary structure. At the bottom, the nodal 
architecture of the model that would produce this sequence is shown. Shaded triangles represent base pair emitting nodes, and 
point to the base pair they emit. Open triangles represent single nucleotide emitting nodes, and point to the nucleotide they 
emit.
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Table 1: All possible node-states and their emission scores.

Node-state Description Profile emission score Single-sequence 
emission score

Gap class

ROOT_S Start of model 0 0 M_cl
ROOT_IL Gap in query at left end 0 IL_cl

ROOT_IR Gap in query at right end 0 IR_cl

BEGL_S Start of left branch of bifurcation 0 0 M_cl
BEGR_S Start of right branch of bifurcation 0 0 M_cl
BEGR_IL Gap in query at bifurcation 0 IL_cl

MATP_MP Matched base pair M_cl

MATP_ML Match on left side of base pair; gap in target on right Saj DR_cl

MATP_MR Match on right side of base pair; gap in target on left Sbj DL_cl

MATP_D Two gaps in target, for each side of base pair 0 0 DB_cl
MATP_IL Gap in query just after left side of base pair 0 IL_cl

MATP_IR Gap in query just before right side of base pair 0 IR_cl

log
( | )P a v

ga

log
( | )P b v

gb

log
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log
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ga
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log
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half on closing it. The β penalty is taken for each residue
in a gap. Gaps emitted on both sides simultaneously (i.e.
through a MATP_D node-state) are taken as two inde-
pendent gaps. We also want to use a separate set of gap
penalties for gaps within a base-paired region. If both
node-states in a transition are in MATP nodes, the α
parameter is replaced by a different parameter, α'. Simi-
larly, for transitions from a MATP_D state to another
MATP node, β is replaced by β'. α and β are used for tran-
sitions between base-paired and single-stranded regions.

To map this formulation onto the covariance model, we
classify all node-states into one of six classes (Table 1):
M_cl, for an aligned match or mismatch between the
query and target; IL_cl, for a gap in the query sequence on
the left; IR_cl, for a gap in the query sequence on the right;
DL_cl, for a gap in the target sequence on the left; DR_cl,
for a gap in the target sequence on the right; and DB_cl,
for a gap in the target sequence on both sides. All classes
other than M_cl represent some sort of gap that requires a
gap penalty. The exact parameterization of transitions
between classes is given in Table 2. For some transitions,
the gap penalty presented in Table 2 represents the sum of
penalties for several different gaps. All gap penalties are
multiplied by -1 to get the transition score used in the
model. These four gap parameters are empirically deter-
mined as described later in the paper. They are not nor-
malized to have their exponentials sum to 1; therefore the

resultant scores using these models cannot be directly
interpreted probabilistically.

Local alignment searches
The model as described above can only perform global
alignment with respect to the query sequence. The model
is modified slightly to allow for local alignment as well.
Two different types of locality are allowed. The first we call
"begin locality," and resembles local alignment as imple-
mented in the Smith-Waterman algorithm [11]. In this
case, a penalty – beginsc – is taken if the alignment begins
inside the model, i.e. the states representing the outermost
parts of the RNA secondary structure are not included.
This is analogous to the convention in the Smith-Water-
man algorithm that there is no penalty (score of 0) for a
local rather than a global alignment [11]. Following that
convention, the beginsc penalty is set by default to 0. The
second type of locality is "end locality." In this case, a pen-
alty – endsc – is taken to allow the subtree of a model
below the current state to be ignored, and replaced by an
insertion of arbitrary size in the target sequence. There are
many known examples of stems whose length changes
dramatically or even completely disappear in homolo-
gous RNA sequences. One such example is the P8 stem of
Archaeal RNase P, which is not present in the RNase P
RNA of Methanocaldococcus jannaschii and Archaeoglobus
fulgidus, but is present in other Archaeal RNase P
sequences [43]. Examples of both kinds of locality are
shown in Figure 2.

MATL_ML Match to single nucleotide on left Saj M_cl

MATL_D Gap in target on left 0 0 DL_cl
MATL_IL Gap in query on left 0 IL_cl

MATR_MR Match to single nucleotide on right Sbj M_cl

MATR_D Gap in target on right 0 0 DR_cl
MATR_IR Gap in query on right 0 IR_cl

END_E End of stem-loop 0 0 M_cl
BIF_B Bifurcation 0 0 M_cl

v is the current state. a is the nucleotide present in the query on the left, b is the nucleotide present in the query on the right. j is any nucleotide in 
the target for a single nucleotide alignment, while k, l is a base pair in the target for a base pair alignment. g is the background frequency of a 
nucleotide and s and s' are the substitution matrices defined in the text. Node-states with an M gap class are in the "mainline" path through the 
model that the an exact match would follow. Node-states with an IL or IR gap class represent a gap in the query sequence, while node-states with a 
DL, DR, or DB gap class represent gaps in the target sequence.

Table 1: All possible node-states and their emission scores. (Continued)
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These modifications are easily accommodated in the
standard scanning algorithm for covariance models,
which is described in detail elsewhere [14,16]. The beginsc
parameter is modeled as a transition from the root state to
the consensus states (MATP_MP, MATL_ML, MATR_MR,
BIF_B). The endsc parameter is modeled as a transition
from each of the consensus states (MATP_MP, MATL_ML,
MATR_MR, BEGL_S, BEGR_S) to a special "EL" (end-
local) state, which generates residues at the background

residue frequency and thus has a zero score for any subse-
quence after the transition cost, endsc, has been paid. (In
actuality, version 1.0 of RSEARCH allowed transitioning
to any state from the root with a beginsc penalty, and
allows transitioning from any state to EL with an endsc
penalty. More recent versions implement the algorithm as
described. This slight difference does not appear to signif-
icantly alter performance [data not shown].)

The two classes of local alignmentFigure 2
The two classes of local alignment. Each example shows how the nodal guide tree best aligns to the target sequence. At the 
bottom is the RSEARCH output for the alignment. On the left is an example of begin locality, while on the right is an example 
of end locality. The numbers next to the query sequence represent positions relative to the entire query; the numbers next to 
the target sequence represent positions relative to the subsequence defined in the "Target =" line.

Table 2: Parameterization of negative transition scores from gap penalties.

To class

From class M_cl IL_cl DL_cl IR_cl DR_cl DB_cl

M_cl 0 1/2α 1/2α 1/2α 1/2α α
IL_cl β + 1/2α β β + α β + α β + α β + 3/2α
DL_cl β + 1/2α β + α β β + α β + α β + 1/2α
IR_cl β + 1/2α N.A. β + α β β + α β + 3/2α
DR_cl β + 1/2α β + α β + α β + α β β + 3/2α
DB_cl 2β + α 2β + 3/2α 2β + 1/2α 2β + 3/2α 2β + 1/2α 2β

α and β are replaced with α' and β' for the specific cases described in the text. The IR_cl to IL_cl transition is never allowed in these models.
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The scanning algorithm takes a covariance model with M
states (including B bifurcations), parameterized as
described above, as well as a target database sequence of
length L. Theoretically, the best alignment could have the
nucleotide at position 1 in the database base pair with any
nucleotide at position 2 through L. If the database
includes large genomic contigs, L could be on the order of
tens of megabases, which is much larger than we would
expect any RNA to ever be. There is no need to check for
base-pairings further apart than the longest RNA we
would expect to find. To reduce time and memory require-
ments, we limit the total length of sequence in the target
database for a single hit to a parameter D. Then, only posi-
tions 2 through D will need to be checked for a base pair
to position 1. D needs to be set small enough for efficient
performance but large enough so as not to miss any real
homologs. By default, D is set to be two times the query
length. The algorithm has a time complexity of O((M -
B)LD + BLD2) and a memory complexity of O((M - B)D +
BD2) [16]. A greedy algorithm is used to resolve these
scores into a maximally scoring set of K non-overlapping
hits (i1, j1), (i2, j2), ... (iK, jK) on the target sequence, where
ix and jx are the starting and ending coordinates of the hit
on the target sequence, respectively. Alignments are then
determined using the previously reported divide-and-con-
quer algorithm [18]. For each hit greater than a specified
threshold, the score, alignment positions in the query and
the target, the alignment, and E-values and P-values (cal-
culated as described below) are reported.

Statistics
In order to determine statistical significance, we need to
know what distribution RSEARCH scores follow. Much
work has been done on the statistics of primary sequence
alignment [32,44–49]. All these approaches rest on the
proposition, proven for the ungapped case and empiri-
cally true for the gapped case, that local alignment scores
follow the Gumbel distribution [32,50]. For a specific
query sequence, the expected number of hits (E) with
score greater than or equal to a given score (x) is given by
the formula E = KNe-λx, where N is the size of the database
and K and λ are characteristic parameters dependent on
the query sequence and the base composition of the data-
base. (It should be noted that this equation is often seen
written as E = KMNe-λx, where M is the size of the query
sequence. As we have chosen to recalculate λ and K for
each individual query sequence, we have incorporated the
M parameter into our K.) This formula can also be written

as E = e-λ(x - µ), where . The probability (P) that

a score greater than or equal to a given score (x) is
observed by chance is then given by P = 1 - e-E = 1 -
exp(KNe-λx). Thus, calculating the E-value and P-value for
a given score is simple provided a reasonable procedure
for determining λ and K is found.

In the absence of a theory for the distribution of gapped
structural alignment scores, we have chosen to determine
K and λ empirically through maximum likelihood fitting
of a Gumbel distribution to the score histogram obtained
from alignment to random, simulated sequences. A large
number (usually 1000) of i.i.d. sequences of length 2 × D
(where D is the maximum possible length of a hit) are
generated. The G+C content of these sequences are set as
described below. The query is searched against each ran-
dom sequence, and the best score is recorded in a histo-
gram. A maximum-likelihood method is then used to
determine λ and µ for a database of length 2 × D from
these data [44,49,51,52]. We can then calculate K using

the formula .

We initially created the random sequences using an i.i.d.
model assuming a single, fixed G+C content for all
sequences. As will be described below, this proved to be
inadequate, as many databases have heterogeneous G+C
contents. We then randomly choose a G+C content for
each random sequence based on the distribution of G+C
contents in the genome. We determine the G+C content in
the target database measured in adjacent, non-overlap-
ping windows of 100nt each, and use the distribution of
these contents to select randomly a G+C content for each
random sequence. For some databases where the range of
frequently observed G+C contents is large, one pair of val-
ues for (λ, K) is not enough to accurately calculate E val-
ues. To allow for multiple values of (λ, K) partition points
in the G+C content distribution can be set. For N partition
points, the distribution is divided into N+l bins, and λ
and K are calculated for each bin. For instance, if a parti-
tion point of 50 is set, λ and K are first calculated for ran-
dom sequences with G+C contents sampled from the
portion of the G+C content distribution with G+C content
< 50%, and λ and K are then calculated again with G+C
content sampled from the part of the distribution where
the G+C content is ≥ 50%. Then, for a given database hit,
the G+C content of the sequence of the hit is calculated
and used to select the appropriate λ and K for calculating
statistics. Thus, if partitions are used, the rank order of hits
based on score and rank order of hits based on statistics
may be different.

Implementation and parallelization
RSEARCH was implemented in C. Source code is available
from our web site [53] and is available free of charge
under the terms of the GNU General Public License
(GPL). Version 1.0 was used for all experiments reported
here. Timings and benchmarks reported were performed
on a 1 GHz Pentium III Linux workstation with the Man-
drake distribution, using the Intel C compiler version 6.0
with options "-O3 -static -mpl -xK" to compile the pro-
gram. Because the RSEARCH algorithm is time-consum-

µ
λ

= log KN

K
e

D
=

λµ

2
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ing, we also implemented a data-parallel version of
RSEARCH using the Message-Passing Interface (MPI)
[33].

Data sets and parameters
Several different data sets were used for testing and analy-
sis, as described below. Sequence and structures for ribo-
nuclease P RNA were taken from the RNase P database
[54]. Signal Recognition Particle (SRP) sequences and
structures were taken from the SRP database [55]. Three
different human SRP sequences appear in the database.
We chose to use sequence A, which corresponds to the
originally sequenced RNA molecule. (This sequence was
taken from GenBank accession X01037, but has two
nucleotides that are different from the current GenBank
version X01037.1). We used an Asn tRNA from Archae-
oglobus fulgidus (GenBank AE001087.1, positions 4936–
5008) [56] with the structure proposed by tRNAscan-SE
[57]. For a representative yeast (S. cerevisiae) tRNA, we
took the genomic sequence of the Ala tRNA originally
sequenced by Holley [58,59] (GenBank accession
Z28265.1, positions 1117–1189). The precursor to the C.
elegans miRNA mir-40 was also used [60] (GenBank acces-
sion AL110499.1, positions 17411–17507). Unless other-
wise noted, the full length of each gene was used as the
query sequence.

Three different databases were used for searches. The yeast
genome was downloaded from http://www.yeastge
nome.org and dated August 29, 2001 [59]. The database
of 11 Archaeal genomes was previously described [61].
The Arabidopsis thaliana genome was downloaded from
ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/
SEQUENCES[62].

For testing BLAST, WU-BLAST 2.0MP, dated October 20,
2002, was used with the -W3 and -kap options [12,63].
For SSEARCH (an implementation of the full Smith-
Waterman algorithm), version 3.4t05 was used with
default parameters [11,64].

Results
Optimal parameter set
We first asked what set of parameters – matrix, gap penal-
ties, beginsc, and endsc – would be optimal to use as the
defaults in RSEARCH. To assess this, we decided to choose
the set of parameters that gives the lowest minimum error
rate for a set of two test searches. The minimum error rate
is defined as the minimal possible sum of false positives
and false negatives for a search taken over all possible cut-
off scores. The first search we used was the genomic copy
of the alanine tRNA from S. cerevisiae folded using tRNAs-
can-SE searched against the yeast genome to identify the
295 tRNAs present there. The second search we used was
M. jannaschii RNase P searched against a database of 11

Archaeal genomes to identify the 11 RNase P homologs
found there. As doing the real searches for all the parame-
ters we wanted to test would have been computationally
infeasible, we estimated the false negative rate in many
cases by searching a smaller database and extrapolating to
the size of the full database. To abbreviate the yeast tRNA
search, we took chromosome VII as a proxy for the whole
genome. For the RNase P search, we created a smaller
database of similar G+C content. After several rounds of
iterative trial and error optimizing different parameters,
we decided to use RIBOSUM85-60 as the default matrix
with α = 10.00, β = 5.00, α' = 0.00, β' = 15.00, beginsc =
0.00, and endsc = -15.00. We might have been able to
derive a more robust parameter set had we used a more
comprehensive set of tests, but the long running time
required by RSEARCH makes such an approach infeasible.

RIBOSUM85-60 has several characteristics typical of these
matrices (Figure 3). It consists of two matrices – one 16 ×
16 for base pair substitutions and the other 4 × 4 for single
nucleotide substitutions. In the singlue nucleotide substi-
tution matrix, the A-A identity has a score (2.22) much
larger than the other single nucleotide identities. This sug-
gests that conserved As are especially common in single
stranded regions of 16S ribosomal RNA. Unlike typical
nucleotide or amino acid substitution matrices, not all
values on the identity diagonal of the 16 × 16 matrix are
positive. This reflects the specificity of base pairing.
Canonical Watson-Crick and G-U pairs are observed
much more often than non-canonical pairs. Since non-
canonical pairs occur less often than expected on the basis
of individual nucleotide probabilities, the log-odds score
for these pairs aligned to themselves is negative. Second,
substitution of one canonical pair for another usually
gives a positive score (e.g. A-U to C-G has a score of 1.47).
Therefore, the RIBOSUM matrices resemble what we intu-
itively assume a good base pairing substitution matrix
would look like.

We compared the minimum error rates at these parameter
choices to the performance of BLAST and SSEARCH on
the same search problems. For the problem of finding
yeast tRNAs using the alanine yeast tRNA as a query, the
minimum error rate for the BLAST search was 194, while
SSEARCH gave a minimum error rate of 223. The mini-
mum error rate observed using RSEARCH was 50. Instead
of the default matrices in BLAST and SSEARCH, we also
tried other matrices and gap penalties, both made in a
similar fashion to RIBOSUM85-60 and as suggested by
others [65]. None of these changes resulted in a significant
improvement in performance for either BLAST or
SSEARCH. For the M. jannaschii RNase P search, both
BLAST and SSEARCH give a minimum error rate of 4,
while RSEARCH gives a minimum error rate of 2. These
tests indicate that RSEARCH, using secondary structure, is
Page 10 of 16
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capable of outperforming primary sequence search
programs.

To help insure that the above results were not the result of
overtraining on those two specific searches, we performed
similar tests with another tRNA and RNase P query
sequence. We first asked how well an Asn tRNA from A.
fulgidus could find the 494 tRNAs present in the database
of Archaea genomes. The minimum error rates for BLAST
and SSEARCH were 305 and 373, respectively. The
RSEARCH search had a minimum error rate of 66. We also
used the P. furiosus RNase P sequence to search the data-
base of Archaeal genomes for homologs. The minimum
error rate for BLAST was 6 and for SSEARCH was 5. The
minimum error rate using RSEARCH was a perfect 0.
These data reinforce our conclusion that RSEARCH can
outperform primary sequence search programs.

Statistics
Calculation of minimum error rates requires prior knowl-
edge of all homologs of the query sequence in the data-
base. As we wish to use RSEARCH to search a database
when such information is still unknown, we need a
method for evaluating the statistical significance of a hit.
We assumed that RSEARCH scores would follow the
Gumbel distribution, just as scores from primary
sequence search programs like BLAST do [32,45,46]. We
therefore asked whether the scores produced by a search
of random sequence do in fact follow the Gumbel distri-
bution. The distribution of scores from one such search of
random sequences is shown in Figure 4a. It is clear from
these plots that the score distribution more closely fits the

Gumbel distribution than the normal Gaussian
distribution.

We next assessed whether, on average, the E-values
reported are an accurate reflection of the false positive
rate. We examined six searches of the Archaeal genome
database with M. jannaschii, P. furiosus, E. coli, B. subtilis,
S. cerevisiae, and H. sapiens RNase P sequences as the
queries. For the six searches, we then computed the aver-
age observed E-value (observed number of false positives)
at various calculated E-value cutoffs. If the statistical
model is correct, we expect the calculated E-value cutoff to
be equal to the average number of observed false positives
scoring better than the cutoff. We first calculated E-values
using random sequences with a fixed G+C content of
45.8%, which is the overall G+C content of the Archaeal
database. Under this model, there were 246 ± 257 false
positives at an E-value cutoff of 1. Therefore, this statistical
model was inadequate.

Looking more closely at the data led us to hypothesize
that the statistical method was failing because the target
database consists of a heterogeneous population of
sequences with widely varying G+C contents. We first
tried correcting for this by randomly picking a G+C con-
tent for each random sequence used in the simulation to
calculate λ and K. This G+C content was picked from the
distribution of G+C contents observed in the database.
With this model, there were 8 ± 8 false positives at an E-
value cutoff of 1. While the average number of false posi-
tives is closer to that predicted by the E-value, and the
standard deviation is much smaller, we wished to
improve the statistics even further. Since the G+C content

The RIBOSUM85-60 matrixFigure 3
The RIBOSUM85-60 matrix. The 16 × 16 matrix is used to get scores for aligning base pairs. The 4 × 4 matrix is used to get 
scores for aligning single-stranded regions. Positive scores are shaded.
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RSEARCH statistics, a Distribution of scores for a search against random sequencesFigure 4
RSEARCH statistics, a Distribution of scores for a search against random sequences. We searched a database of 10,000 ran-
dom sequences of 10,000 nucleotides each with a GC composition of 50%  using the precursor to the C. elegans miRNA mir-
40 as the query [60]. We took the best score found for each of the 10,000 sequences in the database and plotted their distri-
bution. We then calculated the mean and standard deviation and plotted the Gaussian distribution for those values. We also 
calculated K and λ for the Gumbel distribution and plotted that distribution. b Average observed number of hits with E-value 
less than a cutoff versus reported E-value for searches of various RNase P queries against database of Archaeal genomes. E-val-
ues were computed using partition points of 40% and 60% G+C content.
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distribution of the database has a large variance, we
decided to partition the G+C distribution into 3 bins: one
for G+C contents less than 40%, one for contents between
40% and 60%, and one for G+C contents greater than
60%. We calculated separate values of λ and K for each of
these bins. With this statistical model, there are 2 ± 3 false
positives at an E-value of 1. Observed E-values between 1
and 100 never deviate significantly from the computed E-
value (Figure 4b), especially for observed E-values less
than 10. Therefore, this statistical model was used for fur-
ther searches of the Archaeal database. Since partitions are
only necessary for databases with a large variance, and
since the optimal partitions vary from database to
database, the default statistical model in RSEARCH is to
calculate a single λ and K without using any partitions.

Examples of Performance
We then wished to assess how well RSEARCH would per-
form in additional realistic scenarios. To study this, we
chose an RNA molecule which was not part of the training
set at all – the Signal Recognition Particle (SRP) RNA. We
tested a variety of SRP query sequences against several
database genomes. Each test was designed to look across
phylogenetic domains or kingdoms. In each case, we com-
pared its performance to BLAST and SSEARCH. In some
cases, RSEARCH performed as well as these primary
sequence search programs. In one rare case, using Pyrococ-
cus horikoshii SRP as the query, SSEARCH and BLAST out-
performed RSEARCH. Some examples where RSEARCH
does outperform primary sequence searches are given
below.

In one example, we searched for the 11 SRP genes in the
Archaeal genomes using SRP from the Eubacteria B. subti-
lis as the query. No hits with an E-value less than 10 were
observed with BLAST. SSEARCH found 13 hits at an E-
value cutoff of 10, three of which were true homologs and
10 of which were false positives. No hits were observed
with an E-value less than 0.05 using SSEARCH. In con-
trast, 16 hits with an E-value less than 10 were observed
with RSEARCH, six of which are true homologs. Two of
these true positives, but none of the false positives, had an
E-value less than 0.05 (E = 0.0064 for M. jannaschii and E
= 0.0067 for A. fulgidus).

If we instead use H. sapiens (a eukaryote) SRP as the query
to find homologs in the Archaeal genomes, BLAST found
seven hits with an E-value less than 10, none of which are
true homologs. SSEARCH found nine hits with an E-value
less than 10, only one of which was a true homolog.
SSEARCH did not find any hits with an E-value less than
0.05. RSEARCH, on the other hand, found four hits, two
of which are true homologs, with an E-value less than 10.
The two true homologs, but not the two false positives,

had E-values less than 0.05 (E= 0.0067 for Methanobacte-
rium thermoautotrophicum and E = 0.0081 for A. fulgidus).

As a final test, we searched the genome of the plant A. thal-
iana with H. sapiens (an animal) SRP. There are at least
eight copies of SRP in the genome; we take a significant hit
to any of these eight copies as indicative of an ability to
find SRP [66]. Neither BLAST nor SSEARCH can find any
of these copies with an E-value less than 10. In contrast,
several copies of SRP can be found using RSEARCH, with
the most significant hit having an E-value of 9.6 × 10-6.
Taken together, these data suggest that if we knew about
either H. sapiens or B. subtilis SRP, we would be able to find
SRP genes in distantly related genomes in other phyloge-
netic domains or kingdoms with confidence using
RSEARCH, but not with either SSEARCH or BLAST.

Timings
As mentioned previously, the time complexity of the scan-
ning algorithm in RSEARCH is O((M - B)LD + BLD2). We
know that D is set to be 2M by default, and assume that in
the unrealistic worst case, every position in the query
structure represents a bifurcation. Then, the worst-case
running time of the scanning algorithm is O (NM3), for a
query of length M and database of length N, though actual
running time will be less based on the number of bifurca-
tions. Calculation of the statistics, which is O(M4), takes
an additional amount of time. Therefore, for a large data-
base where M <<N, the algorithm scales linearly with the
size of the database but as the cube of the length of the
query sequence. It takes 2.9 CPU days to search E. coli SRP
(113 nt) against the 2.1 × 107 nucleotide Archaeal data-
base. Approximately 2% of that time is spent calculating
values for K and λ. In contrast, the P. furiosus RNase P
sequence (330nt) requires 38 CPU days to search the
same database. For this search, approximately 7% of the
time is spent calculating values for K and λ. These searches
would take 26 CPU years and 340 CPU years respectively
to search the non-redundant nucleotide database of Gen-
Bank (6.9 × 109 nucleotides). Actual running times can be
reduced by using a large-scale clustered computing facil-
ity. Actual running times for the above searches on a par-
allel cluster are 33 minutes for finding homologs of E. coli
SRP in the Archaea (128 CPUs), and 7.4 hours for finding
homologs of P. furiosus RNase P in the Archaea (124
CPUs). Therefore, use of RSEARCH is currently practical
only when a large multiprocessor computing facility is
available.

Discussion
Here we have presented RSEARCH, a program for finding
homologs of a single RNA sequence given its secondary
structure. RSEARCH extends previous profile SCFG imple-
mentations in three ways, each of which contributes to its
superior performance over BLAST and SSEARCH [14,16].
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First, RSEARCH allows the use of a single sequence as a
query, by incorporating a substitution matrix and gap
penalties to set the parameters of the covariance model.
Second, RSEARCH includes local alignment. Third,
RSEARCH includes empirically derived values for statisti-
cal significance. Combined, these improvements make
RSEARCH a useful tool for finding homologs of biologi-
cally important RNAs.

There are three areas in which future development efforts
should be focused to improve RSEARCH's performance.
First, the quality of the substitution matrix influences the
performance of the program. Here we built the matrix
using only a single class of RNA molecules and chose the
best matrix based on only two sample tests. Using addi-
tional classes of RNA molecules for both building the
matrix and choosing the best default may improve
RSEARCH's performance. Alternative algorithms for clus-
tering and weighting sequences should also be explored.
Finally, an exponential family of matrices (like the PAM
matrices) rather than an empirical family (like the BLO-
SUM matrices) may be worth considering as well. The rate
matrix of Knudsen and Hein would be useful in this
approach [40].

Second, RSEARCH is quite slow. Many searches are infea-
sible on a single CPU. We worked around this problem by
performing searches in parallel using a clustered comput-
ing environment. This solution is not ideal due to the
resources required for such an environment. Advances in
computing technology will gradually make more and
more searches practical on a single workstation; a new
workstation purchased today is two to three times as fast
as the machines used in this paper. More importantly,
heuristic improvements to RSEARCH may speed it up sig-
nificantly, just as BLAST and FASTA are significant speed
improvements to the Smith-Waterman algorithm.

Finally, the requirement that the secondary structure of
the query sequence is known must be addressed. Even a
one base pair misprediction can significantly alter the
results of the search (data not shown). This is not a prob-
lem if one is searching for homologs of an RNA sequence
whose structure is well established (e.g. tRNA, RNase P,
SRP). As RNA secondary structures are established
through the sequencing of many homologs and compara-
tive analysis [67], there is less need for a program that can
handle a single sequence query rather than a large
sequence family in these cases. The power of RSEARCH
comes from being able to do searches when we only know
of a single member of an RNA sequence family (e.g., novel
noncoding RNA genes recently discovered in E. coli and
various Archaea [61,68–73]). In these cases, ideally we
would like to be able to accurately predict secondary struc-
ture starting only with a single sequence. Recent work

shows promise in simultaneously aligning and folding a
pair of RNA sequences [23,25,26,74]. These algorithms
predict structure more accurately than single-sequence
RNA folding algorithms. Many RNA genefinding
approaches take advantage of comparative data. Close
homologs of novel RNAs can often be found by primary
sequence search programs. These homologs can then be
used in a pairwise RNA folder to get a structure for the
query sequence. Improvements in such algorithms and an
understanding of how best to predict the folding of a
query sequence for RSEARCH should allow us to use
RSEARCH to find homologs of these novel RNAs.

Availability and requirements
Source code of RSEARCH is available from our web site
[53] and is available free of charge under the terms of the
GNU General Public License (GPL). In should compile
under any Unix system with a C compiler.
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