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The flipflop orphan genes are required for
limb bud eversion in the Tribolium embryo
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Abstract

Background: Unlike Drosophila but similar to other arthropod and vertebrate embryos, the flour beetle Tribolium
castaneum develops everted limb buds during embryogenesis. However, the molecular processes directing the
evagination of epithelia are only poorly understood.

Results: Here we show that the newly discovered genes Tc-flipflop1 and Tc-flipflop2 are involved in regulating the
directional budding of appendages. RNAi-knockdown of Tc-flipflop results in a variety of phenotypic traits. Most
prominently, embryonic limb buds frequently grow inwards rather than out, leading to the development of
inverted appendages inside the larval body. Moreover, affected embryos display dorsal closure defects. The
Tc-flipflop genes are evolutionarily non-conserved, and their molecular function is not evident. We further found
that Tc-RhoGEF2, a highly-conserved gene known to be involved in actomyosin-dependent cell movement and
cell shape changes, shows a Tc-flipflop-like RNAi-phenotype.

Conclusions: The similarity of the inverted appendage phenotype in both the flipflop- and the RhoGEF2 RNAi
gene knockdown led us to conclude that the Tc-flipflop orphan genes act in a Rho-dependent pathway that is
essential for the early morphogenesis of polarised epithelial movements. Our work describes one of the few
examples of an orphan gene playing a crucial role in an important developmental process.

Keywords: Appendage formation, Epithelial morphogenesis, Evagination, Orphan flipflop gene, PCP, RhoGEF2,
Tissue folding, Tribolium castaneum
Background
The general bauplan of the insect leg is highly conserved
in evolution and so are the genes controlling appendage
growth and patterning [2]. Yet, principal topological dif-
ferences within the insects exist. In the fruit fly Drosoph-
ila, the leg anlagen invaginate from the larval epidermis
and internalise to develop inside the body cavity as im-
aginal discs. During pupation, appendages evert and only
become functional in the adult. In contrast, ventral ap-
pendages of the flour beetle Tribolium start as everting
epidermal bulges that subsequently grow in length dur-
ing embryogenesis. This mechanism of appendage for-
mation is representative for most arthropods and similar
to apical epidermal ridge formation in vertebrates [59].
Eventually Tribolium larvae hatch with fully differenti-
ated, functional appendages [49].
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Bud formation takes place in a restricted area of the
epithelium where cells collectively polarise, undergo cell
shape changes and, as a consequence, evaginate. Once
this crucial decision is made, the bud grows in length
and eventually differentiates [19, 54, 60]. The coordi-
nated contractility of a group of cells at their apical or
basal cortices provides the cellular basis for this mor-
phogenetic event: apical constriction leads to tissue inva-
gination while basal constriction results in the formation
of an external bud. Constriction at one cortex of a cell
usually goes along with expansion of the membrane at
the opposite side [22].
To date, morphogenetic processes that involve apical

constriction are intensely studied in a variety of develop-
mental contexts. Most prominent examples are the
infolding of cell sheets during gastrulation or neurula-
tion, blastopore formation, trachea development, dorsal-
and neural tube closure as well as embryonic tissue
sealing during wound healing [22, 25, 27, 34, 40, 45].
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However, tissue eversion as a consequence of basal
constriction is less well understood and has been ana-
lysed in only a few cases: the formation of the midbrain-
hindbrain boundary constriction and morphogenesis of
the optic-cup in vertebrates, and notochord formation in
an urochordate [9, 14, 28, 29, 33]. Classical studies in
the polyp Hydra describe basally constricted cells within
epithelial sheet curvature during reproductive bud initi-
ation [12, 58].
Different cellular mechanisms such as differential

growth or compressing forces from neighbouring cells
have also been shown to initiate tissue bending and have
been described for morphogenetic events like branching
of developing epithelia or gut looping [56]. Moreover, all
the described processes are likely to synergise with other
types of cell behaviour, such as directed cell migration
into the region where a bud will form, or changes in ad-
hesive properties once a bud protrudes out of the plane
of an epithelium.
In any case, epithelial cell shape changes require the

dynamic and spatial reorganisation of the actomyosin
network. Its assembly and disassembly is controlled by
small GTPases like RhoA (ras homologue family mem-
ber A). RhoA becomes activated by the guanine nucleo-
tide exchange factor RhoGEF2 which is transported to
the apical cell cortex along the polarised microtubule
network through association with the plus-end binding
protein EB1 at the tips of the growing microtubules. At
the apical cortex, active RhoA triggers myosin contrac-
tion through the Rho-associated coiled-coil kinase
(ROCK) [27, 41].
Rho family GTPases, the effectors of myosin constric-

tion, are also a target of the planar cell polarity (PCP)
signalling pathway [30] that coordinates the behaviour of
cells within an epithelium. The aligning of activated my-
osin through PCP along an axis eventually leads to
polarised tissue-bending and -folding in one direction
exemplarily seen during neural tube folding [35]. PCP
involves the non-canonical Wnt-signaling pathway
upstream of Rho [6].
In addition, the Rho/RhoGEF2/ROCK cassette is

employed by other upstream signals and factors like the
Jun-N-terminale-kinase (JNK-) or G-protein-coupled
receptors (GPCR) [17, 21, 37].
In order to further understand the crucial aspects of

early evagination processes we analysed genes in Tribo-
lium resulting in a hitherto not described larval knock-
down phenotype of inverted rather than everted larval
appendages.
Here, we focus on the novel Tc-flipflop1 (Tc-ff1) gene

that was identified in the genome-wide RNAi (RNA
interference) screen iBeetle [48] and a newly identified
flipflop paralogue (Tc-ff2). RNAi-based knockdown of
Tc-ff results in the formation of inverted but otherwise
fully developed legs inside the larval thorax rather than
growing out distally. A similar appendage phenotype
was observed in an insertional mutant identified in the
GEKU screen [55] which is located in the RhoGEF2
gene. Furthermore, we found that both Tc-flipflop genes
as well as Tc-RhoGEF2 are essential for the integrity of
morphogenetic movements of embryonic cells and
extraembryonic membranes. We propose that in the
limb-field, the very early decision of an epithelium to ei-
ther invaginate or evaginate depends on Rho associated
signalling with the novel Tc-ff genes as essential media-
tors to secure tissue eversion. Whether restricted only to
Tribolium or fast evolving yet present in other animals,
the Tc-ff orphan genes highlight the involvement/import-
ance of novel factors in early epithelial morphogenesis
and appendage formation.

Methods
Animal stocks
Beetle adults and embryos (Tribolium castaneum, nGFP
line) [43] were kept under standard conditions on wheat
flour at 30 °C [5] and used for parental RNAi, in situ
hybridisation and live imaging.

RNAi mediated knockdown
For gene specific knockdown non-overlapping fragments
were ordered from Eupheria Biotech GmbH (1 μg/μl,
3 μg/μl). For parental RNAi young adult females were
sedated on ice and fixed on a petri dish using double-
sided adhesive tape. dsRNA (Tc-ff, 500 ng/μl; Tc-Rho-
GEF2, 200 ng/μl) was injected into the abdomen under a
stereomicroscope using a glass capillary connected to a
manually controlled syringe. Gene specific effects for all
results shown were validated with at least two non-
overlapping fragments (NOFs) for each gene (Tc-ff1:
NOF1 basepairs 1–320 (xx-90,314-2), NOF2 bp 340–659
(xx-90,314-1), Tc-ff2: NOF1 bp 129–416 (xx-90,313-3),
NOF2 bp 417–710 (xx-90,313-2), Tc-RhoGEF2 NOF1 bp
2338–2664 (iB_03492), NOF2 bp 7408–7907) (iB_00510)).
Eggs were collected and either fixed (in situ hybridisation,
antibody staining, morphological analysis) or incubated at
30 °C to develop a cuticle. Tc-Dll dsRNA was injected as a
control to validate gene-specific effects.

Molecular biology and expression analysis
For whole mount in situ hybridisation gene-specific
primers were used (Metabion) to amplify gene fragments
via PCR using cDNA synthesised from total RNA. The
amplified fragments were subcloned into the pCR4
vector (TOPO-TA Cloning Kit, Invitrogen). In vitro
transcription for synthesis of DIG-labelled RNA probes
was performed using the DIG RNA Labelling Kit (Roche
Applied Science). Whole mount in situ hybridisation
was performed as previously described [46]. Staining was
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achieved through application of an Anti-Digoxigenin-AP
antibody in combination with NBT/BCIP (Roche
Applied Science).
Antibody staining was carried out as previously

described [51] using antibodies raised against short pep-
tides corresponding to Flipflop1 (NH2-CPKTTKPKAK-
CONH2), Flipflop2 (NH2-CSKNTEHKTK-CONH2)
(Pineda Antibody-Service) and Cleaved Dcp-1 (#9578,
Cell Signaling Technology), respectively. A Biotin-SP-
conjugated AffiniPure Anti-Rabbit lgG antibody was
used as secondary antibody (Jackson ImmunoResearch
Europe Ltd). Staining was carried out using Vectastain
ABC-AP (Vector Laboratories) and NBT/BCIP.

Live imaging
Eggs (nGFP) were dechorionated in diluted bleach,
washed, positioned on a microscope slide and covered
with halocarbon oil (Voltalef 10S). Injections were per-
formed under an inverted microscope using a microma-
nipulator. Live imaging was carried out using a Zeiss Z.1
microscope (Zen 2.3 software) equipped with a motorised
stage. Pictures were taken every 1–5 min. Images and
videos were processed with Adobe Photoshop CS5.

Databases
Genomes:
Tribolium castaneum: http://bioinf.uni-greifswald.de/
gb2/gbrowse/tcas4/
UCSC Genome Browser: https://genome-euro.ucs

c.edu/cgi-bin/hgHubConnect? redirect=manual&source
=genome.ucsc.edu

RNAi induced phenotypes:
iBeetle-Base: http://ibeetle-base.uni-goettingen.de [10].

Protein structure:
HHpred: https://toolkit.tuebingen.mpg.de/#/tools/hhpred [52].
SMART: http://smart.embl-heidelberg.de/smart/set_-

mode.cgi?NORMAL=1 [50].

Results
The novel gene Tc-flipflop reveals a new RNAi knockdown
phenotype
In wildtype Tribolium larvae, appendages develop as
everted structures outside the larval body (Fig. 1a). The
RNAi mediated knockdown of the gene Tc-flipflop1 (Tc-
ff1) results in an enigmatic novel RNAi cuticle pheno-
type where larval appendages developed inside the larval
body (outside-in phenotype). This gene was uncovered
during the iBeetle prescreen when randomly selected
cDNAs were tested for their function [48]. In Tc-ffRNAi

cuticles, various numbers of head – or thoracic append-
ages appear to be missing or shortened when focussing
onto the cuticle surface (Fig. 1b, circles). However, those
appendages are indeed present inside the larva as seen
in optical sections (Fig. 1b'). These inverted structures
do not show any obvious developmental defects, reveal-
ing distal segments (flagellum, pretarsal claw) oriented
towards the lumen, while podomers and joints seem
fully differentiated (Fig. 2a, b).

There are two Tc-flipflop genes in the Tribolium genome
In addition to the original Tc-flipflop gene, we identified
an obvious Tc-ff paralog in the Tribolium genome. Both
genes show 47% sequence similarity at the amino acid
level and were therefore named Tc-ff1 (TC032552) and Tc-
ff2 (TC030881), respectively. Tc-ff1 and Tc-ff2 are short
genes (738 and 756 bp) with two exons each (Fig. 1c, d)
that lack any conserved domains.
ff1 is also present in other Tribolium species including

T. confusum, T. madens and T. freemani. Due to their in-
complete annotation, it is not yet clear whether those
genomes all contain a true ff2 paralogue (UCSC Genome
Browser data, not shown). However, the genes cannot be
found in any other sequenced genomes, including more
distantly related coleopteran species.
In Tribolium castaneum, both Tc-ff genes are ubiqui-

tously expressed in all embryonic stages at mRNA level
(Additional file 1: Fig. S1B-E, F, H). The initially ob-
served outside-in appendage phenotype was validated
for both genes using two independent, non-overlapping
fragments (NOFs) (Fig. 1c, d).

The “flipflop syndrome”
RNAi mediated knockdown of both Tc-ff genes results in
the outside-in appendage phenotype but also reveals
additional lesions of the larval cuticle such as the inva-
gination of abdominal segments and the failure of dorsal
closure. These alterations from the wildtype collectively
comprise the “flipflop syndrome”.
In addition to the phenotype of inwards grown head ap-

pendages and legs, the invagination phenotype either in-
cluded posterior abdominal segments (ff1, 16%, n = 205;
ff2, 19%, n = 113) (Fig. 3e) or just the appendages of the
last abdominal segment (urogomphi) (ff1, 16%, n = 205; ff2,
17% n = 113). Only stronger affected cuticles display an in-
complete closure of the dorsal epidermis (ff1, 19%, n = 205;
ff2, 20%, n = 113) (Fig. 3c, h). Not analysable cuticle
remnants (ff1, 14%, n = 205; ff2, 5%, n = 113) (Fig. 3f) and
the complete failure of cuticle formation (“empty egg”)
(ff1, 25%, N = 443; ff2, 55%, N = 322) represented the stron-
gest detectable knockdown effects. RNAi experiments for
either Tc-ff1 or Tc-ff2 displayed the whole range of the
“flipflop syndrome” but differed in penetrance being higher
in Tc-ff2 RNAi compared to Tc-ff1 (Fig. 4). The phenotype
of inwards grown head appendages and legs was observed
more often in Tc-ff2 RNAi experiments (67%, n = 113)
when compared to Tc-ff1 (ff1, 40%, n = 205) (Fig. 4). The
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Fig. 1 Larval Tc-flipflopRNAi phenotype. (a) Wildtype cuticle. All appendages develop as everted structures. Each thoracic segment bears one pair
of visible legs. (b-b′) Tc-ffRNAi phenotype. (b) Surface view, (b´) optical section. (b) In the thoracic segments 2 and 3, one leg is everted normally.
Of the other legs, only the coxa is visible as an outer structure (circle) while the remaining leg is internalised (b′, arrows). (c, d) Gene organisation
of Tc-ff1 (c) and Tc-ff2 (d) genes including NOF (non-overlapping-fragment) positions used for RNAi experiments. A1 abdominal segment 1; Ant
antenna; Md mandible; T1–3 thoracic segment 1–3; ug urogomphi; scale bar (a-b′) 100 μm; all panels in all pictures: anterior to the left
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number of inversion events observed varies from only one
inverted appendage (see for example Fig. 1b´) to as many
as 8 and 9 (Fig. 3b–h) or even 10 (not shown) in more ex-
treme cases (Additional file 2: Table S2). Combined RNAi
experiments that included double stranded RNA for both
genes did not result in stronger or different cuticle
phenotypes compared to the single RNAi experiments
(Additional file 2: Table S1), nor were “empty egg” pheno-
types more frequent. The quantitative analysis was carried
out for the first two egg lays of RNAi experiments using a
NOF directed at the 3′ region of the genes (Fig. 1c). We
were able to validate the flipflop outside-in phenotype
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Fig. 2 Detailed view of the larval Tc-flipflopRNAi phenotype. a, b Magnified view of a larval inverted antenna a and leg b. Internalised parts are
fully differentiated; the distalmost structures (antennal flagellum) (arrowhead in a) and the pretarsal claw (arrow in b) develop normally and
display the inside-out event. Scalebar 20 μm
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using the 5′ NOF but with a much lower frequency as
the majority of embryos did not reach the larval stage
(“empty egg”). Using antisense mRNA probes for both
genes on Tc-ffRNAi embryos we observed strongly reduced
staining compared to untreated wildtype embryos
(Additional file 1: Fig. S1F-H), indicating the efficiency of
the knockdown.
ba
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Fig. 3 The “flipflop syndrome”. a-i Larval RNAi phenotypes of Tc-ff1 a-c, Tc-f
phenotype of inverted head appendages (arrowhead) and legs (arrows) in
(e, circle) and dorsal openings (c, h, dotted line) are detected. f, i In strong
A1 abdominal segment 1; T1 thoracic segment 1; scale bar 100 μm; all pan
Tc-flipflop determines the directionality of embryonic
appendage formation in Tribolium
To answer the question of when during development of
Tc-ffRNAi embryos the invagination of appendages starts,
we analysed the early embryonic morphology as well as
the expression profile of the distal leg marker Tc-Distal-
less (Tc-Dll) [4, 8] and the segmentally expressed Tc-
c

f

i

f2 d-f and Tc-ff1/ff2 g-i parental double-knockdown. a-i The enigmatic
different combinations. In addition, inverted abdominal segments
er cuticle phenotypes cuticle remnants also show inverted appendages.
els in all pictures: anterior to the left
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drumstick (Tc-drm, odd-skipped family) [16] as a marker
for proximal appendage border. We found that eversion
defects occur already at the beginning of appendage bud
formation (Fig. 5f ‘), becoming clearly visible in elongated
buds. When focusing on the ventral side of the germ
band not all limb buds are visible (Fig. 5d, circles). The
missing limbs can be detected, however, as invaginated
appendages at a deeper focal plane (Fig. 5d´, arrows).
Appendage marker gene analyses for Tc-drm (Fig. 5a-b”)
and Tc-Dll (Fig. 5c-d‘) revealed that inverted appendages
display wildtype expression patterns, confirming this
phenotype is due to defects in growth directionality but
not faulty pattern formation. As a result, embryonic
inverted appendages displayed the wildtype-specific ex-
pression pattern of both, Tc-drm expression at the seg-
mental base (Fig. 5b‘) and Tc-Dll expression in the distal
region (Fig. 5d‘).
It has been proposed that epithelial morphogenesis can

depend on an elevated level of cell death [32]. To reveal
whether this may play a role in the directionality of ap-
pendage growth in Tribolium, we analysed Tc-ffRNAi

embryos using an antibody detecting Dcp1 [42]. However,
the ingression of cells does not appear to be accompanied
by an elevated level of cell death in the limb primordium
or its immediate neighbourhood (Fig. 5f).

Knockdown of the highly-conserved Tc-RhoGEF2 gene
displays a Tc-flipflop-like RNAi phenotype
To find additional putative interaction partners of Tc-ff,
we searched the iBeetle database [10] for the characteris-
tic Tc-ff-like outside-in RNAi phenotype. This approach
follows the logic that a similar phenotype indicates the
involvement in a similar pathway. Indeed, appendage
eversion was disrupted when a gene coding for a Rho-
GTP exchange factor was knocked down via RNAi. The
analysis of the genomic region within the Tribolium gen-
ome revealed a gene model (au2.g3948.t2) that combines
two adjacent models from previous annotations
(TC003069 and TC003070). BLAST analysis identifies
this gene as the Drosophila homolog of the highly-
conserved Rho Guanine nucleotide Exchange Factor 2 in
Tribolium (Tc-RhoGEF2). The lack of sequence conser-
vation of the Tc-ff orphan genes made it difficult to
relate their function to known cellular pathways. Fortu-
nately, after the discovery of Tc-ff1, another outside-in
leg phenotype was found during an investigation of
lethal mutants identified in the GEKU transposon muta-
genesis screen [55]: the insertion line KT221 produced
homozygous embryos which occationally display
outside-in appendages. The KT221 insertion is located
in an intron of the Tc-RhoGEF2 gene identified via the
iBeetle database. RNAi mediated knockdown of Tc-Rho-
GEF2 generally results in much more severely affected
larval cuticles that often are hard to analyse. However,
Tc-RhoGEF2RNAi cuticles (N = 138) do reveal the charac-
teristic Tc-ff-like phenotype of inverted appendages
(29%) and incomplete dorsal closure (58%) (Fig. 6).

Tc-flipflop and Tc-RhoGEF2 influence morphogenetic
dynamics and polarity of extraembryonic membranes and
embryonic tissues
To determine the function of Tc-ff and Tc-RhoGEF2 in
early embryogenesis we analysed RNAi embryos both via
time-lapse microscopy and in fixed stages. We found that
RNAi mediated knockdown of Tc-ff as well as Tc-RhoGEF2
influences the integrity of extraembryonic membranes and
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interferes with morphogenetic movements of the young
germ anlage and the germ band.
In late blastoderm stages we observed deep constric-

tions between the extraembryonic membrane and the
site of the presumptive embryonic cells (Fig. 7b). Other
embryos were able to form a germ band that is excluded
from the serosa and displays a thickened posterior
growth zone (Fig. 7d). Moreover, we frequently observed
that germband extension underwent an S-shaped pro-
gression through the yolk (Fig. 7e). Such embryos often
display holes along the ventral midline during older
stages (Fig. 7g, h).
Via a live-imaging approach using a nGFP line [43]

we observed that the extraembryonic membranes are
functionally impaired. In the embryo shown in Fig. 8,
the rupture and successive retraction of extraembry-
onic tissue during germ band elongation is visible
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Discussion
Genes that are required for the allocation and patterning
of appendages are well-known [2, 59]. However, not
much is known about the factors that determine the ini-
tial direction of tissue evagination during appendage bud
formation. Here, we show that the novel genes Tc-ff1
and Tc-ff2 are required for early appendage eversion dur-
ing embryogenesis of Tribolium. Knockdown of those
genes leads to an outside-in phenotype of inverted ap-
pendages that has not been described so far. We further
observed this highly specific appendage inversion pheno-
type after knockdown of RhoGEF2 function. This leads
us to the hypothesis that the Tc-ff genes serve as import-
ant co-regulators within a Rho-dependent pathway.
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Eversion of embryonic limb anlagen requires the novel
flipflop genes in Tribolium
In the wildtype Tribolium embryo, limb development
starts as a bud that everts and subsequently grows in
length. For the first time, we identified genetic compo-
nents required for this important initial decision within
the limb field tissue. Initially, Tc-ff1 was uncovered via
its enigmatic inverted leg phenotype during the iBeetle
RNAi pre-screen using randomly picked cDNA clones as
a source for dsRNA [48]. By sequence homology we
identified a second flipflop gene in the Tribolium gen-
ome, named Tc-ff2. Both genes are predicted to code for
small proteins of 136 and 127 amino acids, respectively,
lacking any known functional domains. A web-tool
based analysis of their sequences [1, 26] characterises
the Tc-ff genes, at least in the absence of a binding part-
ner, as “unstructured” with long stretches of low com-
plexity domains.
To answer the question, whether the Tc-ff genes are

indeed protein-coding or function as long-non-coding
RNAs, we raised anti-peptide-antibodies that recognise a
single specific band of the expected molecular weight
(Additional file 1: Fig. S1A) in a Western blot using em-
bryonic extracts. We take this as indication that the pre-
dicted ORFs are indeed translated, however, the
antibody does not detect a distinct spatial or subcellular
pattern in the embryo.
The Tc-ff genes can be found in the Tribolium lineage

(including T. confusum,T. madens and T. freemani. UCSC
Genome Browser) but seem absent from any other se-
quenced genomes. Based on their lack of conservation,
small size and apparent disordered structure, we classify
Tc-ff1 and Tc-ff2 as orphan genes [53]. Given that orphan
genes of small size tend to be evolutionarily more recent
[31], these genes may well be limited to a small subset of
colepteran species. However, we also cannot exclude that
the Tc-ff genes provide a conserved function and homo-
logs cannot be identified due to small size and a fast-
evolving sequence. In any case, the Tc-ff genes represent
one of few examples of orphan genes with an essential
early embryonic function. In addition, these genes illumin-
ate an early decision in the development of appendages
which had been overlooked so far.
With the Tc-ff knockdown we observed a variety of

phenotypes in affected larval cuticles ranging from se-
vere to weak. We categorise the inverted growth of one
or just a few appendages without additional defects as a
weak knockdown phenotype. More severely affected cu-
ticles display many outside-in events at once combined
with a dorsal closure defect (Fig. 3h). The strongest ef-
fects are represented by cuticle remnants without recog-
nisable structures or the complete lack of a cuticle
(“empty eggs”), respectively, underlining that Tc-ff func-
tion is required in different tissues. While the Tc-ff2
knockdown results in a somewhat higher penetrance re-
garding phenotypic defects compared to Tc-ff1, both
genes appear to be non-redundant as the single knock-
down of either gene is sufficient to disrupt their mor-
phogenetic function. This is also highlighted by the fact
that the combined Tc-ff1/ff2 double RNAi knockdown
does not increase the overall penetrance compared to
the single knockdowns (Additional file 2: Table S1).
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We found that the direction of limb budding in Tribo-
lium is determined as early as the beginning of appendage
bud formation and is significantly influenced by Tc-ff func-
tion. We have no indications that in Tribolium the ever-
sion of the limb epithelium depends on an elevated level
of cell death as it has been shown for other cases [32, 44].

The flipflop genes may act in a RhoGEF-dependent cell
polarity network
Given that the orphan Tc-ff genes lack evolutionarily
conserved characteristics to associate them with any
known molecular pathway, we searched for other genes
that display the same or a similar RNAi knockdown
phenotype. We found that RNAi-mediated (partial)
knockdown of the ubiquitously expressed Tribolium
homolog of RhoGEF2 did also result in the disruption of
appendage eversion, resembling the characteristic Tc-ff
RNAi outside-in phenotype (Fig. 6). In contrast to Tc-ff,
Tc-RhoGEF2 represents an evolutionarily highly con-
served gene. By activating members of the Rho-family
GTPase [3], RhoGEF2 plays an essential role in a
number of morphological processes involving cell-cell
adhesion, cell polarity, cell migration and cell motility
[20, 36, 47]. Furthermore, RhoGEF2 is well known to be
a key factor controlling cell shape change and apical
constriction through the regulation of actomyosin con-
tractility [3, 15, 24, 38]. In Drosophila an impairment of
factors involved in Rho-dependent apical constriction
can result in salivary gland formation outside the em-
bryo, instead of forming inside the embryo as in wildtype
[7]. Here, we show that both Tc-ff and Tc-RhoGEF2 ini-
tially determine the direction of appendage growth.
However, the number and localisation of inside-out
events seen in different Tc-ffRNAi larvae does not follow a
certain pattern. This variability of the phenotype led us
to hypothesise that the cell fate decision of the epithe-
lium whether to invaginate or evaginate may be a quan-
titative local event rather than an all-or-nothing
epithelial switch. Depending on the number of cells
within the limb field undergoing uniform polarised con-
striction either at the apical or the basal side provides
the physical ground for an epithelium to buckle to one
of the two directions. Disruption of the uniformity of
this collective cell behaviour through absence of the
same polarity cue in all cells increases the likelihood of
adjacent cells being forced into a different direction. In
Drosophila it has been shown that inhibition of apical
constriction in a defined area of the epithelial tissue dis-
rupts ventral furrow formation depending on the num-
ber of cells affected as well as the intensity of the
inhibitory signal [13]. Tissue invagination does still func-
tion when a smaller section of cells is affected as long as
there are still enough cells undergoing cell shape change
“dragging” adjacent corrupted cells with them.
Based on the findings in Drosophila and the highly
conserved RhoGEF2 function, we hypothesise that in
Tribolium ff and RhoGEF2 play an essential role in the
decision where cellular constriction - either at the apical
or basal side - takes place, so that in the absence of this
apical-basal polarity cue the buckling direction becomes
random. However, the genes are not required for the
formation of the appendage primordium itself. Thus, we
propose that Tc-ff is involved in a Rho GTPase-
dependent pathway that regulates the apico-basal polar-
ity of a cell. However, a detailed analysis of the cellular
dynamics including suitable markers localising proteins
that are involved in cell shape change events will be
required to validate our hypothesis.

Tc-flipflop and Tc-RhoGEF2 are also required for the
morphogenetic dynamics and polarity of extraembryonic
membranes
In contrast to the single reduced amnioserosa of
Drosophila, Tribolium has two extraembryonic mem-
branes, amnion and serosa, that actively contribute to
the morphogenesis of Tribolium during gastrulation,
germ band extension and dorsal closure [18, 39]. We
have seen that knockdown of either Tc-ff or Tc-RhoGEF2
affects the directed morphogenetic movements and the
cellular integrity of extraembryonic tissues. This aspect
of Tc-ff and Tc-RhoGEF2 function is seen in the early
embryo where the extraembryonic membranes fold pre-
maturely and fail to fully cover the embryo. As a conse-
quence, a misshaped germband forms on top of the yolk
(Fig. 7d). This phenotype clearly illustrates that the
dorso-posterior translocation of the extraembryonic
tissues and the enwrapping of the embryo require coor-
dinated tissue elongation within a plane of cells, a
process likely to involve planar cell polarity (PCP) [57].
As described for other systems, Rho-dependent cell
shape changes can be regulated through the PCP path-
way that involves non-canonical Wnt signalling. Thus,
we propose that the polarised maintenance of extraem-
bryonic tissue dynamics during Tribolium embryogen-
esis depends on PCP and that Tc-RhoGEF2 and the Tc-ff
genes are downstream targets of this important signal-
ling pathway in Tribolium.
Additionally, we have observed premature ruptures of

extraembryonic membranes in RNAi embryos (Fig. 8) as
well as dorsal closure defects. In Drosophila, dorsal clos-
ure depends on actomyosin contractility at the apical
cortex of the amnioserosa cells while the actin cable in
cells of the leading edge seems dispensable for this
process [11, 40]. It is conceivable that the polarity of the
extraembryonic cells along the apico-basal axis might also
be disturbed in Tc-ffRNAi embryos and, as a consequence,
dorsal closure is impaired. An unstructured actomyosin
network also may contribute to weaken the integrity of
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the extraembryonic membranes epithelia so that they can-
not withstand strong mechanical tension during the dorsal
closure process. Once cell polarity markers become avail-
able for Tribolium it will be feasible to evaluate the in-
volvement of PCP in the process of dorsal closure.
Based on our observations we hypothesise that Tc-ff and

Tc-RhoGEF2 contribute to the polarisation of cell move-
ment early in development but do not influence the differ-
entiation of epithelial structures per se. Later, they are
involved in stabilising the cellular components required
for the pulling forces of tissues during dorsal closure.
Assuming that the Tc-ff genes act in the same path-

ways as Tc-RhoGEF2, we propose that they may be
downstream targets of non-canonical Wnt/PCP signal-
ling via the regulation of or in parallel to Rho proteins.

Conclusions
Here, we showed Tc-ff as one of the few examples of an
orphan gene playing a crucial role in a developmental
process such as in morphogenetic cell movements. This is
one more example for an additional novel, species-specific
or fast evolving factor that functions in an otherwise con-
served pathway. Previously, an orphan gene within the
BMP-pathway involved in digit formation and –outgrowth
in the limb has been described in a vertebrate [23]. It will
be interesting to see if functional equivalents of the Tc-ff
orphan genes will be found in other organisms.

Additional files

Additional file 1: Figure S1. Flipflop expression analysis. (A) Western
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asterisks). Unspecific bands of higher molecular weight may detect yolk
proteins. (B-E) whole mount in situ hybridisation using Tc-flipflop1 and
Tc-flipflop2 mRNA antisense-probes displays ubiquitous expression patterns
exemplarily shown in wildtype (wt) embryos both before and at the stage of
bud formation. (F-I′) Transcript detection in wildtype embryos (F, F′, H, H′)
and after knockdown of the respective gene (G, G’, I, I′) to validate
knockdown efficiency. (F′, G’, H′, I′) DAPI staining. Scale bar 100 μm;
all panels in all pictures: anterior to the left. Western blot analysis. (PDF 150 kb)
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