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Abstract
The peripheral nervous system comprises an infinity of neural networks that act in the communication between the central nervous
system and themost diverse tissues of the body. Along with the extension of the primary sensory neurons (axons and cell bodies), a
population of resident macrophages has been described. These newly called sensory neuron–associated macrophages (sNAMs)
seem to play an essential role in physiological and pathophysiological processes, including infection, autoimmunity, nerve
degeneration/regeneration, and chronic neuropathic pain. After different types of peripheral nerve injury, there is an increase in the
number and activation of sNAMs in the sciatic nerve and sensory ganglia. The activation of sNAMs and their participation in
neuropathic pain development depends on the stimulation of pattern recognition receptors such as Toll-like receptors and Nod-like
receptors, chemokines/cytokines, and microRNAs. On activation, sNAMs trigger the production of critical inflammatory mediators
such as proinflammatory cytokines (eg, TNF and IL-1b) and reactive oxygen species that can act in the amplification of primary
sensory neurons sensitization. On the other hand, there is evidence that sNAMs can produce antinociceptive mediators (eg, IL-10)
that counteract neuropathic pain development. This review will present the cellular and molecular mechanisms behind the
participation of sNAMs in peripheral nerve injury–induced neuropathic pain development. Understanding how sNAMs are activated
and responding to nerve injury can help set novel targets for the control of neuropathic pain.
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Key Points:

1. Sensory neuron–associated macrophages (sNAMs) are
involved in the pathophysiology of neuropathic pain
through the production of proinflammatory and pronoci-
ceptive mediators.

2. Sensory neuron–associated macrophages are activated in
the sensory ganglia after peripheral nerve injury mainly by
PRRs and chemokines.

3. Sensory neuron–associated macrophages also produce
anti-inflammatory mediators that counteract neuropathic
pain development such as IL-10.

4. Understanding the interactions between injured sensory
neurons and sNAMs can provide novel targets for
neuropathic pain control.

1. Introduction

According to the current IASP definition, pain can be defined as
“an unpleasant sensory and emotional experience associated
with, or resembling that associated with, actual or potential tissue
damage.”202 In other words, pain is a personal complex
experience that includes the conscious perception of a stimulus
capable of generating tissue damage and may further depend on
cognitive and emotional components.37,91,216,224 Whereas acute
pain has a protective function to avoid potential damage, chronic
pain can be maladaptive and pathological, and it represents one
of the most prevalent and disabling health conditions in modern
society.136,202 Neuropathic pain is a type of chronic pain
characterized by injury or disease that directly affects the
somatosensory nervous system, including peripheral fibers and
central neurons.202 Epidemiological studies estimate that this
pathology affects an average of 7% to 10% of the general
population, being one of the most prevalent health prob-
lem.38,110,190 The mechanisms involved in the development and
maintenance of neuropathic pain were initially characterized as a
neuronal dysfunction. Indeed, after nerve injury, a series of
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modifications occur across the pain pathway that includes
alterations in ion channel expression and function, upregulation
of neurotransmitters, and their receptors, which leads to a state of
neuronal hyperexcitability.13,43,46,50,54,61,77,119,145,176,205

Currently, there is a growing body of evidence indicating that the
cause of neuropathic pain is not restricted to changes in neuronal
activity but may involve a network of interaction among neurons,
glial, and immune cells.37,48,78,86–88,240 These cells may interact with
neuronal cell bodies and their fibers distributed throughout the
peripheral and central nervous system (CNS) in both pathological or
homeostatic conditions. In the case of neuropathic pain, when nerve
integrity is affected, immune/glial cells, which may be resident or
recruited to the injured tissue, and distally to the sensory ganglia and
spinal cord, are activated and release inflammatory mediators that
stronglymodify neuronal function, culminating in alterationsof painful
perception.165,223,236 Among the immune/glial cells, macrophages
emerge as one of themost important cell subpopulations involved in
neuroimmune interactions associated with neuropathic
pain.57,161,225 This review discusses the current evidence regarding
the cellular and molecular interactions between primary sensory
neurons and resident macrophages associated with these periph-
eral neurons, known as sensory neuron–associated macrophages
(sNAMs), that might play a crucial role in the development of neu-
ropathic pain. The role of infiltrating monocytes in the site of nerve
injury is also discussed. Finally, we pointed out additional mecha-
nisms by which peripheral macrophages may also counteract
neuropathic pain development.

2. Neuron associated–macrophages: their origins
and fate

Tissue-resident macrophage populations are present in a variety
of organs across the body.166,228,240 Although some character-
istics and functions are shared among different macrophage
populations, such as homeostasis maintenance and tissue
protection, these cells exhibit high functional plasticity and thus
have several specialized functions in each different niche/
tissue.58–133,133–136,138–166

Historically, distinct subpopulations of macrophages have
been defined according to the anatomical location and surface
markers; however, this definition has been recently expanded to
subset-specific gene expression signatures181 and ontogenies of
these cell populations.56 It was known that monocytes newly
released from bone marrow colonize various tissues, and once
mature, they may become resident macrophages with specific
features. It is currently accepted that most cells in the
hematopoietic compartment are regularly renewed from adult
hematopoietic stem cells (HSCs); however, recent findings
demonstrate that resident macrophages can self-maintain in-
dependently of HSCs because they may have an embryonic
origin. In this scenario, it is known that, at least in mice, tissue
macrophages are derived from 3 different developmental
sources.60,70,166,210 Macrophages firstly appear in the yolk sac
(YS) during initial fetal development without monocytic interme-
diates and then colonize various embryonic tissues.179 In the
embryonic period 8.5 (E8.5),macrophage precursors from the YS
and HSCs migrate to the fetal liver and give rise to the first
monocyte cells in E12.5.79,142 After birth, HSC in the bone
marrow produces Ly6C1 monocytes, which can migrate to
different tissues and differentiate into macrophages.76,220

Based on this, some groups have performed extensive
characterizations of resident macrophages in the most diverse
tissues, based not only on the anatomical location and profile of
phenotypic markers but also on the transcriptional and ontogeny

profile. In this sense, Gomez Perdiguero et al.63 proposed that
macrophages of the liver, lung, and epidermis are originated from
YS-derived erythro-myeloid progenitors. The CNS also has
resident macrophages with specific characteristics, including
self-sustainability and proliferation. Besidesmicroglia, meningeal,
perivascular, and choroid plexus macrophages are considered
CNS interface cells that appear to be derived from the YS,
demonstrating that different populations of CNS macrophages
share similar ontogeny.59,62

In addition to the macrophages residing in the CNS, peripheral
nerves also contain resident macrophages.113 These macro-
phages are distributed in the large peripheral nervous system
interaction network and comprise one of the most important
populations of myeloid cells associated with peripheral nervous
tissue. For instance, in the rat, sciatic nerve macrophages
constitute 1% to 4% of the total cell population.162 Conceptually,
the term NAMs defines the subset of resident tissue macro-
phages that are closely associated with peripheral nerves in the
most diverse tissues113 and can be characterized by the type of
tissue and nerve in which they reside, origin, and self-renewal
characteristic. The identification of macrophages in peripheral
nerves occurred many years ago. In a pioneering study by
Arvidson10 when examining the sciatic nerve of animals after the
systemic injection of horseradish peroxidase, an enzymatic tracer
that is widely distributed in most tissues, he observed through
electron microscopy, cells with similar ultrastructural character-
istics macrophages and located close to the epineurial and
endoneurial. Later, Gehrmann et al.55 were able to demonstrate
the presence of macrophages in the sciatic nerve and the dorsal
root ganglions (DRGs), where the cellular bodies of sensory
neurons are located. They confirmed the presence of macro-
phages in the DRGs by evaluating the expression of classic cell
markers, such as CR3 and MHC-II, by immunohistochemistry
reaction. Despite these data, only recently, sNAMs broad
characterization was performed. Importantly, it was found that
sNAMs from different neuronal compartments (sciatic nerve,
DRGs, and cutaneous intercostal fascial nerves) are mostly self-
maintained in adult mice.112,219 Contrary, ontology analysis of
sNAMs of the sciatic nerves revealed they are predominantly from
late embryonic precursors that are slowly replaced by bone
marrow–derived monocytes.231 Therefore, further studies are
important to finally define the origin of distinct sNAMs from dif-
ferent neural niches. Transcriptome analysis also revealed that
sNAMs share some characteristics with activated microglia.
However, sNAMs-specific genes were also identified, including
genes related to angiogenesis, collagen fibril organization, and
peripheral nerve structural organization and axon guidance.219

This specific transcriptional profile of sNAMs is in line with their
possible role in axon sprouting after peripheral nerve injury.112

Besides that, the participation of sNAMs in the pathophysiology
of neuropathic pain has been extensively studied, and these
studies will be discussed below.

3. The sensory neuron–associated macrophages in
the development of neuropathic pain

Neuropathic pain, the focus of this review, can occur because of
several stressors, such as viral infections, diabetic neuropathy,
mechanical trauma, neurotoxic chemicals, spinal cord injury,
stroke, and multiple sclerosis.38,77,110,190,221 Models of periph-
eral nerve injury are widely used to mimic neuropathic pain and
most of the common clinical characteristics of this pathology. The
development of neuropathic pain models has been fundamental
for characterizing pathophysiological mechanisms and has shed
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new light on the preclinical evaluation of potential therapeutic
interventions.119

The injury of primary afferent neurons conducts these cells to a
hyperexcitability state. Thus, the action potentials generated at
their endings are easily carried forward to the second-order
neurons in the dorsal horn of the spinal cord and later to
supraspinal brain regions, where the painful sensation is
processed and interpreted.18,43 It is currently well accepted that
the interactions of immune and glial cells within the peripheral
nervous system and CNS regulate neuronal excitability and
sensitize the pain pathway.145,155 When nerve integrity is
disrupted, neuroimmune interactions occur early in the local of
injury and register the initial trigger for neuropathic pain de-
velopment. Resident cells, including Schwann cells and sNAMs,
are responsible for the production of earlier inflammatory
mediators that mediate the recruitment of immune cells to the
injured nerve.9,47 After a peripheral nerve trauma, initial re-
cruitment of neutrophils occurs, followed by the infiltration of
inflammatory CCR21 monocytes, which might be important to
amplify the immune response.1,93 Studies show that systemic
treatment with chemotherapy drugs, which are well known as
neurotoxic, promoted an increase in the number of CX3CR11
and CCR21 macrophages/monocytes in the peripheral
nerves.146 Several studies suggested that these locally activated
macrophages are directly associatedwith a significant increase in
the levels of inflammatory mediators, which sensitize primary
afferent neurons and contribute to the development of neuro-
pathic pain.51,57,66,130,148,236 For instance, Cx3cr1-deficient or
Ccr2-deficient showed delayed development of mechanical
hypersensitivity caused by the treatment with chemotherapy
drug vincristine.146 Although resident and infiltrated
macrophages/monocytes at the site of nerve injury are consid-
ered essential for the development of neuropathic pain, most of
the studies that claimed this possibility lack specific tools
targeting only these cells to confirm this hypothesis. Given these
methodological limitations, many efforts have been made to
develop specific tools to precisely manipulate peripheral (resident
and infiltrating) vs central (eg, microglia)44,45.

One of those promising examples is a recently described
mouse strain in which the suicidal gene Fas is under the control of
the colony-stimulating factor 1 receptor (CSF1R) promoter, called
macrophage-induced fas-apoptosis (MAFIA).24 In these mice,
Fas ligand administration drives the death of CSF1R1 cells.
Unlike CSFR1 selective antagonists, this drug fails to cross the
blood–brain barrier, ensuring higher peripheral macrophage
specificity. By taking advantage of MAFIA mice, Shepherd
et al.183 showed alleviation of mechanical pain hypersensitivity
caused by peripheral nerve injury. The authors implicated the
reduction in infiltrated monocytes as responsible for the MAFIA
mouse pain phenotype.183 On the other hand, more recently, it
was shown that specific depletion ofmacrophages/monocytes at
the site of nerve injury did not affect the development of
neuropathic pain, excluding any participation of macrophages/
monocytes in the local of nerve injury for the development of
neuropathic pain.235 Thus, although the systemic depletion of
peripheral macrophages/monocytes reduces neuropathic pain
development,31,161,193 it is likely that these cells could be acting in
tissues different from the local nerve injury.

Besides the peripheral nerves resident sNAMs, as we
mentioned above, there are also resident sNAMs in the sensory
ganglia (DRGs and TGs). The injury of peripheral nerves promotes
several changes at the level of sensory ganglia, including a
neuroinflammatory process characterized by activation/
proliferation of glial cells (eg, satellite glial cells [SGCs]), and

sNAMs. Early studies using different sciatic nerve trauma models
described an increase in the number of macrophages/
monocytes around the cell body of sensory neurons in the
sensory ganglia in a time-dependent manner.108,117,235,238

Generally, the number of macrophages peaks form 5 to 10 days
after sciatic nerve injury, retracting afterward.117,128,200 In
chemotherapy-induced peripheral neuropathy, an accumulation
ofmacrophages in the DRGswas also observed by some groups,
whereas others did not observe any change.89,104,133,139,141,238

Although the reasons for this discrepancy are not immediately
apparent, it could be related to differences in the doses of the
chemotherapy drug used, schedules of treatment, and evaluated
time points. There is another debate regarding whether the
accumulation of macrophages in the sensory ganglia after
peripheral nerve injury is due to the infiltration of bloodmonocytes
or the local proliferation of sNAMs. Thus, further studies will also
be necessary to clarify this point.

To dissect the participation of sNAMs in the sensory ganglia for
the development of neuropathic pain, some strategies were
applied. The intrathecal administration of minocycline reduced
the number of sNAMs in the DRG after peripheral nerve injury,
which was accompanied by the downregulation of inflammatory
mediators reflecting on the reduction of mechanical pain
hypersensitivity.117 A combination of genetic and pharmacolog-
ical tools for conditional depletion of peripheral sNAMs/
monocytes and microglia also prevented the development of
pain hypersensitivity in a mouse model of spinal nerve transec-
tion.165 Targeting peripheral macrophage and microglia with
CSFR1 inhibitor, a receptor involved in survival, proliferation, and
differentiation of macrophages in different tissues, also reduced
neuropathic pain caused by peripheral nerve injury.121 In addition,
the clodronate-induced killing of sensory ganglia macrophages
reduced neuropathic pain development caused by peripheral
nerve injury (trauma) and chemotherapy (paclitaxel).36,238 Note-
worthy, none of these treatments are selective for sNAMs in the
sensory ganglia and also target infiltrating monocytes and/or
microglia. Based on that, the same study that ruled out the
contribution of nerve injury–infiltrating macrophages for the de-
velopment of neuropathic pain provided evidence that sNAMs in
the sensory ganglia play a critical role in this condition.235 How-
ever, we could not discard those peripheral monocytes could be
acting in additional sites than the local of nerve injury. For in-
stance, we recently found that after peripheral nerve injury,
CCR21 monocytes become adhered to the endothelial cells of
the spinal cordmicrocirculation, and these cells could also have a
role in central mechanisms of neuropathic pain71. Finally, it is
important to mention that the discovery of specific cellular
markers for sNAMs of the sensory ganglia that could differentiate
them from other resident macrophages andmonocytes would be
essential to develop specific strategies to target only these cells
and dissect their real contribution to neuropathic pain
development.

4. Mechanisms of sensory neuron–associated mac-
rophages activation and accumulation after
nerve injury

As we mentioned above, after peripheral nerve injury, the
activation/accumulation of sNAMs in the sensory ganglia (DRGs)
seems to play an essential role in the development of neuropathic
pain. Although it is not totally clear how the peripheral nerve injury
leads to the distal activation/accumulation of sNAMs in the
sensory ganglia, some possible mechanisms have been
proposed.
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4.1. sNAMs and innate immunity receptors

Like classical immune cells, macrophages can express different
innate immunity receptors, such as Toll-like receptors (TLRs) and
nucleotide-binding cytoplasmic oligomerization (NLRs)
receptors.26,41,108,160,195–197,233 The large family of TLRs plays
a critical role in immune responses by the recognition of
pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs),2 such as heat
shock proteins, necrotic cells, and extracellular matrix compo-
nents.2,19,21,111,123,133,134,163,192,197,239 Continuous activation or
dysregulation of TLRs signalingmay contribute to chronic disease
states and have been involved in the pathogenesis of neuro-
inflammation, including in neuropathic pain develop-
ment.28,152,222 In this sense, several studies have indicated that
the activation/proliferation of microglia in the spinal cord, after
peripheral nerve injury, that accounts for neuropathic pain
developmentmight depend on TLRs stimulation.132 For instance,
Shi et al. demonstrated that spinal cord microglia activation after
peripheral nerve injury depends on an unidentified endogenous
ligand of TLR2 derived from damaged peripheral nerves.184 More
recently, it was found that after peripheral nerve injury, GT1b
ganglioside is axonally transported from the cell body of sensory
neurons into the spinal cord and mediates neuropathic pain
development through the activation of TLR2.126

Regarding the role of TLRs in sNAMs activation, TLR2 null mice
also showed a reduction in the activation/accumulation of sNAMs
in the sensory ganglia.108 This effect seems to be related to a
decrease in the production of CCL2 in the sensory ganglia, which
is a crucial chemokine in macrophages activation/infiltration.108

Although a direct TLR2 activation of sNAMs in the sensory ganglia
may likely occur after peripheral nerve injury, we could not discard
an indirect activation because TLR2 seems to be also expressed
on different cells (eg, SGCs) of the sensory ganglia.108

Furthermore, there is evidence that TLR2 deficiency also reduced
macrophages’ infiltration at the nerve injury site,184 which could
also indirectly affect neuroinflammation in the DRGs.

Another pattern recognition receptor (PRR) which has been
described as important for neuropathic pain development is
TLR4.132 Earlier studies have shown that TLR4 deficient mice are
protected from peripheral nerve injury–induced neuropathic
pain.17,206 This effect was attributed to reducing microglia acti-
vation in the spinal cord.26,197 However, no one has evaluated the
impact of TLR4 deficiency in sNAMs activation in the sensory
ganglia in models of traumatic peripheral nerve injury. There is
also evidence that TLR4 mediates chemotherapy-induced
peripheral neuropathic pain (eg, paclitaxel and oxalipla-
tin).122,148,230 In paclitaxel-induced neuropathic pain, the block-
age of TLR4 reduced the accumulation of macrophages in
sensory ganglia.237

Nevertheless, this was assumed as a direct effect of paclitaxel
on the activation of TLR4 expressed in sensory neurons, which in
turn increased the production of the macrophages chemotactic
factor, CCL2.237 Activation of SGCs by paclitaxel in a TLR4-
dependent manner and the consequent production of proin-
flammatory cytokines have also been suggested as a possible
mechanism involved in neuropathic pain development.226 Al-
though the contribution of TLR4 in sensory ganglia sNAMs for
paclitaxel-induced neuropathic pain has been not investigated, it
could also be an alternative. In this context, it was recently found
that DRGs sNAMs-expressing TLR4 mediates the development
of oxaliplatin-induced neuropathic pain.180 A recent study also
revealed a role for TLR9 signaling in the pathophysiology of
paclitaxel-induced neuropathic pain.137 In fact, Luo and

collaborators demonstrated that paclitaxel-induced neuropathic
pain was impaired in TLR9 KO mice and by the intrathecal
administration of a TLR9 selective antagonist. Pain hypersensi-
tivity was alsomimicked by intraplantar and intrathecal injection of
a TLR9 agonist (ODN 1826). Notably, TLR9 was found in DRG
sNAMs and seemed to involve the induction of proinflammatory
factors, such as cytokines.

Together with TLRs, cytoplasmic nucleotide-binding oligo-
merization domain-like receptors (NLRs) are the most important
receptors responsible for the recognition of PAMPs or
DAMPs.19,37 An important example of a receptor in this family is
the nucleotide-binding oligomerization domain 2 (NOD2). Some
studies indicate that microglial cells express NOD2,29,31,194

suggesting a possible role of this receptor as an innate immune
sensor in the CNS. It is well established that NOD2 and TLRs act
in macrophages’ activation, leading to positive pressure in the
proinflammatory pathways.72 We recently demonstrated that
after peripheral nerve injury, the NOD2 expression is upregulated
in sNAMs of the sensory ganglia.175 Using genetic inhibition of
NOD2, we showed that NOD2 signaling is involved in sensory
ganglia sNAMs activation/accumulation and mediates neuro-
pathic pain development. On stimulation, NOD2 directly recruits
the receptor-interacting serine/threonine-protein kinase 2, which
is important for nuclear transcription factor kappa B activation
and the transcription of proinflammatory genes.75,175 In this
context, pharmacological inhibition of receptor-interacting
serine/threonine-protein kinase 2 activity with a selective inhibitor
(WEHI-345) also reduced the development of neuropathic
pain.175 Altogether these studies provide consistent evidence
that the manipulation of PRRs (eg, TLRs and NLRs) or their
downstream signaling in sNAMs of the sensory ganglia could be
explored as targets to prevent the development of peripheral
neuropathic pain.

The involvement of PRRs in the activation of sensory ganglia
sNAMs that account for neuropathic pain development raised the
question of how these cells recognize or respond to peripheral
nerve injury, which is assumed to be a sterile condition. Previous
studies have suggested that damaged peripheral sensory
neurons release DAMPs, such as fibronectin, high mobility group
box-1, and heat shock proteins, which in turn can activate some
TLRs.201,207,208 These DAMPs have been shown to induce
further activation of numerous cell types, including glial cells and
innate immune cells, which have a well-established role in the
process of neuropathic pain.65,133,178 We recently demonstrated
that neutrophil-derived S100a9, an endogenous stimulator of
TLR4 signaling, plays an essential role in a model of herpetic
neuralgia in a mechanism dependent on activation of TLR4 in
sNAMs.188 Another possibility in the activation of sNAMs PRRs
after nerve injury would be by PAMPs derived from microbiota. In
fact, a broader role for themicrobiota as a significant modulator of
systemic immunity has been proposed.99,156,173 Microbial
products derived from the microbiota can be excreted or
translocated across the gut mucosa into the systemic circulation
during infection or inflammation.35,115 These processes are
involved in the development of several diseases, such as
autoimmune diseases, Parkinson’s disease, spinal cord injury,
and neuropsychiatric disorders.103,120,140 For instance, bacterial
microbiota–derived peptidoglycan and methylene diphospho-
nate are presented in rheumatoid arthritis patients’ synovial tis-
sue, contributing to the pathogenesis through NOD2 signaling
activation.90,143 In addition, peptidoglycan-containing immune
cells were detected in the CNS of multiple sclerosis patients or
animals but not in healthy controls.214,215 Our group has shown
that germ-free mice are resistant to inflammatory pain4. We also
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found that peripheral nerve injury can promote a systemic
increase of an undetermined stimulant of NOD2 signaling.188

Thus, it is possible that after peripheral nerve injury gut
microbiota–derived PAMPs (TLRs and NOD2 ligand; eg, lipo-
polysaccharides, peptidoglycan, and/or methylene diphospho-
nate) may translocate from the luminal side of the gut into the
blood to distal sites (eg, sensory ganglia), activates PRRs
signaling in sNAMs, and consequently contribute to the de-
velopment of neuropathic pain. This hypothesis is supported by
our unpublished data in which we found that there is impairment
in the intestinal barrier permeability after spared nerve injury in
mice. Furthermore, in a model of chemotherapy-induced
neuropathic pain, there is an increase in the concentration of
microbiota-derived lipopolysaccharides in the DRGs, which
triggers a TLR4 dependent activation of sNAMs.180 Nevertheless,
further studies would be important to identify the exact origin of
PAMPs or DAMPs that mediate sNAMs activation in the sensory
ganglia and contribute to neuropathic pain development.

4.2. Additional mechanisms of sensory neuron–associated
macrophages activation/accumulation after peripheral
nerve injury

Besides the role of PRRs in the activation/accumulation of sNAMs
in the sensory ganglia after peripheral nerve injury, emerging
studies were designed to find additional mechanisms explaining
how distal damage to primary sensory neurons could activate
sensory neurons sNAMs and consequently to the development
and maintenance of neuropathic pain. Among these possible
mechanisms, the most characterized are those dependent on
chemokines (CCL2/CCR2 and CX3CL1/CX3CR1 pathways),
cytokines (CSF1/CSFR1 axis), and microRNAs.

4.3. Chemokines/cytokines trigger sensory
neuron–associated macrophages activation

Among the central communication systems of sNAMs and their
microenvironments are the chemokine/chemokine receptors
interaction. Chemokines are a vast group of peptides that act
primarily to attract leukocytes to a given environment after
infection or tissue damage.169–171 These molecules act on
receptors coupled to G proteins found in different populations of
circulating and resident cells. Two important chemokine axis
seem to regulate sNAMs activities: (1) the CX3CL1, also known
as Fractalkine, and its receptor CX3CR132–34; (2) CCL2, also
known as MCP-1, and its receptor CCR2 CX3CR1 is a classical
marker of resident macrophages, including sNAMs, especially
those originated from earlier precursors in the YS.84,112,113

CX3CR1-expressing sNAMs are in close contact with the cell
body of sensory neurons in the sensory ganglia, which
constitutively express the membrane-bound CX3CL1.213 The
stimulation of the CX3CL1/CX3CR1 pathway in the dorsal horn
of the spinal cord is a well-known mechanism involved in
peripheral nerve injury–induced microglial activation/
proliferation and neuropathic pain development.34–36,213,237

Despite all the studies that indicated that the CX3CL1/CX3CR1
pathway in microglia plays a crucial role in neuropathic pain
development,124 none of these studies ruled out the possible
role of this signaling in CX3CR1-expressing sNAMs of the
sensory ganglia. In this context, after sciatic nerve injury or
chemotherapy drug treatment, positive regulation of the
CX3CL1/CX3CR1 axis in the sensory ganglia oc-
curs.28,30,213,237 Furthermore, after peripheral nerve injury,
membrane-bound CX3CL1 is reduced in sensory neurons’ cell

bodies, suggesting its release and action.100,101 In fact,
neutralization of CX3CL1 in the sensory ganglia reduced
chemotherapy-induced neuropathic pain81,218, which was
associated with a reduction in the accumulation of sNAMs in
the DRGs.81 In addition, in vincristine-induced pain, another
model of CIPN, macrophages, also accumulate in the sciatic
nerve and promote pain hypersensitivity in a CX3CR1-
dependent manner.161 Therefore, the development of specific
tools or approaches to investigate the particular contribution of
the CX3CL1/CX3CR1 pathway in the spinal cord microglia or
sNAMs in the periphery (eg, sensory ganglia or sciatic nerve) for
the development of neuropathic pain are necessary.

The well-characterized chemokine that brings blood mono-
cytes into inflamed tissues is CCL2.116,204 This chemokine
recruits monocytes/macrophages by activating its highly affinity
CCR2 receptor.67,185 This axis seems to play an essential role in
the neuroinflammation process, including those associated with
neuropathic pain development.1,237 In fact, mice lacking CCL2 or
CCR2 are resistant to the development of neuropathic pain
caused by peripheral nerve injury. Furthermore, pharmacological
inhibition of CCL2 and CCR2 with neutralizing antibody or
antagonist, respectively, also attenuates mechanical allodynia
induced by peripheral nerve injury.53,227 Neutralization of the
CCL2/CCR2 axis also protected from chemotherapy-induced
neuropathic pain.3,83 These studies strongly support the role of
the CCL2/CCR2 axis in the development of some types of
neuropathic pain. However, themechanisms bywhich the CCL2/
CCR2 axismediates neuropathic pain development are not totally
clear, but they might be multiples.227 For instance, genetic or
pharmacological inhibition of the CCL2/CCR2 pathway reduced
monocytes accumulation in the sciatic nerve after traumatic nerve
injury,25,127,154,186 suggesting a peripheral effect. On the other
hand, recent data did not show any change in the accumulation
of sNAMs in the sensory ganglia after peripheral nerve injury,235

indicating that the CCL2/CCR2 axis participates in the de-
velopment of neuropathic pain would be preferentially at the local
of the nerve injury. Supporting this hypothesis, perineural injection
of CCL2 promotes pain hypersensitivity dependent on mono-
cytes’ recruitment.40 Some studies suggest a possible role for the
CCL2/CCR2 pathway in the spinal cord in the pathophysiology of
neuropathic pain.92,198 For instance, they demonstrated an
increase in the expression of CCL2 by injured sensory neurons,
which might be transported and released into the spinal cord,
promoting the activation of CCR2-expressing glial cells.209

However, it is striking that in CCR2-RFP mouse, a mouse strain
in which CCR2-expressing cells also express red fluorescent
protein, no significant detection of CCR21 cells was observed in
the spinal cord either in naive condition or after peripheral nerve
injury.68,71 There is also evidence suggesting CCL2 directly
enhances primary sensory neurons excitability.16,92,223 One
significant problem to address the exact role of the CCL2/
CCR2 axis in the development of neuropathic pain is the lack of
specific tools, especially specific antibodies, to stain CCL2 and
CCR2.

Furthermore, Ccr2 null mice have a defect to mobilize
monocytes from the bonemarrow; thus, even in naive conditions,
these animals already have fewer monocytes in the blood-
stream.232 Noteworthy, double-blind clinical trials failed to
demonstrate the efficacy of a selective and safe CCR2 antagonist
in diabetes and posttraumatic neuropathic pain.97,98 Therefore,
further preclinical studies and clinical trials are necessary to
further confirm the importance of the CCL2/CCR2 axis for
neuropathic pain development and also the possible mecha-
nisms underlying.198,199
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Besides chemokines, cytokines’ role in the activation/
accumulation of sNAMs in the sensory ganglia after peripheral
nerve injury was recently analyzed.235 The specific knockdown of
CSF1 in sensory neurons reduced macrophages activation/
accumulation in DRGs after peripheral nerve injury and neuro-
pathic pain.235 These results indicated that the production/
release of CSF1 by injured sensory neurons plays a crucial role in
the direct sNAMs interaction that accounts for neuropathic pain
development.

4.4. MicroRNAs and sensory
neuron–associated macrophages

Studies report that after peripheral nerve injury, there is a robust
dysregulation in the expression of noncoding RNAs, including
microRNAs in sensory neurons.12,114,153,174,189 For instance, it
was found that activated or injured primary sensory neurons can
release miR-21-5p as cargo in extracellular vesicles (eg,
exosomes).188 These sensory neuron–derived exosomes and
their miR-21-5p cargo mediate sNAMs activation/accumulation
in DRGs. In fact, after release, miR-21-5p in extracellular vesicles
is readily captured by sNAMs in the DRG that, in turn, induces the
polarization of sNAMs into a pronociceptive and proinflammatory
phenotype.

Aside from these studies that provide several possible
mechanisms involved in activation/accumulation of sNAMs in
the sensory ganglia after peripheral nerve injury and, conse-
quently, in developing neuropathic pain, further studies will be
necessary to understand these crosstalks completely. For
example, studies that conditionally knockdown molecular path-
ways or receptors in sNAMs would be required to further
understand these interaction mechanisms.

4.5. Sensory neuron–associated macrophages effector
mechanisms mediating neuropathic pain development

Based on the evidence we have described above, it is becoming
clear that peripheral macrophages (eg, sNAMs of the sensory
ganglia) participate in the pathophysiological process involved in the
genesis of neuropathic pain of different subtypes. Of interest to the
community is how peripheral macrophages reciprocally influence
sensory neurons excitability after nerve injury that may contribute to
these pathological states. Two main effector mechanisms have
been attributed to peripheralmacrophages at the local of nerve injury
and sensory ganglia in the induction of neuropathic pain: (1)
production of proinflammatory/nociceptive cytokines and (2) pro-
duction of reactive oxygen species that in turn trigger TRPA1
stimulation.6,15,27,149,211,234

Resident sNAMs together with Schwann cells are the main
source of the initial cytokines/chemokines cascade responsible for
the recruitment of additional leukocytes, such as neutrophils,
monocytes, and lymphocytes that infiltrate the local of nerve
injury.11,25,105,127 Besides promoting leukocytes recruitment, which
amplify the inflammatory/immune process in the local nerve injury,
these cytokines/chemokines may also directly enhance the
excitability of primary sensory neurons.159,191,217,218,223 Among
cytokines produced/released by macrophages in the local of nerve
injury that may affect directly and/or indirectly the excitability of
primary nociceptive neurons, tumor necrosis factor (TNF), IL-1b, and
IL-6 are well characterized.53,56,125,159,177,191,217,223 Notably, the
expression of proinflammatory cytokines in injured human nerve
biopsies has been reported, and this response correlates with the
degree of neuropathic pain.129

The activation phenotype of sNAMs in the sensory ganglia after
peripheral nerve injury has been also associated with the production
of proinflammatory cytokines.235 We have shown that after spared
nerve injury, the activation of NOD2 signaling in sNAMs mediates
neuropathic pain development in a mechanism dependent on the
production of TNF and IL-1b.175 More recently, the CSF1/CSF1R
signaling-dependent activation of sNAMs also triggers neuropathic
pain through the production of IL1b.235 Finally, it was suggested that
sNAMs-derived IL-1b stimulates brain-derived neurotrophic factor by
primary sensory neurons as a possible mechanism involved in the
development of neuropathic pain.235 Nevertheless, it is striking that
sensory neurons specific knockdown of brain-derived neurotrophic
factor didnot affect neuropathic paindevelopment.42 Thus, the role of
sNAMs-derived IL-1b in the sensory ganglia for the development of
neuropathic pain is still under debate. In this context, several studies
have indicated that primary sensory neurons may express receptors
for proinflammatory cytokines/chemokines, including for those
peripheral macrophage–derived cytokines (eg, IL-1b, TNF, and IL-6
receptors).131,138 Based on that, several studies have analysed the
possible effects of these cytokines on the excitability of primary
sensory neurons.151,159 For example, both TNF and IL-1b are able to
enhance the excitability of cultured primary sensory neurons in vitro.
Nevertheless these results would be analysed with caution because
normally cultures of primary sensory neurons also contain other cell
subtypes such as SGCs, and these cells may also express receptors
for these cytokines,187 hindering the interpretation of the data. One
possibility to confirm the specific role of cytokines/cytokines receptor
signaling directly on sensory neurons is the development of
conditional animals that lack the expression of these cytokines
receptors only in pain fibers. In this context, the specific knockout of
gp130, a subunit of IL-6 receptor in primary nociceptive neurons, did
not affect thedevelopment of neuropathic pain, suggesting no role for
a direct action of IL-6 on sensory neurons in neuropathic pain8.
Furthermore, the deletion of Il1r1 exclusively in the population of
TRPV11 nociceptors prevented the development of pathological
pain in models of arthritis and multiple sclerosis.138 The future use of
these Il1r1 conditional mice and the generation of TNF receptors
conditional knockout mice in primary nociceptive neurons would be
necessary to explore and confirm this possibility in models of
neuropathic pain after peripheral nerve injury.

Another possible effector mechanism by which peripheral
macrophages and sNAMs contribute for neuropathic pain de-
velopment is through the production of ROS. For example, ROS
produced by recruited monocytes into the peripheral injured nerves
mediates neuropathic pain development.40,203 In fact, the depletion
of these cells by clodronate treatment was able to attenuate the
levels of hydrogen peroxide in the injured tissue, as well as
nociceptive behavior.40,95 It also showed that monocyte-derived
ROS signals through TRPA1 receptors triggering peripheral
sensibilization.7,23,40,203 Whereas monocytes recruitment to the site
of nerve injury that increase ROSproduction is dependent onCCL2/
CCR2 signaling, there is evidence that macrophages/monocytes
activation is dependent on ATR2 signaling40,182,183 The sciatic nerve
accumulated macrophages/monocytes also promote ROS pro-
duction in CX3CR1-dependent manner and mediates vincristine-
induced neuropathic pain.161 There are several intracellular process
and pathways that generate ROS, including mitochondria, xanthine
oxidase, cytochrome P450 complexes, lipoxygenases, uncoupled
endothelial nitric oxide synthase, and nicotinamide adenine di-
nucleotide phosphate oxidases. Nox-derived ROS has been
implicated in the pathophysiology of neuropathic pain.94,107 Notably,
sNAMs of the sensory ganglia express Nox2 and increase the
production of ROS after peripheral nerve injury.96 Altogether these
studies indicate that peripheralmacrophage–derivedROS, including
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Nox2 dependent, might be an interesting target for neuropathic pain
control. Based on this hypothesis, pioglitazone, a PPARg agonist,
reduces cisplatin-induced neuropathic pain by reducing ROS
production in the sensory ganglia.102

4.6. Sensory neuron–associated macrophages and resolu-
tion of neuropathic pain

Concomitantly to the production of pronociceptive molecules by
immune and glial cells across the pain pathway (local of injury;
sensory ganglia, and spinal cord) after peripheral nerve injury, there is
also evidence suggesting the production of anti-inflammatory/
antinociceptive molecules.3,5,14,20,22,52,85,144,145,168,229 In this con-
text, increasing evidence suggests that peripheral macrophages
also play an important role in the resolution of chronic pain.25,39 The
identification of these regulatory mechanisms in peripheral macro-
phages that counteract neuropathic pain would also reveal novel
targets for its treatment. For instance, we recently found that at the
level of sensory ganglia there is an increase in the production of IL-27
which plays a regulatory role in the development of neuropathic
pain.52 We also showed that Il-27 counteracts neuropathic pain by
acting on its receptor expressed by sNAMs that in turn stimulate the
production of the antinociceptive cytokine IL-10.52

Endogenous cannabinoids produced in the periphery and the
CNS are important components of endogenous analge-
sia.5,109,150,168,172,212 For example, mice deficient in CB2 receptor
showed enhanced pain hypersensitivity in models of neuropathic

pain.167 Themechanismsunderlying the exacerbation of neuropathic
pain in CB2 receptor null mice was recently investigated.150 Notably,
specific deletion of CB2 receptors in myeloid cells, especially in
peripheral monocytes and sNAMs of the sensory ganglia, but not in
neurons, also enhance neuropathic pain to the same level of whole-
bodydeletion.150 These results indicate thatCB2 receptor signaling in
peripheral macrophages limits the development of peripheral nerve
injury–induced neuropathic pain. The mechanisms by which CB2R
signaling modulates peripheral macrophages is not totally clear but
seems to involve an increase in leptin signaling.150,157 It could be also
due to a reduction in the production of other pronociceptive media-
tors derived from peripheral macrophages. In fact, activation of CB2
receptors in macrophages reduced the production of proin-
flammatory cytokines (TNF and IL-1b) and ROS.73,135 Thus, the
development of CB2R agonists acting specifically in the periphery
would be an interesting approach to target macrophages and to
inhibit neuropathic pain development.

5. Conclusion remarks

In summary, this review pointed out the crucial participation of
peripheral macrophages, especially sNAMs located in the
sensory ganglia, for the development of neuropathic pain. It
also described the cellular and molecular mechanisms involved
in peripheral macrophages (eg, sensory ganglia sNAMs)
activation/accumulation and effector functions after peripheral
nerve injury that account for neuropathic pain development (Fig.

Figure 1. Representative illustration of the role of peripheral macrophages in the development of neuropathic pain. In the injured peripheral nerves, resident cells
(Schwann cells, sNAMs) produced proinflammatory mediators, such as cytokines/chemokines which mediate the recruitment of additional leukocytes (eg, blood
CCR21monocytes) and thenmore pronociceptive mediators are produced. This soup of proinflammatory cytokines amplifies the sensitization of primary sensory
neurons and accounts for neuropathic pain development. In addition, after peripheral nerve injury, there is also accumulation/activation of sNAMs in the sensory
ganglia. These cells also mediate the development of neuropathic pain through the production of cytokines (eg, IL-1b) and ROS. The possible molecular
mechanisms involved in the activation of sNAMs in the sensory ganglia are also depicted. sNAMs, sensory neuron–associated macrophages.
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1). In conclusion, these mechanisms could be explored as
possible targets for the development of novel drugs to treat
neuropathic pain.
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[94] Kallenborn-Gerhardt W, Schröder K, Del Turco D, Lu R, Kynast K,
Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G,
Schmidtko A. NADPH oxidase-4 maintains neuropathic pain after
peripheral nerve injury. J Neurosci 2012;32:10136–45.

[95] Kallenborn-Gerhardt W, Lu R, Syhr KM, Heidler J, von Melchner H,
Geisslinger G, Bangsow T, Schmidtko A. Antioxidant activity of sestrin 2
controls neuropathic pain after peripheral nerve injury. Antioxid Redox
Signal 2013;19:2013–23.

[96] Kallenborn-Gerhardt W, Hohmann SW, Syhr KM, Schröder K,
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CCL2 released from neuronal synaptic vesicles in the spinal cord is a
major mediator of local inflammation and pain after peripheral nerve
injury. J Neurosci 2011;31:5865–75.

[210] Varol C, Mildner A, Jung S. Macrophages: development and tissue
specialization. Annu Rev Immunol 2015;33:643–75.
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12 Cçã.E.A. Silva et al.·6 (2021) e873 PAIN Reports®



development of central nervous system autoimmune disease.
J Immunol 2005;174:808–16.

[215] Visser L, Melief MJ, van Riel D, van Meurs M, Sick EA, Inamura S,
Bajramovic JJ, Amor S, Hintzen RQ, Boven LA, ’t Hart BA, Laman JD.
Phagocytes containing a disease-promoting Toll-like receptor/Nod
ligand are present in the brain during demyelinating disease in
primates. Am J Pathol 2006;169:1671–85.

[216] Von Korff M, Scher AI, Helmick C, Carter-Pokras O, Dodick DW, Goulet
J, Hamill-Ruth R, LeResche L, Porter L, Tait R, Terman G, Veasley C,
Mackey S. United States national pain strategy for population Research:
concepts, definitions, and pilot data. J Pain 2016;17:1068–80.

[217] Wagner R, Myers RR. Endoneurial injection of TNF-alpha produces
neuropathic pain behaviors. Neuroreport 1996;7:2897–901.

[218] Walters ET. Injury-related behavior and neuronal plasticity: an
evolutionary perspective on sensitization, hyperalgesia, and analgesia.
Int Rev Neurobiol 1994;36:325–427.

[219] Wang PL, Yim AKY, Kim KW, Avey D, Czepielewski RS, Colonna M,
Milbrandt J, Randolph GJ. Peripheral nerve resident macrophages
share tissue-specific programming and features of activated microglia.
Nat Commun 2020;11:2552.

[220] Watson CJ, Khaled WT. Mammary development in the embryo and
adult: a journey of morphogenesis and commitment. Development
2008;135:995–1003.
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