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ABSTRACT We report here the complete assembled genome sequence of Acineto-
bacter calcoaceticus CA16, which is capable of utilizing diesel and lignin as a sole
carbon source. CA16 contains a 4,110,074-bp chromosome and a 5,920-bp plasmid.
The assembled sequences will help elucidate potential metabolic pathways and
mechanisms responsible for CA16’s hydrocarbon degradation ability.

The use of preexisting microbial organisms in the environment could greatly im-
prove the efficiency of remediating industrial contaminants, such as petroleum, oil,

diesel, and lignin (1–6). Acinetobacter calcoaceticus, a nonpathogenic Gram-negative
bacterium, shows great promise in bioremediation. It was originally isolated for its
ability to utilize diesel as a sole carbon source. Previous studies have shown that
A. calcoaceticus is able to effectively degrade crude oil, diesel, pesticides, phenol,
catechol, and lignin (6–11). Many species of Acinetobacter have been shown to secrete
biosurfactants (12, 13), which further facilitate the efficiency of hydrocarbon breakdown
and metabolism. This organism has the potential to be implemented in bioremediation
practices and large-scale biosurfactant production. Currently, there are only two other
complete assembled genomes for this species: A. calcoaceticus PHEA-2 (CP002177) (14)
and A. calcoaceticus NCTC7364 (LT605059) (https://www.ncbi.nlm.nih.gov/nuccore/
1160688532). Here, we provide the complete genome sequence of A. calcoaceticus
CA16 (henceforth referenced as CA16), isolated from canola roots in southwestern
Ontario.

CA16 was cultured in nutrient broth at 37°C. Genomic DNA was extracted using the
GenElute bacterial genomic DNA kit by Sigma-Aldrich (catalog no. NA2120). Barcode
libraries were prepared by ACGT, Inc. using fragmented genomic DNA averaging
550 bp. CA16 was sequenced on the Illumina NextSeq500 platform with 150-bp
paired-end reads at 100 � genome coverage. The 10,283,145 raw reads were processed
with Bcl2fastq version 1.8.4 (Illumina) and Trim Galore! (https://www.bioinformatics
.babraham.ac.uk/projects/trim_galore). High-quality overlapping reads (Q � 30) were
assembled de novo using SPAdes (15), which returned a 15-contig draft genome. In
silico alignments of the draft genome were generated by Mauve (16), and missing gaps
were confirmed with PCR and Sanger sequencing. Final assembly was aligned with
SeqMan Pro version 12.3.1 (DNASTAR, Madison, WI, USA). Annotation was performed
through the NCBI Prokaryotic Genome Annotation Pipeline.

The final assembly contains a 4,110,074-bp chromosome and a 5,920-bp plasmid.
Annotation data revealed that CA16 has a G�C content of 38.69%, with a total of
3,798 coding genes, 6 rRNA operons, and 6 tRNA loci. The plasmid contains four
coding sequence regions, two on each strand, and two pseudogenes. The plasmid
does not carry any metabolic genes of interest, only resolvase, a Rep-B initiation
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protein, and DNA-binding proteins for plasmid replication. Genes involved in
hydrocarbon degradation are located on the chromosome, including alkane mono-
oxygenase (BUM88_05740, BUM88_08900), rubredoxin (BUM88_04810), esterase
(BUM88_04820, BUM88_05375, BUM88_06405, BUM88_11675, BUM88_14825, BUM88_15860,
BUM88_18905, BUM88_18980, BUM88_19775), and WeeF (BUM88_00230), a protein involved
in biosurfactant production (12, 17–19).

The assembled genome sequence presented here will contribute to the elucidation
of regulatory pathways and metabolic networks involved with hydrocarbon degrada-
tion. This sequence will greatly facilitate future comparative genomic studies in con-
junction with transcriptomics, metabolomics, and proteomics, to construct a mecha-
nistic pathway behind CA16’s diesel and lignin degradation ability.

Accession number(s). The complete genome assembly project, featuring the CA16
chromosome and plasmid, has been deposited in NCBI’s GenBank under the accession
numbers CP020000 and CP020001. The versions described in this paper are the first
versions.
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