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Abstract: Acute lung injury (ALI) or its aggravated stage acute respiratory distress syn-
drome (ARDS) may lead to a life-threatening form of respiratory failure, resulting in high 
mortality of up to 30–40% in most studies. Although there have been decades of research 
since ALI was first described in 1967, the clinical therapeutic alternatives for ALI are still in 
a state of limited availability. Supportive treatment and mechanical ventilation still have 
priority. Despite some preclinical studies demonstrating the benefit of pharmacological 
interventions, none of these has been proved completely effective to date. Recent advances 
in nanotechnology may shed new light on the pharmacotherapy of ALI. Nanomedicine 
possesses targeting and synergistic therapeutic capability, thus boosting pharmaceutical 
efficacy and mitigating the side effects. Currently, a variety of nanomedicine with diverse 
frameworks and functional groups have been elaborately developed, in accordance with their 
lung targeting ability and the pathophysiology of ALI. The in-depth review of the current 
literature reveals that liposomes, polymers, inorganic materials, cell membranes, platelets, 
and other nanomedicine approaches have conferred attractive therapeutic benefits for ALI 
treatment. In this review, we explore the recent progress in the study of the nanomedicine- 
based therapy of ALI, presenting various nanomedical approaches, drug choices, therapeutic 
strategies, and outcomes, thereby providing insight into the trends. 
Keywords: acute lung injury, acute respiratory distress syndrome, drug delivery, 
nanoparticle, nanomedicine

Introduction
Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome 
(ARDS) is a common cause of respiratory failure in severely ill patients. Despite 
substantial progress in intensive care therapy and organ supportive technology, the 
mortality of ALI remains high at 30%–40% in most studies.1,2 The most common cause 
of ALI is a bacterial or viral infection. For example, patients who are infected with 
SARS-CoV-2 can present with pneumonia and hypoxemia, even progressing to ALI/ 
ARDS.3 Sepsis, aspiration of chemical agents and gastric contents, and shock are other 
common causes of ALI.4 The pathogenesis and pathophysiology of ALI are character-
ized by the destruction of alveolar–capillary integrity and by increased permeability, 
resulting in fluid, proteins, inflammatory agents and red blood cells accumulating in the 
alveolar space,2 and the clearance ability of the lung also being impaired.5 Clinical 
treatment of ALI/ARDS focuses on early diagnosis, control of infections, supportive 
ventilation, careful fluid management, and general supportive measures.2

Until now, clinical short-term or long-term mortality has not been able to be 
reduced by pharmaceutical drugs,6 but some pharmacologic agents have been 
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proved to be effective in ameliorating ALI/ARDS. 
Glucocorticoids, such as dexamethasone, when admini-
strated at an early stage, may decrease the duration of 
supportive ventilation, as well as the overall mortality,7 

but they are harmful at approximately 2 weeks after ARDS 
has been diagnosed.8 Neutrophil elastase increases the 
permeability of the alveolar–capillary barrier and causes 
proteolytic lung tissue damage.2 Neutrophil elastase inhi-
bitors, such as sivelestat, could be optional for the treat-
ment of ALI; however, a multi-national clinical trial 
proved that sivelestat therapy was unsuccessful.9 

Simvastatin has been reported to prevent organ dysfunc-
tion experimentally in ALI by decreasing vascular inflam-
mation and leakage.10 However, a clinical trial reported 
that, although its safety was guaranteed and its adverse 
effects were minimal, simvastatin did not show distinct 
clinical benefits.11 Inhaled nitric oxide can improve oxy-
genation and lung function but may have side effects or 
even be harmful when applied improperly.12 Gene silen-
cing, via short-interfering RNA (siRNA) to protect the 
integrity of the epithelial–endothelial barrier and prevent 
lung cell death, is a promising therapeutic option, but its 
application has been hampered by delivery technology 
challenges and safeties.13 Surfactant replacements, antic-
oagulation, and antioxidants have shown some effects in 
experiments but have failed in clinical trials14 (Table 1).

The limited success of pharmacological therapies forces 
us to develop new agents to combat ALI. The rapid devel-
opment of nanomedicine might shed new light on this issue. 
Nanomedicines that possess active or passive targeting abil-
ities have shown therapeutic advantages in various diseases. 
For example, it is recommended that nano-formulating dex-
amethasone be used to improve the efficacy in treating 
COVID-19, due to its ability to target hyper-activated 
immune cells, as well as its anti-edema activity.15 

Therapeutic agents such as drugs, siRNA, and proteins can 
be conjugated or encapsulated inside nanomedicines.16,17 In 
the presence of ALI, there arose enhanced permeability of 
blood vessels, along with alterations in oxidants, pH and 
enzymes in the microenvironment, as well as regulation of 
the expression of various cell surface receptors.18 The above 
characteristics offer targets for site-specific delivery and the 
microenvironment for responsive drug release. To this end, 
the nanomedicine for ALI has broad alternative therapeutic 
strategies, including the delivery of anti-inflammatory agents 
to the disease site,19–34 the direct scavenging of inflammatory 
factors,35–47 the regulating of inflammatory cell 
activities,48–59 or the modulating of inflammatory signaling 

pathways.60–73 Various nanomedicines act on different cells 
or pathophysiology processes to achieve therapeutic effects, 
many of which have demonstrated satisfying in vitro and 
in vivo effects.

In this review, we will focus on a systematic overview 
of the state-of-the-art and advances in therapeutic nano-
medicines for ALI. Firstly, a brief profile of essential 
cellular targets of nanomedicine for enhanced therapeutic 
effects will be presented. Subsequently, the diverse nano-
medicines will be categorized into four groups and their 
applications in the treatment of ALI will be shown in 
elaborate detail. Lastly, we will analyze both the ongoing 
chances and challenges of nanomedicine-based therapy for 
ALI, especially presenting some of the innovative technol-
ogies that will navigate the future direction of nanomedi-
cine, such as nanorobotics, machine learning and artificial 
intelligence (Figure 1). 

Cellular Targets for Nanomedicine
During ALI, the damage of the alveolar–capillary barrier 
increases vascular permeability and fluid accumulation.2,4 

This process is mediated by macrophages, neutrophils, and 
epithelial and endothelial cells through the innate immune 
response.74

Alveolar macrophages (AMs) are resident cells in the 
alveoli that use a variety of mechanisms as a defense against 
the invasion of foreign particles and pathogens at the first 
line.75 Upon stimulation, resting macrophages (M0) are acti-
vated through classical and alternative pathways that are polar-
ized and mainly classified into pro-inflammatory phenotype 
(M1) and anti-inflammatory phenotype (M2).76 The M1 
macrophages can release various potent pro-inflammatory 
cytokines including IL-1β, IL-6, and TNF-α.77 Modulation 
of AMs has been found to mitigate lung injury by attenuating 
neutrophil accumulation and reducing pro-inflammatory 
cytokines.78 The mannosylated nanomedicine can target to 
macrophages by mannose receptors,25,52,61 and sialic acid 
bound to the E-selectin on the macrophages29,67 can also be 
utilized for active targeting. Because nanoparticles can be 
easily phagocytosed by macrophages, they possess a superior 
ability to control the inflammatory responses mediated by 
macrophages.37,45–47,62,64,67,68,71,73,79

Among the leukocytes at the sites of inflammation, 
neutrophils are the first to be recruited in response to 
chemotactic factors.80 They migrate across the endothe-
lium and through the epithelium into the alveoli, then 
release histotoxic mediators to damage lung tissue, such 
as reactive oxygen species (ROS), neutrophil extracellular 
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Table 1 The Medication to Construct Nanomedicine for ALI/ARDS

Medication Therapeutic Mechanisms Drawbacks Ref.

Glucocorticoids

Dexamethasone, 

Methylprednisolone

Inhibit production of inflammatory cytokines, 

attenuate fluid accumulation and anti-fibrosis

Various side effects including hypertension, Cushing’s 

syndrome, gastrointestinal bleeding, 
immunosuppression, bone necrosis and osteoporosis 

etc.

[15,136]

Anti-inflammatory agents and antioxidants

Curcumin Reduces inflammation by inhibiting NF-κB and 

activating protein-1, by down-regulating COX-2 and 

inducible nitric oxide synthase

Poor water solubility and fast degradation result in 

low bioavailability

[29,70]

Resveratrol Anti-inflammation by targeting MAPK and NF-κB, 

anti-oxidation by increasing the activity of antioxidant 
enzymes

Low bioavailability and solubility, require to be 

consumed regularly at a high dose

[19,71]

α-bisabolol Anti-inflammation and anti-oxidation, inhibits pro- 
inflammatory cytokines

Highly lipophilic and easily oxidizable, easily forming 
two bisabolol oxides

[23,137]

EUK-134 A synthetic salen-manganese complexes, small 
molecule SOD/catalase mimetic, scavenges ROS

Poor solubility and stability [35,138]

Oleic acid Inhibits upregulated superoxide anion and elastase in 
activated neutrophils, reduces ROS

Extremely high lipophilicity, infeasible to formulate 
into injectable aqueous formulation

[48,139]

Inhibitors

TPCA-1 An IκB kinase-2 (IKK-2) inhibitor, blocks NF-κB 

nuclear translocation, reduces inflammatory cytokine 
production

Insoluble in water, lack of tissue targeting feature [28,140]

Simvastatin 3-hydroxy-3-methylglutaryl coenzyme A (HMG- 
CoA) reductase inhibitor, reduces vascular 

inflammation and permeability, protects endothelium

Require high-dose and prolonged treatment, which 
increases the risk of liver toxicity and myopathy

[21,60,141]

Cilomilast, 

Rolipram

PDE4 inhibitors; repress neutrophil overactivation 

through regulating intracellular levels of cAMP

Emesis, nausea and headache caused by brain 

penetration; low therapeutic index

[50,51]

Sivelestat Second-generation NE inhibitor; inhibit NE activity 

to preventing NETs formation

Hypersensitivity, hepatobiliary disorders, anemia, 

protein urine, protein total decreased; failed in 

clinical trial

[49,142]

Piceatannol Spleen tyrosine kinase inhibitor, blocks “outside-in” 

β2 integrin signaling in leukocytes, reduced 
neutrophil adhesion and migration

Poor solubility, poor bioavailability and biological 

activity

[58,143]

PP2 Src tyrosine kinase inhibitor, blocks the recruitment 
and activation of various immune cells, reduces 

vascular permeability and tissue inflammation

Non-selective and inhibits many other kinases with 
similar affinities

[34,144]

Ruthenium red Transient receptor potential vanilloid 4 (TRPV4) 

inhibitor, blocks force-sensitive TRPV4-mediated 

calcium signaling to reduce vascular permeability

Non-selective transient receptor potential (TRP) 

inhibitor and interacts with a number of non-TRP 

proteins

[30,145]
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traps (NETs), and proteases,81 as well as disrupting the 
endothelial–epithelial barrier.82 Nanomedicine can sup-
press neutrophil function by inhibiting upregulated super-
oxide anions and elastase,48,49 repressing activity of 
neutrophil overactivation by inhibiting phosphodiesterase 
4 (PDE4) activity50,51 and detaching neutrophil adherence 
by blocking integrin signaling,58 or using neutrophils as 
vehicles54,56,57 for targeted ALI therapy.

Restoring the integrity of the endothelial–epithelial 
barrier is critical in ALI therapy.83,84 As the primary 
injured structure, the pulmonary epithelium is subject to 
dissociation of intercellular junctions85 and cell death,31 

but is more resistant to injury than the endothelium.86 The 
endothelial junctions’ breakdown or the endothelial cells’ 
death will increase the lung’s vascular permeability, thus 
resulting in excessive fluid and protein leakage into the 

Figure 1 Nanomedicines can be fabricated based on various nanomaterials, including liposomes, polymers, inorganics, cell membranes, platelets, etc. They interfere one or 
more pathophysiologic processes of ALI to present beneficial effects.
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alveoli.2 To target the endothelium and epithelium, inter-
cellular adhesion molecule-1 (ICAM-1),87 platelet– 
endothelial cell adhesion molecule (PECAM-1)88 and sur-
factant protein (SP)89 can be bio-conjugated by corre-
sponding antibodies for active targeting nano- 
therapy.20–22,24,28,35,56,60,63 Nanomedicine can restore bar-
rier integrity and prevent cell death by influencing inflam-
matory pathways20,21,44,60,63,65,70–72 and alleviating 
oxidative stress.28,35,36,42,54,56 The influence of nanomedi-
cine on cellular architecture can be assessed by 
a pragmatic optimized air–liquid interface system, which 
showed comparable results as those in an in vivo study.90

Different Nanomedicine 
Applications in Treating ALI
For ALI treatment, nanomedicines are mainly admini-
strated through the intrapulmonary or the intravenous 
route. For the intrapulmonary route, the agents should be 
sufficiently potent to penetrate the mucus layer and pass 
through the cell membrane; two major barriers that affect 
pulmonary delivery efficiency.91 As the mucus layer is rich 
in negatively charged glycoproteins and phospholipid pul-
monary surfactant that can trap cationic agents, it is rea-
sonable to modify the nanomedicines to enhance 
penetration.62,92 For the intravenous route, target delivery 
to the inflammatory site ensures satisfactory therapeutic 
efficacy. Targeting strategies include the passive targeting 
effect called ELVIS (extravasation through leaky vascula-
ture and the subsequent inflammatory cell-mediated 
sequestration)18 and the conjugating of active targeting 
moieties to the backbone of the nanomedicine. Next, 
some of the nanomedicine applications in treating ALI 
through different mechanisms and the therapeutic efficacy 
are introduced.

Lipid-Based Nanomedicine
Liposomes are a well-established drug delivery system in 
the clinical context that are composed of single or multiple 
concentric lipid bilayers and aqueous compartments. The 
lipophilic agents are embedded within the phospholipid 
bilayer, while the aqueous core can encapsulate hydrophi-
lic agents.93 Nanostructured lipid carriers (NLCs) or oil- 
loaded solid lipid carriers are the second generation of 
lipid carriers. The oil core of NLCs offers a variety of 
fascinating properties, including increased loading capa-
city, excellent biocompatibility, controlled release com-
pared to the rapid release of liposomes, and feasibility of 

large-scale production.20,94 Anti-inflammatory 
drugs,20–22,24–26,49,60,61 anti-oxidant agents,27,35 and neu-
trophil function inhibitors48,50,51 were transformed into 
nanomedicines to improve their effectiveness and decrease 
their side effects (Table 2).

The lipophilic antioxidant (α-tocopherol) and the 
hydrophilic anti-inflammatory agent (Glutathione, GSH 
or DEX) were encapsulated into liposomes, which showed 
an advantageous effect in ameliorating lung injury over the 
free drug.26,27 PDE4 inhibitors, rolipram or cilomilast, can 
repress the activity of neutrophil overactivation,95 how-
ever, the brain penetration side effects and narrow thera-
peutic index have restricted their application.50 Employing 
phosphatiosomes to deliver PDE4 inhibitor showed 
enhance pulmonary surfactant affinity and reduced pene-
tration into the brain; additionally, neutrophil activation 
was repressed by decreasing the O2

•−, Ca2+ content and 
increasing the cyclic adenosine monophosphate (cAMP) 
production.50,51 Oleic acid (OA) can also inhibit inflam-
mation of activated neutrophils at a certain dose. The 
changing amount of mineral oil in OA-loaded nanocarriers 
enabled mean diameters to vary among 105, 153, and 225 
nm. Smaller sizes exhibited greater neutrophil uptake to 
decrease the cell viability and the intracellular calcium 
level, while larger sizes exhibited greater lung targeting 
ability than the smaller ones48 (Figure 2A). Over- 
production of NETs promoted inflammatory 
pathologies,96 and neutrophil elastase (NE) participated 
in the formation of NETs.97 Sivelestat is an NE inhibitor 
that is clinically used in patients with ALI who develop 
a systemic inflammatory response. Interbilayer-crosslinked 
multilamellar vesicles (ICMVs) loading sivelestat (ICMV- 
sivelestat) were readily taken up by neutrophils and inhib-
ited the formation of NETs effectively in vitro. ICMV- 
sivelestat alleviated lung injury by reducing NE and pro-
duction of other pro-inflammatory cytokines.49

To improve the targeting ability of liposomes, 
mannosylated,25,61 and antibody-modified20–22,24,35,60 lipo-
somes were developed. Mannosylated (Man) liposomes 
can target AMs, inhaled liposomes encapsulating dexa-
methasone palmitate, and Man-cationic liposome/NFκB 
decoy reduced pro-inflammatory cytokines, and suppress 
neutrophil infiltration.25,61 Surfactant protein A (SP-A) is 
a type of pulmonary SP that is mostly expressed in type II 
alveolar epithelial cells but is rarely expressed in extra- 
pulmonary tissues and organs.24 SP-A nanobody- 
conjugated immune-liposomes delivering glucocorticoids 
showed good lung-targeting specificity and decreased the 
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cytokine level in bronchoalveolar lavage fluid 
(BALF).22,24 NLCs can be incorporated into lung endothe-
lial cells via caveolar vesicles, and thus possess endothe-
lial-protective effects.98 Conjugating ICAM-1 antibody to 
NLCs endowed its active targeting ability to lung endothe-
lium, and the size and zeta potential of the liposomes were 
correlated with the therapeutic effects.20,21,60 The larger 
NLCs (337.8 nm) loading simvastatin exhibited ideal lung- 
targeting characteristics21 (Figure 2B). Other lung-targeted 
ternary NLCs loaded with simvastatin, protamine (Pro), 
and the angiopoietin-1 (Ang-1) gene with a larger size 
(357.1 nm) also showed better improvements.60 The anio-
nic NLCs exhibited higher cellular uptake and stronger 
pulmonary distribution, showing significant anti- 
inflammatory efficacy.20 PECAM-1 binds to the endothe-
lium and is internalized via the noncanonical cell adhesion 
molecule (CAM)-mediated endocytic pathway99 and can 
be adopted to endow lung-targeting ability. PEGylated 
liposomes conjugated with anti-PECAM-1 loaded with 
EUK-134 accumulated in the lungs after i.v. administra-
tion, inhibited cytokine-induced inflammatory activation, 
and provided >60% protection against lung edema in the 
endotoxin-stimulated mouse model.35 Recently, a soft 
nanobot composed of double micellar microemulsions 
has been developed, which possess the capability of active 
nanodrug delivery to strictures of air–liquid interface, and 
this could become a promising technology for therapeutic 
carriers and targeted delivery to ALI/ARDS.100

Polymeric Nanomedicine
Polymeric nanomedicines can be engineered from natural 
or synthetic polymers,101 most of which are biodegradable 
and biocompatible. Synthetic polymers are usually coated 
with polyethylene glycol (PEG) to reduce their toxicity 
and increase their solubility. Their high drug-loading capa-
city makes them favorable carriers for in vivo therapies;102 

they deliver drugs19,23,28–30,34,70–72 and 
genes31,33,53,62–65,68–73 to the targeted site or act as ther-
apeutic agents by themselves52,67 for ALI treatment 
(Table 3).

Poly-lactic-co-glycolic acid (PLGA) is the most com-
monly used polymer with good biodegradability and 
biocompatibility.103 The PLGA nanoparticle-containing 
ruthenium red was used in the ventilator-induced lung 
injury (VILI) model via inhalation. This nanomedicine 
reacted through the alveolar macrophages and the capillary 
endothelial cells, blocked calcium signaling, and inhibited 
vascular permeability in ex vivo ventilation–perfusion M
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experiments.30 Murine sialic acid-binding immunoglobu-
lin-like lectin-E (Siglec-E) is an immunomodulatory 
receptor that negatively regulates acute inflammatory 
responses. PLGA nanoparticles decorated with di(a2→8) 

N-acetylneuraminic acid (a2,8 NANA-NP), a natural 
Siglec ligand, could induce enhanced oligomerization of 
Siglec-E receptors on macrophages, blocking the produc-
tion of inflammatory cytokines in a Siglec-E-dependent 

Figure 2 Lipid-based nanomedicine. (A) Various diameters of OA-loaded nanocarriers showed different characteristics. Smaller sizes (AS) exhibited greater neutrophil 
uptake, while larger sizes (AL) exhibited greater lung targeting ability. Note: Reproduced with the permission from Yu HP, Liu FC, Umoro A et al. Oleic acid-based 
nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. 
JNanobiotechnology. 2020;18(1):25. Copyright (2020) Journal of Nanobiotechnology under Creative Commons Attribution 4.0 International License.48 (B) The larger 
NLCs-3 (337.8 nm) exhibited greater lung retention ability. Conjugating ICAM-1 antibody to NLC endowed it active targeting ability to lung endothelium, and showed 
better lung distribution. Note: Reproduced with the permission from Li SJ, Wang XJ, Hu JB et al. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated 
nanostructured lipid carriers for acute lung injury therapy. Drug Deliv. 2017;24(1):402–413. Copyright (2017) Drug Delivery under Creative Commons Attribution 4.0 
International License.21
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Figure 3 Polymeric nanomedicine. (A) Anti-ICAM-1 antibody decorated poly(β-amino esters) targeted to mouse lungs. (B and C) The fluorescence of FITC-labeled 
nanoparticles and Cy5-labeled TPCA-1 was measured using in vivo imaging systems (IVIS). (D) The cumulative release of TPCA-1 at different pH. Note: Reprinted with 
permission from Zhang CY, Lin W, Gao J et al. pH-Responsive Nanoparticles Targeted to Lungs for Improved Therapy of Acute Lung Inflammation/Injury. ACS Appl Mater 
Interfaces. 2019;11(18):16380–16390. Copyright (2019) American Chemical Society.28 (E) Fluorinated and guanidinated bifunctional helical polypeptides enhanced the mucus 
and cell membrane penetration. (F) Distribution of polyplexes in lung epithelial tissues. Note: Reprinted with the permission from Ge C, Yang J, Duan S, Liu Y, Meng F, Yin 
L. Fluorinated alpha-Helical Polypeptides Synchronize Mucus Permeation and Cell Penetration toward Highly Efficient Pulmonary siRNA Delivery against Acute Lung Injury. 
Nano Lett. 2020;20(3):1738–1746. Copyright (2020) American Chemical Society.62 (G) Cationic phosphorus dendrimer nanocomplexes delivering anti-TNF-α siRNA to 
inhibited TNF-α with high efficiency. Note: Reprinted with the permission from Bohr A, Tsapis N, Andreana I et al. Anti-Inflammatory Effect of Anti-TNF-alpha SiRNA 
Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model. Biomacromolecules. 2017;18(8):2379–2388. Copyright 
(2017) American Chemical Society. 73

International Journal of Nanomedicine 2021:16                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
2257

Dovepress                                                                                                                                                              Bian et al

http://www.dovepress.com
http://www.dovepress.com


manner.67 Oxidative stress plays an important role in 
ALI104 and mitochondria are the main source of ROS 
production. Sialic acid (SA)-functionalized PEG−PLGA 
microspheres loaded with triphenylphosphonium (TPP) 
cation-modified curcumin (Cur) were utilized as mitochon-
dria-targeting ALI therapy. The microsphere’s size was 
larger than 800nm, thus enabling good lung distribution, 
and the SA modification exhibited an ideal lung-targeted 
characteristic.29 Using poly(ε-caprolactone) to construct 
lipid-core nano-capsules (LNCs) and encapsulated α- 
bisabolol (α-bis) or resveratrol (RSV) into LNCs can mini-
mize drug oxidation, improving internal absorption and 
showing satisfactory therapeutic effects.19,23 The inflam-
matory microenvironment of ALI has the feature of a low 
pH; poly(β-amino esters) have a sharp acid-sensitive seg-
ment; bio-conjugating anti-ICAM-1 antibodies enable 
satisfying lung targeting and extended circulation. The pH- 
responsive nanoparticles can load anti-inflammatory agent 
TPCA-1 at a high content (24%, w/w). The accumulative 
release of TPCA-1 increases from less than 20% 24 h at 
pH 7.4 to approximately 90% 15 h at pH 6.528 (Figure 
3A–D).

Polymeric nanoparticles are also attractive gene car-
riers for ALI therapy.91 Nebulized PLGA bearing erythro-
poietin receptor (EpoR) complementary DNA (cDNA) 
nanoparticles upregulated pulmonary EpoR expression 
and downstream signal transduction to counteract the 
inflammation in hyperoxia-induced lung injury in rats.65 

Modifying low molecular weight polyethyleneimine (PEI) 
with dexamethasone improves its translocation into the 
nucleus and its gene transfection efficiency.33 PEI carries 
β2-adrenergic receptor (β2AR) gene, which regulates 
alveolar ion and fluid transport,105 dramatically improving 
alveolar clearance and decreasing lung fluid content with-
out major adverse effects.31 Merckx et al used Curosurf®, 
a clinically used pulmonary surfactant (PS), as the shell 
and siRNA-loaded nanosized dextran nanogels as the core 
to form hybrid nanoparticles for inhalation therapy. The 
PS shell improved the particle stability, and the intracel-
lular siRNA delivery was enhanced by inserting SP-B into 
the phospholipid shell.63 High mobility group box-1 box 
A (HMGB1A) may be captured in the mucus layer due to 
its positive charges when administered intratracheally; 
heparin has negative charges and an anti-inflammatory 
effect. The HMGB1A/heparin complex was obtained 
using electrostatic interactions, and reduced pro- 
inflammatory cytokines synergically.64 Fluoropolymers in 
the form of perfluorocarbon (PFC) nano-emulsions could 

improve cellular siRNA delivery.106 Wang et al reported 
a PFC emulsion polyplex as a gene carrier, containing 
fluorinated polymeric CX-C chemokine receptor type 4 
(CXCR4) antagonist and delivered plasminogen activator 
inhibitor-1 (PAI-1) siRNA to inhibit CXCR4 and PAI-1 for 
combined therapy.53 Another way to enhance mucus- 
penetrating ability is to develop bifunctional guanidine- 
and fluorine-decorated helical polypeptides. The fluori-
nated polypeptides dramatically enhanced mucus permea-
tion capability by approximately 240-fold, while the 
guanidine domain and the α-helix structure facilitated 
trans-membrane siRNA delivery. Using the top- 
performing polypeptide, P7F7, to administer TNF-α 
siRNA intratracheally produced highly efficient (~96%) 
gene knockdown62 (Figure 3E and F).

Dendrimers are regularly branched macromolecules 
that are usually developed as forming dendrimer-drug 
conjugates or as gene carriers.101 Inspired by 
Mycobacterium tuberculosis, Blattes et al designed 
manno-dendrimers that mimicked the bioactive supramo-
lecular structure of mannose-capped lipoarabinomannan. 
The manno-dendrimers could target the C-type lectin 
receptor DC-specific intercellular adhesion molecule 
3-grabbing nonintegrin (DC-SIGN), thus inhibiting neu-
trophil recruitment significantly.52 Adiponectin (APN) is 
an anti-inflammatory and cytoprotective adipokine.107 

Delivery of APN using dexamethasone conjugated poly-
amidoamine (PAM-D) upregulated APN expression.72 In 
a subsequent study, the RAGE-antagonist peptide (RAP) 
increased the gene delivery efficiency of PAM-D, and the 
RAP inhibited the RAGE-signal to show anti- 
inflammatory effects.69 Cholesterol-conjugated polyami-
doamine micelles could deliver pHO-1 (heme-oxygenase 
-1 plasmid) along with RSV or Cur, in which pHO-1 
induced HO-1 expression to decrease pro-inflammatory 
cytokines, and RSV or Cur inhibited the inflammatory 
reactions synergically.70,71 The phosphorus dendrimers 
have been shown to have more efficiency in the cellular 
delivery of siRNA108 and exhibited anti-inflammatory 
properties simultaneously.109 Compared with morpholi-
nium-containing dendriplexes, pyrrolidinium-decorating 
dendriplexes demonstrated a stronger siRNA complexa-
tion, and the higher cellular uptake enabled an enhanced 
silencing efficiency of TNF-α73 (Figure 3G).

The biocompatibility, biodegradability, and the lack of 
immune response properties of self-assembling peptides 
make them ideal drug carriers and regenerative 
medicines.110 Self-assembling R3V6 peptides with 
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a positive charge and membrane-penetrating properties 
were suitable for gene delivery. The siS1PLyase/ 
HMGB1A/R3V6 delivering a siRNA ternary complex, in 
which siS1PLyase down-regulates the S1PLyase (sphingo-
sine-1-phosphate lyase) and S1P on alveolar macrophages 
to block the NF-κB signaling pathway, demonstrated 
synergistic anti-inflammatory effects.68 Self-assembling 
peptide EAK16-II carrying Src tyrosine kinase inhibitor 
(PP2) demonstrated a lower toxicity, and a satisfactory 
anti-inflammatory effect against the lung ischemia–reper-
fusion (IR) model in rats.34 Recently, a self-assemble 
DNA origami nanorobotic delivery platform is available 
with nanoscale precision sensing, movement and manipu-
lation properties, which may provide a new strategy for 
nanomedicine-based gene therapy.111,112

Inorganic Nanomedicine
Inorganic nanomedicines are generally composed of inert 
and biocompatible metals, which endow them with stable 
characteristics and smaller diameters. Most inorganic 
nanomedicines are highly efficient and exabit multiple 
effects during biological applications. Gold, cerium diox-
ide (CeO2) and selenium (Se) have been used to treat ALI. 
The biggest challenge that limits their application is their 
elimination from the body, as repeated administration can 
result in toxicity by accumulation effects.101 The strategies 

to tackle this problem include biogenic route of synthesis, 
conjugating peptides on metallic nanoparticles or immobi-
lizing inorganic nanoparticles on silica nanoparticles. The 
main mechanisms of inorganic nanomedicine to treat ALI 
include inhibiting the inflammatory signal37–41,44 and 
scavenging oxidants36,42,43 (Table 4).

Gold nanoparticles (GNPs) could reduce the acute 
inflammatory response and excessive ROS production, 
protecting lung tissue from LPS-induced morphological 
changes.38 However, they tend to be trapped in the liver 
and spleen and are nonbiodegradable; so, the biosafety 
concerns still exist. The biogenic route of GNPs synthesis 
offers an efficient way to tackle the biosafety problems, 
which can fabricate spherical,113 anisotropic, and high 
aspect ratio gold nanomaterials.114 The molecular dynamic 
simulation, supported with experimental photothermal 
therapy, has shown the excellent application of these 
GNPs in nanomedicine for clearing biofilm and promoting 
the grown of fibroblast.115,116 These biomineralized nano-
materials proved excellent imaging agents117 and are drug 
carriers with enhanced bioavailability in vitro118 and 
in vivo.119

Modifying the GNPs with peptides is another way 
to enhance efficiency and safety. Peptide-modified 
GNPs could modulate the process of endosomal acid-
ification and inhibit multiple Toll-like receptor (TLR) 

Table 4 Inorganic Nanomedicine

Material 
(Moiety)

Size 
(nm)

Dose (Route) Animal Model 
(Route)

In vivo Therapeutic Outcomes Ref.

GNPs 

(CLPFFD)

17.5 

± 0.6

50 pmol (i.t. 2 

h pre)

Male C57BL/6J 

mice LPS (i.t.)

H&E↑, score↓; total cell, neutrophil, macrophage, lymphocyte↓; 

regulatory T cells

[41]

GNPs 

(CLPFFD) and 

(CSE)

23.9 

±0.3

500 nM (i.t. 1h pre) Male C57BL/6 

mice LPS (i.n.)

Total cell, neutrophil, protein↓; TNF-α, KC, IL-6, CCL-2↓; H&E↑, 

score↓
[40]

GNPs 
(CLPFFD)

26.9 
± 0.8

500 nM (i.t. 1 h pre) Male C57BL/6 
mice LPS (i.n.)

Total cell, neutrophil↓; KC, CCL-2↓; lung W/D ratio, lung 
protein↓; H&E↑, score↓

[39]

GNPs 
(CLPFFD)

18.8 
± 0.1

500 nM (i.t. 2 h pre) Male C57BL/6 
mice LPS (i.t.)

IL-12, IFN-γ↓; IL-10↑; total cell, neutrophil, macrophage, 
lymphocyte↓; M1↑, M2↓

[37]

CeO2@SiO2 220 ± 
5

0.6 mg/kg (p.o. 0, 1, 
3, 24 h post)

Male Wistar rats 
LPS (i.p.)

H&E↑; ROS↓; TNF-α, IL-6, CXCL-2↓; V`O2, VT, V`E↑; [43]

Se@SiO2 PVP 
coated

~55 1 mg/kg (i.p. every 
24 h)

Male S-D rats 
Paraquat (i.g.)

MDA↓, GSH↑, SOD↑; lung W/D ratio↓; H&E↑; IL-1β, TNF-α↓; 
NF-κB↓

[42]

Se@SiO2 PVP 
coated

~55 100 μg/kg (i.n. 1 
h pre)

Male C57BL/6 
mice LPS (i.n.)

Total cell↓, neutrophil↓, macrophage↑; IL-1β, CCL-2, IL-6↓; total 
protein, lung W/D ratio↓; H&E↑, score↓

[36]
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signaling pathways in macrophages.120 A unique class 
of hybrid GNPs (P12) was designed, which was made 
of a 13 nm GNP core and a hexapeptide (CLPFFD) 

surface coating. P12 showed therapeutic effects by 
targeting the macrophages and increasing the regula-
tory T cells (Tregs). When administrated 

Figure 4 Inorganic nanomedicine. (A) Peptide–gold nanoparticle hybrids. (B) The nanoparticles effectively reduced lung injury and were effectively excreted at 26 h post- 
administration. 
Notes: Reproduced with the permission from Xiong Y, Gao W, Xia F et al. Peptide-Gold Nanoparticle Hybrids as Promising Anti-Inflammatory Nanotherapeutics for Acute 
Lung Injury: In Vivo Efficacy, Biodistribution, and Clearance. Adv Healthc Mater. 2018;7(19):e1800510. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.41
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intratracheally, only approximately 8.49% ± 0.7% of 
the injected dose remained in all the tested organs/ 
tissues. At both 6 and 26 h post-intratracheal injection, 
a significant amount of P12 was detected in the feces 
and the amount in the intestine was much higher than 
that in the liver, suggesting that P12 was cleared 
through a hepatobiliary route41 (Figure 4). 
Furthermore, the 20-nm hybrid P12 (G20) was more 
potent than the 13-nm hybrid P12 (G13) and 5-nm 
hybrid P12 (G5) in inhibiting TLR4 activation and its 
downstream cytokine production. The P12 (G20) 
exhibited a higher cellular uptake and a stronger endo-
somal pH buffering capacity, endowing it with 
enhanced inhibitory effects.39 Cigarette smoke extract 
(CSE, 1%) was able to be adsorbed onto the GNP 
hybrids and largely increased their cellular uptake. 
CSE-P12 inhibited TLR4 activation through endosomal 

acidification and contributed to autophagy induction 
and subsequent antioxidant protein expression.40 P12 
could also increase the alveolar anti-inflammatory M2 
phenotype macrophages by polarization in the BALF 
and lung tissues, and decrease M1 macrophages in the 
alveolar and interstitial spaces.37

CeO2 is a promising oxidant-scavenging nanoparticle, 
but its slow elimination induces concern for its toxic 
effect. By immobilizing it on the surface of silica, the 
toxicity of the cerium nanoparticles was reduced. The 
CeO2 nanoparticles showed anti-inflammatory and antiox-
idant effects, as well as stimulating oxygen consumption 
in healthy rats and those with pneumonia.43 The same 
strategy was adopted to fabricate porous Se@SiO2 PVP 
coated nano-spheres. In a paraquat-induced rat model, the 
nano-spheres could attenuate oxidative stress, eliminate 
ROS, and reduce inflammatory cytokines.42 The nano- 

Figure 5 A superoxidase dismutase/catalase mimetic material based on functionalized β-cyclodextrin (β-CD) eliminated a broad spectrum of ROS. (A) Schematic illustration 
of material and nanoparticle. (B) The synthetic route of β-CD conjugated with Tempol (Tpl) and PBAP units (TPCD). (C) The mechanism for the H2O2-mediated hydrolysis 
of TPCD. 
Notes: Reproduced with the permission from Li L, Guo J, Wang Y et al. A Broad-Spectrum ROS-Eliminating Material for Prevention of Inflammation and Drug-Induced 
Organ Toxicity. Adv Sci (Weinh). 2018;5(10):1800781. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim under Creative Commons 
Attribution 4.0 International License.47
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spheres could also modulate mitochondrial function, activ-
ity, and dynamics, significantly increasing the epithelial 
cells’ resistance to oxidative injury.36

Other Nanomedicine
Polydopamine is a natural biopolymer that can self- 
assemble or be a film coating. Enriched phenol groups 
enable it to act as a nano-enzyme to scavenge H2O2 

directly or to catalyze the decomposition of H2O2. 
Polydopamine alleviated lung tissue damage by diminish-
ing ROS generation.46 β-cyclodextrin (β-CD) is a cyclic 
oligosaccharide that mimics enzyme conformation with 
a hydrophilic rim and a hydrophobic cavity. Two ROS 
eliminating agents, Tempol and PBAP, were simulta-
neously conjugated to β-CD to construct a superoxidase 
dismutase/catalase mimetic material (TPCD). TPCD nano-
particles eliminated a broad spectrum of ROS, protected 
macrophages from apoptosis, attenuated inflammatory 
responses and oxidative stress47 (Figure 5). In another 
study, luminol-conjugating β-CD (LCD) nanoparticles 
could act on both neutrophils and macrophages, effectively 
inhibiting the inflammatory response, oxidative stress and 

cell migration, demonstrating desirable efficacy in treating 
ALI with biosafety45 (Table 5).

Inflamed vasculature targeting ability was achieved by 
conjugating anti-ICAM-1 antibody or peptides to 
nanoparticles.121 However, this strategy might impair 
their specificity and affinity, especially when administrated 
in vivo.122 During inflammation, neutrophils abundantly 
express integrin β2; this integrin interacts with the ICAM- 
1 molecules on the endothelial cells.123 This interaction 
could be blocked to inhibit the accumulation of neutro-
phils, or use this interaction for targeting drug delivery. 
Piceatannol blocks the “outside-in” integrin signaling in 
neutrophils. Albumin nanoparticles loading piceatannol 
were taken up by neutrophils, detaching neutrophils’ 
adherence and eliciting their release into the 
circulation.58 Inspired by the study above, it is promising 
to design nanoparticles that hitchhike activated neutrophils 
in situ; then, neutrophils could deliver nanoparticles to the 
inflammatory site by adhering and migrating across the 
blood vessel endothelium into the inflammatory tissues. 
Using bovine serum albumin to deliver TPCA-1, this 
nanoparticle dramatically ameliorated inflammation and 
decreased permeability in the lung.57 Nitrogen cavitation 

Table 5 Other Nanomedicine

Material (Moiety) Drug/ 
Gene

Size 
(nm)

Dose (Route) Animal 
Model 
(Route)

In vivo Therapeutic Outcomes Ref.

Polydopamine ~80 10 mg/kg (i.n. 

30min post)

Female BALB/c 

mice LPS (i.n.)

IL-6, TNF-α, CXCL-2, MPO, protein, 

leukocyte, neutrophil↓; H&E↑
[46]

β-cyclodextrin (Tempol 

& PBAP)

109 ± 2 0.1 or 1.0 mg/kg 

(i.v. 1 h post)

Male BALB/c 

mice LPS (i.t.)

Lung W/D ratio, TNF-α, IL-1β, H2O2, MPO, 

neutrophil↓; H&E↑
[47]

β-cyclodextrin 
(Luminol)

238 ± 
26

100 mg/kg (i.v. 1 
h post)

Male BALB/c 
mice LPS (i.t.)

TNF-α, IL-1β, lung W/D ratio, lung 
permeability↓; H&E↑

[45]

Bovine serum albumin Piceatannol 100 ± 
10

4.3 mg/kg (i.v. 2 
h post)

Male CD1 mice 
LPS (i.p.)

MPO, neutrophil, leukocyte↓ [58]

Bovine serum albumin TPCA-1 ~140 8 mg/kg (i.v. 4 
h post)

Adult CD1 mic 
LPS (i.t.)

Leukocyte & neutrophil, IL-6, TNF-α, protein↓ [57]

Extracellular 
nanovesicles (ICAM-1 

antibody)

TPCA-1 200 0.33 or 1 mg/kg 
(i.v. 3 h post)

Adult CD1 
mice LPS (i.t.)

Neutrophil, protein, TNF-α, IL-6↓ [56]

Extracellular 

nanovesicles

Piceatannol ~260 2 mg/kg (i.v. 2 

h post)

Adult CD1 

mice LPS (i.t.)

Neutrophil, leukocyte, TNF-α, IL-6, protein↓ [54]

PEVs TPCA-1 100–150 1 mg/kg (i.v. 4 

h post)

Female BALB/c 

mice LPS (i.t.)

TNF-α, IL-6, IL-1β, macrophages, T cells, 

ROS↓; MPO, MDA, wet/dry ration↓; H&E

[79]
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was initially employed to isolate neutrophil plasma mem-
brane as sealed vesicles, which minimizes lysosomal and 
nuclear rupture. Neutrophils were placed in the cell dis-
ruption bomb with optimum pressure and duration of 

equilibration, then the pressure was quickly released to 
disrupt cells, and the vesicles were obtained followed by 
a series of centrifuge.124 The cell membrane nanovesicles, 
which are made from activated neutrophils using nitrogen 

Figure 6 AI toolbox for understanding bio-physicochemical identity at the nano–bio interface. 
Notes: Reproduced with the permission from Singh AV, Rosenkranz D, Ansari MHD et al. Artificial Intelligence and Machine Learning Empower Advanced Biomedical 
Material Design to Toxicity Prediction. Advanced Intelligent Systems. 2020;2(12). © 2020 The Authors. Published by Wiley-VCH GmbH under Creative Commons 
Attribution 4.0 International License.125
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cavitation, possess intact targeting molecules of integrin 
β2, and can selectively bind to inflamed vasculature. 
Human neutrophils are abundant in the blood; thus, this 
strategy could be utilized to develop personalized 
nanomedicines.56 In another study, piceatannol was remo-
tely loaded in nitrogen cavitation nanovesicles via a pH 
gradient. The piceatannol-loading nanovesicles dramati-
cally alleviated ALI and sepsis induced by LPS.54

Platelet-derived extracellular vesicles (PEVs) are 
another cell-based drug-delivery system. The platelets 
intrinsically have inflammation-site affinity and are suita-
ble for targeting ALI treatment. When loaded with TPCA- 
1, they significantly inhibited pulmonary inflammatory cell 
infiltration and calmed regional cytokine storm syndromes. 
This system is also suitable for the treatment of chronic 
atherosclerotic plaque, rheumatoid arthritis, and wounds 
associated with the skin.79

Conclusion and Perspective
To date, no pharmacological therapy has been proved to be 
completely effective in treating ALI. Although many 
therapies have been proved to be effective in experiments, 
clinical translation is small. The advent of nanomedicine 
could open new avenues to address current limitations in 
the field of traditional pharmacological therapies, but chal-
lenges still remain to improve their clinical translatability.

The toxicity and safety concerns are great challenges 
for nanomedicine clinical translation. Recent advances in 
machine learning and artificial intelligence immensely 
decoded and empowered the cell-nanomaterial interac-
tion, which gifted the computational tool for the predic-
tion process125,126 and in-silico methods127,128 to 
potentially decipher the quantitative nanostructure activ-
ity-relationship (Nano-QSAR) for nanotoxicology and 
nanotherapeutics (Figure 6).

Similar to the enhanced permeability and retention 
(EPR) effect in a solid tumor, the inflammation-specific 
retention is called ELVIS.18 The role of EPR in the cancer 
barrier is somewhat oversold considering that less than 5% 
of nanomedicine formulations accumulate at the site of 
tumor;129 and the heterogeneous outcomes of clinical trials 
of nanomedicine can be explained by the inter- and intra- 
individual heterogeneity in EPR-mediated targeting. 
Biological nanomedicine which employs 
bacterial,100,130,131 human cells and tissue59,132 and 

DNAs111 as carriers seems promising ways to improve 
and individualize nanomedicine treatments.

A future direction to improve nanomedicine clinical 
translatability is about to integrate nanomedicines and/ 
or nanorobots with biological cells, which do not need 
sophisticated instruments, space, chemicals, acoustic 
and magnetic setup to deliver agents inside the 
body.130–133 Bacteria-driven microparticle swimmers 
possess actuation and sensing capabilities, which 
make them promising active carriers with high effi-
ciency of tissue cells.100,130,131 Sperm cell-driven 
microrobots are biocompatible microrobots, which are 
fast microswimmers in stagnant fluids without the need 
for toxic media or fuel, might have an impact on the 
development of assisted reproductive technologies.132 

These emerging strategies are a promising way to rea-
lize personalized pharmacological therapy.

The increasing use of nanodiagnostics and nanomedicine 
for personalized and targeting therapy raises potential social 
and ethical conundrums. Nanomedicine commercialization 
requires a large investment,134 and the cost-effective benefit 
is an inevitable issue.135 Extreme profitability concept leads to 
concerns that global equality in access to health care might be 
even further compromised. Continuous efforts to cultivate 
cost-effective nanomedicine with more security are mandatory 
to make better use of nanotechnologies for global welfare.

Abbreviations
Symbols: “↑”, increase or improve; “↓”, decrease or dete-
riorate; “-”, no significant difference; NG, not given; pre, 
before stimulation; post, after stimulation; Administrations: 
i.g, intra gastric; i.n, intranasal; inh, inhalation; i.p, intraper-
itoneal; i.t, intratracheal; i.v, intravenous; p.o, per os; 
Others: ACE, angiotensin-converting enzyme; AKP, alka-
line phosphatase; ALI, acute lung injury; ARDS, acute 
respiratory distress syndrome; CAT, catalase; Chol, choles-
terol; CINC-1, cytokine induced neutrophil chemoattractan; 
CoV, coronavirus; COVID-19, coronavirus disease 2019; 
DCFH, 2.7-dichloro dihydro-fluoresce indiacetate; DiD, 
1.1′-Dioctadecyl-3,3,3′,3′-Tetramethylindodicarbocyanine, 
4-Chlorobenzenesulfonate Salt; DiR, 1.1′-dioctadecyl 
-3,3,3′,3′-tetramethylindotricarbocyanine iodide; DOPC, 
1.2-dioleoyl-sn-glycero-3-phosphocholine; DOTMA, N 
[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium 
chloride; DPPC, 1.2-dipalmitoyl-snglycero-3-phosphocho-
line; DSPC, 1.2-distearoyl-sn-glycero-3-phosphocholine; 
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DSPE-PEG, distearylphosphatidylethanolamine–polyethy-
lene glycol; EUK-134, chloro[[2,2′-[1,2-ethanediylbis 
[(nitrilo-κN)methylidyne]] bis[6-methoxyphenolato-κO]]]- 
manganese; Fuc, fucosylated; GSH, glutathione; HEMA, 
hydroxyethyl methacrylate; HMGB1A, high mobility 
group box 1 antibody; HYP, hydroxyproline; KC, keratino-
cyte-derived chemokine; LPS, lipopolysaccharide; Man, 
mannosylated; MCT, medium-chain triglycerides; MDA, 
malondialdehyde; MIP, macrophage inflammatory protein; 
MPB, 1.2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- 
[4-(p-maleimidophenyl)butyramide] sodium salt; MPO, 
myeloperoxidase; NETs, neutrophil extracellular traps; 
PBAP, phenylboronic acid pinacol ester; PC, phosphatidyl-
choline; PEG, polyethylene glycol; PG, L-α- 
phosphatidylglycerol; PVP, polyvinylpyrrolidone; RAGE, 
advanced glycation end products; SARS, severe acute 
respiratory syndrome; siRNA, small interfering RNA; 
SOD, superoxide dismutase; SPC, soy phosphatidylcholine; 
SPION, superparamagnetic iron oxide nanoparticles; 
TMAEMA, [2-(methacryloyloxy)-ethyl] trimethylammo-
nium chloride; TPCA-1, 2-[(Aminocarbonyl)amino]- 
5-(4-fluorophenyl)-3-thiophenecarboxamide; W/D ratio, 
wet-to-dry ratio; V`E, calculated minute ventilation; V`O2, 
rate of oxygen uptake per minute; VT, tidal volume.
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