
entropy

Article

Extended Variational Message Passing for Automated
Approximate Bayesian Inference

Semih Akbayrak 1,*, Ivan Bocharov 1,† and Bert de Vries 1,2

����������
�������

Citation: Akbayrak, S.; Bocharov, I.;

de Vries, B. Extended Variational

Message Passing for Automated

Approximate Bayesian Inference.

Entropy 2021, 23, 815. https://

doi.org/10.3390/e23070815

Academic Editors: Antonio Salmerón

and Rafael Rumí

Received: 18 May 2021

Accepted: 23 June 2021

Published: 26 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven,
The Netherlands; i.a.bocharov@tue.nl (I.B.); Bert.de.Vries@tue.nl (B.d.V.)

2 GN Hearing BV, JF Kennedylaan 2, 5612AB Eindhoven, The Netherlands
* Correspondence: s.akbayrak@tue.nl
† Current address: Department of Radiology and Nuclear Medicine, Erasmus MC, P.O. Box 2040, 3000CA

Rotterdam, The Netherlands.

Abstract: Variational Message Passing (VMP) provides an automatable and efficient algorithmic
framework for approximating Bayesian inference in factorized probabilistic models that consist
of conjugate exponential family distributions. The automation of Bayesian inference tasks is very
important since many data processing problems can be formulated as inference tasks on a generative
probabilistic model. However, accurate generative models may also contain deterministic and
possibly nonlinear variable mappings and non-conjugate factor pairs that complicate the automatic
execution of the VMP algorithm. In this paper, we show that executing VMP in complex models
relies on the ability to compute the expectations of the statistics of hidden variables. We extend
the applicability of VMP by approximating the required expectation quantities in appropriate cases
by importance sampling and Laplace approximation. As a result, the proposed Extended VMP
(EVMP) approach supports automated efficient inference for a very wide range of probabilistic
model specifications. We implemented EVMP in the Julia language in the probabilistic programming
package ForneyLab.jl and show by a number of examples that EVMP renders an almost universal
inference engine for factorized probabilistic models.

Keywords: Bayesian inference; variational inference; factor graphs; variational message passing;
probabilistic programming

1. Introduction

Probabilistic Programming Languages (PPL) and packages [1] have gained strong
popularity over recent years since they support fast algorithm development through
automating Bayesian inference in probabilistic models. Many of these PPLs [2–5] are based
on numerical approximation methods, which leads to inexact inference results, even if
the model comprises conjugate factor pairs and exact inference is achievable. Moreover,
although a majority of popular PPLs scale well to processing large data sets due to their
stochastic inference settings [6], they tend to execute very slowly for certain types of
structured dynamic models, such as state space models. Alternatively, some PPLs that
execute inference by message passing in a factor graph [7,8] provide efficient inference
performance by exploiting factorization and conjugacy between exponential family-based
distribution pairs in the model. In particular the Variational Message Passing (VMP) [9,10]
algorithm has gained a good reputation, as it supports efficient inference for conjugate
factor pairs in factorized probabilistic models. Unfortunately, non-conjugate factor pairs
complicate the automated estimation of posterior distributions, due to intractability of
the normalization constants. Likewise, non-linear deterministic relations between model
variables often create non-conjugate pairings and thus obstruct the message-passing-based
inference mechanism.

Entropy 2021, 23, 815. https://doi.org/10.3390/e23070815 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23070815
https://doi.org/10.3390/e23070815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070815
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070815?type=check_update&version=2

Entropy 2021, 23, 815 2 of 36

This paper proposes an Extended VMP (EVMP) algorithm to support automated
efficient inference on a wide class of models that contain both non-conjugate relations
between factor pairs and deterministic, possibly non-linear factor nodes. In our solution
proposal, the regular VMP algorithm constructs the functional forms of the messages.
These functional forms contain expectations of functions of hidden variables. In the
case that these expectation quantities cannot be evaluated to a closed-form expression,
we estimate them by Importance Sampling (IS) [11], which is a well-known Monte Carlo
method that approximates intractable posteriors by a set of weighted samples and estimates
expectations over this sample set. We also make use of Laplace approximation ([12],
Section 4.4) with support by automatic differentiation tools (autodiff) [13] in appropriate
cases to approximate posteriors by normal distributions, which allows us to calculate
the expectations over the approximating normal distribution. Our proposal leads to an
efficient, automatable message-passing framework that removes most model specification
limitations.

In Section 2, we start with a review of factor graphs and the VMP algorithm. Next, we
specify the proposed Extended VMP algorithm in Section 3. In order to keep the paper read-
able, both for the advanced researcher and someone who just needs the results, we defer
detailed discussions and derivations of the key equations in EVMP to Appendices A and B.
We implemented EVMP in the Julia package ForneyLab.jl [8,14]. In Section 4 we present
several comparative experiments of EVMP in ForneyLab vs. Turing.jl, which is an alterna-
tive state-of-the-art Julia-based PPL that focuses on Monte Carlo methods for inference.
We show that EVMP transforms ForneyLab into an almost universally applicable inference
engine, while retaining computational efficiency, due to its library of closed-form message
passing rules. An extensive comparison to related work is presented in Section 5.

2. Problem Statement
Variational Message Passing on Forney-Style Factor Graphs

We assume a probabilistic model p(y, z) with a given set of observations y = y1:N =
{y1, . . . , yN} and a set of latent variables z = z1:M = {z1, . . . , zM}. Bayesian inference in
this model relates to evaluating the following posterior:

p(z|y) = p(y, z)∫
p(y, z)dz

,

which relies on evaluating the model evidence
∫

p(y, z)dz. Unfortunately, due to the
computational complexity of evaluating the integral for the evidence, exact Bayesian
inference is achievable only for a limited set of probabilistic models. Alternatively, inference
can be executed by minimization of a variational objective called free energy.

F [q] = Eq

[
log

q(z)
p(y, z)

]
= DKL[q(z)||p(z|y)]− log p(y), (1)

where Eq[·] stands for the expectation with respect to q(z) and DKL[·||·] denotes a Kullback–
Leibler divergence. (In this paper, we denote the expected value

∫
q(x) f (x)dx of function

f with respect to distribution q both by Eq[f (x)] and 〈 f (x)〉q.) The KL divergence is
greater or equal to zero for any distribution q(z) and DKL[q(z)||p(z|y)] = 0 if and only if
q(z) = p(z|y). As a result, minimizing the free energy with respect to q leads both to an
approximate posterior

q∗(z) = arg max
q
F [q] ≈ p(z|y)

and an upper bound F [q∗] on the negative log-evidence. In practice, minimization of
F is often greatly alleviated by assuming a mean-field constraint, i.e., a fully factorized

posterior q(z1:M) =
M
∏
i=1

q(zi).

Entropy 2021, 23, 815 3 of 36

Variational inference on factorized models p(y, z) with the mean-field assumption
for q leads to an automatable algorithm called Variational Message Passing (VMP) [9,10].
VMP can be visualized by representing the model as a graph and interpreting the VMP
update equations as messages.

In this paper, we favor a Forney-style Factor Graph (FFG) representation to visualize
the factorization properties of probabilistic models and inference by message passing [15].
FFGs are undirected graph representations of factorized probabilistic models in which
the conditional distributions are represented by nodes and the variables are associated
with edges that connect the nodes. Besides visualizing the factorization properties of
probabilistic models, FFGs also provide a formal framework for message passing-based
inference in probabilistic models. In the FFGs that we discuss here, we distinguish three
types of factors (nodes): soft factors, deterministic factors and equality factors. Throughout
the paper, a soft factor represents an Exponential Family (EF) distribution (see (6) for
definition) such as a Gaussian, Bernoulli, Gamma or Categorical distribution. Deterministic
factors hold deterministic mappings of variables; in particular, we will use the relation
fδ(x, z) = p(x|z) = δ(x− g(z)), where g(·) is a deterministic function. Lastly, equality fac-
tors are used to circumvent the constraint that an edge (representing a variable z) can only
be connected to maximally two factors. In an FFG representation, this problem is resolved
by adding variable copies z′ and z′′ and constraining the beliefs over these copy variables
through an equality factor f=(z, z′, z′′) = δ(z− z′)δ(z− z′′). As an example, the FFG for
one time step for a hierarchical state-space model is visualized in Figure 1. In this graph,
the factors fa(z′t, zt−1) = p(z′t|zt−1), fb(x′t, xt−1, wt) = p(x′t|xt−1, wt), fc(yt, x′′t) = p(yt|x′′t)
are encoded by EF distributions. The factor fδ(wt, z′′t) = p(wt|z′′t) = δ(wt − g(z′′t)), for a
given function g(·), represents a non-linear deterministic relation. An interesting property
of FFGs is the hierarchical composition: we can create new “higher level” nodes by enclos-
ing a set of connected nodes in a box and integrating out the internal variables in the box.
For instance, the composite node fd can be created through the following:

fd(x′t, xt−1, z′′t) = p(x′t|xt−1, z′′t)

=
∫

p(x′t|xt−1, wt)δ(wt − g(z′′t))dwt

=
∫

fb(x′t, xt−1, wt) fδ(wt, z′′t)dwt

For a more detailed introduction to FFGs, we refer to [15,16].
Aside from visualization, FFGs also serve to formalize message-passing-based infer-

ence in probabilistic models, and VMP on FFGs realizes coordinate-descent optimization
of the free energy functional (1). Coordinate-descent optimization of the free energy refers
to iterative updates of the variational factors one at a time while keeping the other fac-
tors fixed [12,17]. To illustrate, let us optimize F with respect to q(zk) for the system
fa(z1:k) fb(zk:K) (see Figure 2). First, we decompose the free energy as follows:

F = F̃ +Eq(z1:K)

[
log

q(zk)

fa(z1:k) fb(zk:K)

]
︸ ︷︷ ︸

Fk

,

where F̃ holds terms that are not a function of variable zk. The term Fk can be re-arranged
as follows:

Fk = Eq(zk)

log
q(zk)

exp
(
Eq(z1:k−1)

[log fa(z1:k)]
)

exp
(
Eq(zk+1:K)

[log fb(zk:K)]
)
 , (2)

so it follows that Fk is minimized when q(zk) is set proportional to the denominator in
(2) [12,17]. In addition, notice that the terms with the local factors fa and fb are uncoupled,
which paves the way for a message-passing interpretation of coordinate-descent variational

Entropy 2021, 23, 815 4 of 36

inference. As a result, provided that fa and fb are not deterministic factors, the VMP
algorithm proceeds by repeating the following four steps until convergence [10]:

1. Choose a variable zk from the set z1:K.
2. Compute the incoming messages.

−→m zk (zk) ∝ exp
(
〈log fa(z1:k)〉q(z1:k−1)

)
←−m zk (zk) ∝ exp

(
〈log fb(zk:K)〉q(zk+1:K)

) (3)

3. Update the posterior.

q(zk) =
−→m zk (zk)

←−m zk (zk)∫ −→m zk (zk)
←−m zk (zk)dzk

. (4)

4. Update the local free energy (for performance tracking), i.e., update all terms in F
that are affected by the update (4):

Fk =

〈
log

q(zk)

fa(z1:k) fb(zk:K)

〉
q(z1:K)

. (5)

Figure 1. An FFG representation of one time step of a state space model. In FFGs, factors represent
(conditional) distributions. Here, fa, fb and fc are soft factors that each represent an exponential
family distribution. On the other hand, fδ = δ(wt − g(zt)) represents a deterministic factor, where
g(·) is a deterministic function. It is possible to compose factors and consider them as a single unit.
In this example, fd, visualized by a dashed box, stands for the composition of fδ and fb. It is a
notational convention to visualize observed values (yt) by a small black node.

Figure 2. FFG representation for edge zk with connected nodes fa and fb.

Entropy 2021, 23, 815 5 of 36

As we see in (3), messages flow on edges in both directions. It is common parlance
to call one of the messages the forward message (denoted by −→m zk (zk)) and the other the
backward message (←−m zk (zk)).

In this paper, the central problem is how to execute the VMP update Equation (3) through
(5) for a wide range of specifications for the factors fa and fb. In the next section, we specify
the proposed Extended VMP (EVMP) solution. A more detailed derivation of the key
equations of EVMP is provided in Appendix B.

3. Specification of EVMP Algorithm

Variational Message Passing is a fast, efficient and deterministic approximate inference
algorithm. However, the applicability of VMP heavily relies on connected factors being
conjugate pairs (see Appendix A). In contrast, Monte Carlo methods (see [18] for message-
passing interpretation) are applicable to a wider range of models with non-conjugate factor
pairs. Unfortunately, in comparison to VMP, Monte Carlo methods are considerably slower
since they rely on stochastic simulations. As we elaborate in Section 5, the recent efforts to
combine the best of Monte Carlo methods and variational inference predominantly focus
on noisy gradient estimation of the free energy through Monte Carlo sampling and do not
take the full advantage of deterministic message passing steps in inference.

In this section, we specify the EVMP algorithm, which combines the efficiency of
VMP with the flexibility of the Laplace approximation and the universality of Monte Carlo
methods. In the proposed EVMP algorithm, VMP constructs the functional forms of the
messages while importance sampling and Laplace approximations are used to estimate the
required expectations of statistical quantities if they are not available in closed form. We first
specify the range of probability distribution types for factors, messages and posteriors.
These different types are used to identify the specific calculation rules for updating the
messages and posteriors in (3) and (4). We refer the interested reader to Appendix B for
detailed derivations.

3.1. Distribution Types

We consider the following representation types for probability distributions in factors
p(z), where z holds a variable.

(1) The standard Exponential Family (EF) of distributions, i.e., the following:

p(z) = h(z) exp
(
φ(z)ᵀη − Aη(η)

)
, (6)

where h(z) is the base measure, φ(z) is the sufficient statistics vector, η is the natural
parameters vector and Aη(η) is the log-partition function.

(2) Distributions that are of the following exponential form:

p(z) ∝ exp(φ(g(z))ᵀη), (7)

where g(z) is a deterministic function. The key characteristic here is that φ(g(z)) is
not recognized as a sufficient statistics vector for any of the standard EF distributions.
We call this distribution type a Non-Standard Exponential Family (NEF) distribution.
As we show in Section 3.6, this distribution type arises only in backward message
calculations.

(3) A List of Weighted Samples (LWS), i.e., the following:

p(z) :=
{(

w(1), z(1)
)

, . . . ,
(

w(N), z(N)
)}

. (8)

(4) Deterministic relations are represented by delta distributions, i.e., the following:

p(x|z) = δ(x− g(z)) . (9)

Entropy 2021, 23, 815 6 of 36

Technically, the equality factor f (x, y, z) = δ(z− x)δ(z− y) also specifies a determin-
istic relation between variables.

3.2. Factor Types

Factor types f (z) are represented by EF and delta distributions.
In a VMP setting, as discussed in this and previous papers on VMP, conjugate soft

factors from the exponential family enjoy some computational advantages. As an extension
to VMP, the EVMP algorithm inherits the same computational advantages for conjugate
factor pairs. In order to automate and generalize the inference to custom non-conjugate soft
factors, we compose a generic soft factor by a delta distribution (to describe a non-linear
deterministic function) and a standard EF distribution. This decomposition relieves us
from manually deriving VMP messages for each different soft factor specification. For a
given composite node (delta + standard EF), the EVMP algorithm uses the predefined VMP
messages for the standard EF component to compute messages around the composite node.
As we will see, this formulation yields an almost generic inference procedure.

3.3. Message Types

Forward messages carry either an EF or an LWS distribution. Backward messages
carry either an EF or an NEF distribution. This is an arbitrary choice in the sense that we
only make this assignment to indicate that in the EVMP algorithm, two colliding messages
in posterior calculations are not both of the LWS type nor both of the NEF type.

3.4. Posterior Types

The posteriors q(z) are represented by either the EF or LWS representations.
To summarize the terminology so far, we defined four distribution types: Standard

EF (EF), Non-Standard EF (NEF), List of Weighted Samples (LWS) and delta distributions.
The end user of our algorithm can design a model by using EF and delta distributions.
Under the hood, messages may carry EF, NEF or LWS distributions to render the inference.
As the output, the end user is provided with either the EF or LWS posteriors. Next, we dis-
cuss how posteriors, messages and free energies are computed in the EVMP algorithm.
The different types can be used to identify which computational recipe applies. As an aside,
Julia’s support for multiple dispatch in functions [14] makes this a very elegant mechanism
that requires almost no if–then rules.

3.5. Computation of Posteriors

Here, we discuss how EVMP updates the posteriors in (4). In an FFG, computation
of the posterior q(z) is realized by a multiplication of colliding forward and backward
messages, respectively −→m z(z) and←−m z(z), followed by normalization. We distinguish four
types of updates.

(1) In the case that the colliding forward and backward messages both carry EF distribu-
tions with the same sufficient statistics φ(z), then computing the posterior simplifies
to a summation of natural parameters:

−→m z(z) ∝ exp(φ(z)ᵀη1)
←−m z(z) ∝ exp(φ(z)ᵀη2)

q(z) ∝ −→m z(z) · ←−m z(z) ∝ exp(φ(z)ᵀ(η1 + η2)).

In this case, the posterior q(z) will also be represented by the EF distribution type.
This case corresponds to classical VMP with conjugate factor pairs.

(2) The forward message again carries a standard EF distribution. The backward mes-
sage carries either an NEF distribution or a non-conjugate EF distribution.

Entropy 2021, 23, 815 7 of 36

(a) If the forward message is Gaussian, i.e., −→m z(z) = N (z; µ1, V1), we use a
Laplace approximation to compute the posterior:

µ = arg maxz
(
log−→m z(z) + log←−m z(z)

)
,

V = (−∇∇z(log−→m z(z) + log←−m z(z))|z=µ)−1

q(z) ∝ −→m z(z) · ←−m z(z) = N (z; µ, V)
(10)

(b) Otherwise (−→m z(z) is not a Gaussian), we use Importance Sampling (IS) to
compute the posterior:

z(1), . . . , z(N) ∼ −→m z(z),
w̃(i) =←−m z(z(i)) for i = 1, . . . , N

w(i) = w̃(i)/
N
∑

j=1
w̃(j) for i = 1, . . . , N

q(z) ∝ −→m z(z) · ←−m z(z) =
{(

w(1), z(1)
)

, . . . ,
(

w(N), z(N)
)}

.

(11)

(3) The forward message carries an LWS distribution, i.e., the following:

−→m z(z) :=
{(

w(1)
1 , z(1)1

)
, . . . ,

(
w(N)

1 , z(N)
1

)}
,

and the backward message carries either an EF or NEF distribution. In that case, the
posterior computation refers to updating the weights in −→m z(z) (see Appendix E):

w̃(i) = w(i)
1
←−m z(z

(i)
1) for i = 1, . . . , N

w(i) = w̃(i)/
N
∑

j=1
w̃(j) for i = 1, . . . , N

z(1), . . . , z(N) = z(1)1 , . . . , z(N)
1

q(z) ∝ −→m z(z) · ←−m z(z) =
{(

w(1), z(1)
)

, . . . ,
(

w(N), z(N)
)}

.

(12)

3.6. Computation of Messages

Here, we discuss how EVMP compute the messages (3). We specify different message
calculation rules depending of the type of the factor.

(1) If factor fa(z1, z2, . . . , zk) is a soft factor of the form (see Figure 3a)

fa(z1:k) = p(zk|z1:k−1) = ha(zk) exp(φa(zk)
ᵀηa(z1:k−1)− Aa(z1:k−1)).

then the outgoing VMP message to zk is the following EF-distributed message:

−→m zk (zk) ∝ ha(zk) exp
(

φa(zk)
ᵀ〈ηa(z1:k−1)〉q(z1:k−1)

)
. (13)

If rather z1 (or z2, . . . , zk−1) than zk is the output variable of fa, i.e., if the following is
true:

fa(z1:k) = p(z1|z2:k) = ha(z1) exp(φa(z1)
ᵀηa(z2:k)− Aa(z2:k)).

then the outgoing message to zk is either an EF or an NEF distribution of the following
form:

←−m zk (zk) ∝ exp
(
〈φa(z1)〉ᵀq(z1)

〈ηa(z2:k)〉q(z2:k−1)
− 〈Aa(z2:k)〉q(z2:k−1)

)
. (14)

In this last expression, we chose to assign a backward arrow to←−m zk (zk) since it is
customary to align the message direction with the direction of the factor, which in
this case points to z1.

Entropy 2021, 23, 815 8 of 36

Note that the message calculation rule for −→m zk (zk) requires the computation of
expectation 〈ηa(z1:k−1)〉q(z1:k−1)

, and for←−m zk (zk) we need to compute expectations
〈φa(z1)〉q(z1)

and 〈ηa(z2:k)〉q(z2:k−1)
. In the update rules to be shown below, we will

see these expectations of statistics of z appear over and again. In Section 3.8 we
detail how we calculate these expectations and in Appendix A, we further discuss
the origins of these expectations.

(2) In the case that fδ is a deterministic factor (see Figure 3b):

fδ(x, z1:k) = p(x|z1:k) = δ(x− g(z1:k)). (15)

then the forward message from fδ to x is of LWS type and is calculated as follows:

−→m x(x) =
{(

1
N

, g(z(1)1:k)

)
, . . . ,

(
1
N

, g(z(N)
1:k)

)}
, (16)

where z(i)j ∼
−→m zj(zj) for j = 1 : k.

For the computation of the backward message toward zk, we distinguish two cases:

(a) If all forward incoming messages from the variables z1:k are Gaussian, we first
use a Laplace approximation to obtain a Gaussian joint posterior
q(z1:k) = N (z1:k; µ1:k, V1:k); see Appendices B.1.2 and B.2.2 for details. Then,
we evaluate the posteriors for individual random variables, e.g.,
q(zk) =

∫
q(z1:k)dz1:k−1 = N (zk; µk, Vk). Finally, we send the following

Gaussian backward message:

←−m zk (zk) ∝ q(zk)/
−→m zk (zk). (17)

(b) Otherwise (the incoming messages from the variables z1:k are not all Gaus-
sian), we use Monte Carlo and send a message to zk as a NEF distribution:

←−m zk (zk) ≈
1
N

N

∑
i=1

←−m x(g(z(i)1:k−1, zk)), where z(i)j ∼
−→m zj(zj). (18)

Note that if fδ is a single input deterministic node, i.e., fδ(x, zk) = p(x|zk) =
δ(x− g(zk)), then the backward message simplifies to←−m zk (zk) =

←−m x(g(zk))
(Appendix B.1.1).

(3) The third factor type that leads to a special message computation rule is the equality
node; see Figure 3c. The outgoing message from an equality node

f=(z, z′, z′′) = δ(z− z′)δ(z− z′′)

is computed by following the sum–product rule:

−→m zk (zk) =
∫

δ(zk − z′k)δ(zk − z′′k)︸ ︷︷ ︸
node function

−→m z′k
(z′k)
−→m z′′k

(z′′k)︸ ︷︷ ︸
incoming messages

dz′kdz′′k

= −→m z′k
(zk)
−→m z′′k

(zk). (19)

Entropy 2021, 23, 815 9 of 36

(a) Soft factor. (b) Deterministic factor. (c) Equality factor.

Figure 3. Different factor types for outgoing message computation rules.

3.7. Computation of Free Energy

Here, we discuss how EVMP computes the FE update from (5). Note that the FE can
be decomposed into a subtraction of energy and entropy terms:

Fk =

〈
log

q(zk)

fa(z1:k) fb(zk:K)

〉
q(z1:K)

=

〈
log

1
fa(z1:k) fb(zk:K)

〉
q(z1:K)︸ ︷︷ ︸

(average) energy Ua+Ub

−
〈

log
1

q(zk)

〉
q(zk)︸ ︷︷ ︸

entropyHk

(20)

These energy and entropy terms can be evaluated because fa(z1:k) fb(zk:K) contains only
factors that are defined in the generative model and q(z1:K) is also accessible as a result
of variational inference. Thus, we evaluate the FE by evaluating the energy and entropy
terms separately.

For an EF-encoded soft factor

fa(z1:k) = p(zk|z1:k−1) = ha(zk) exp
(
φa(zk)

ᵀηa(z1:k−1)− Aη(ηa(z1:k−1))
)

,

the energy over the factor fa evaluates to

Ua = −〈log(fa(z1:k))〉q(z1:k)

= −〈log(ha(zk))〉q(zk)
− 〈φa(zk)〉ᵀq(zk)

〈ηa(z1:k−1)〉q(z1:k−1)
+
〈

Aη(ηa(z1:k−1))
〉

q(z1:k−1)
.

The entropy terms only need to be evaluated for variables z that are not associated
with output edges of deterministic nodes. In that case, we calculate the entropy of q(z)
as follows:

1. If q(z) is a represented by a standard EF distribution, i.e.,

q(z) = h(z) exp
(
φ(z)ᵀη − Aη(η)

)
,

then

Hz = −〈log(h(z))〉q(z) − 〈φ(z)〉
ᵀ
q(z)η + Aη(η).

2. Otherwise, if q(z) is represented by a LWS, i.e.,

q(z) :=
{(

w(1), z(1)
)

, . . . ,
(

w(N), z(N)
)}

,

then

Hz = Ĥ1
z + Ĥ2

z ,

where Ĥ1
z and Ĥ2

z are evaluated as discussed in (A43) and (A45).

Entropy 2021, 23, 815 10 of 36

3.8. Expectations of Statistics

In many of the above computations for messages, posteriors and free energies, we need
to compute certain expectations of statistics of z, e.g., the computation of the forward
message in (13) requires evaluation of 〈ηa(z1:k−1)〉q(z1:k−1)

. Here, we discuss how EVMP
evaluates these expectations. Let us denote a statistic of random variable z by Φ(z) and
assume we are interested in the expected value 〈Φ(z)〉q(z). The calculation rule depends
on the type of q(z):

(1) We have two cases when q(z) is coded as an EF distribution, i.e.,

q(z) = h(z) exp
(
φ(z)ᵀη − Aη(η)

)
:

(a) If Φ(z) ∈ φ(z), i.e., the statistic Φ(z) matches with elements of the sufficient
statistics vector φ(z), then 〈Φ(z)〉q(z) is available in closed form as the gradient
of the log-partition function (this is worked out in Appendix A.1.1, see (A14)
and (A15)):

〈Φ(z)〉q(z) ∈ ∇η Aη(η).

(b) Otherwise (Φ(z) /∈ φ(z)), then we evaluate

〈Φ(z)〉q(z) ≈
1
N

N

∑
i=1

Φ(z(i)) ,

where z(i) ∼ q(z).

(2) In case q(z) is represented by a LWS, i.e., the following:

q(z) =
{(

w(1), z(1)
)

, . . . ,
(

w(N), z(N)
)}

,

then, we evaluate the following:

〈Φ(z)〉q(z) ≈
N

∑
i=1

w(i)Φ(z(i)) .

3.9. Pseudo-Code for the EVMP Algorithm

Sections 3.1–3.8 provide a recipe for almost universal evaluation of variational infer-
ence in factor graphs. We use classical VMP with closed-form solutions when possible,
and resort to Laplace or IS approximations when needed. We now summarize the EVMP
algorithm by a pseudo-code fragment in Algorithm 1. We use the following notation:
V = Vf ∪ Vδ ∪ V= is the set of factor nodes (vertices), where Vf , Vδ, V= stand for the
subsets of soft factor nodes, deterministic nodes and equality nodes, respectively. E is
the set of edges that connect the nodes. G = (V, E) represents the entire factor graph.
h1:M+L = z1:M ∪ x1:L is the set of hidden variables, where x1:L are the variables at the output
edges of deterministic nodes. z1:M are also associated with edges in E, but in contrast to
x1:L, z1:M are not output edges of deterministic nodes.

For structured factorizations, the overall structure remains the same, but messages
and posteriors are calculated for sub-graphs instead of single random variables.

An example to illustrate the calculation of messages and posteriors in the EVMP
algorithm is provided in Appendix F.

Entropy 2021, 23, 815 11 of 36

Algorithm 1 Extended VMP (Mean-field assumption)

Require: G = (V, E), h1:M+L, Niterations, qinitial
for j = 1 . . . M + L do

initialize posteriors q(hj) using qinitial
end for
for i = 1. . . Niterations do

Set Free Energy F = 0
for j = 1 . . . M + L do

Calculate messages −→m hj
(hj) and←−m hj

(hj) using Section 3.6
Calculate posterior q(hj) using Section 3.5
if hj ∈ z1:M then

Calculate entropyHhj
using Section 3.7

Update Free Energy F = F −Hhj

end if
end for
for all v ∈ Vf do

Calculate energy Uv using Section 3.7
Update Free Energy F = F + Uv

end for
return q(h) for all h ∈ h1:M+L and F

end for

4. Experiments

We illustrate EVMP-based inference on three different applications (code for experi-
ments can be found at https://github.com/biaslab/ExtendedVMP (accessed on 25 June
2021)). For each application, we show the favorable features of EVMP together with its
shortcomings in comparison to Turing [5], which is a general purpose Julia probabilistic
programming package.

4.1. Filtering with the Hierarchical Gaussian Filter

The Hierarchical Gaussian Filter (HGF) [19,20] is a popular generative model in the
neuroscience community. The HGF consists of a Gaussian random walk model, where
the variance of the Gaussian is a nonlinear function of the state of the next higher layer,
that in turn evolves according to a Gaussian random walk, an so on. Due to the nonlinear
link between the layers, classical VMP rules do not have a closed-form solution. While in
principle, variational updates through Laplace approximation can be manually derived for
the HGF model [19], automatically generated EVMP update rules alleviate the need for
cumbersome and error-prone manual derivations.

The 2-layer HGF model is defined as

zt ∼ N (zt−1, σ2
z) (21a)

wt = exp(zt) (21b)

xt ∼ N (xt−1, wt) (21c)

yt ∼ N (xt, σ2
y) . (21d)

For this experiment, we generated T = 400 data points by the following process. First,
we generated noisy hidden states using zt ∼ N

(
sin
(

π
60 t
)
, 0.01

)
, t = 1 . . . 400. Next, we

generated observations following model (21a–d) with σ2
y = 0.1. The generated data set is

visualized in (the lower subgraph of) Figure 4.
Next, we filtered the data set by a second HGF, also given by (21a–d) with priors

z0 ∼ N (0, 1), x0 ∼ N (0, 1) and parameters σ2
z = σ2

y = 0.1. We used EVMP to track the
hidden states zt and xt. All inference steps including the message passing schedule for
filtering in the HGF are detailed in [19]. For each time step, EVMP was run for 10 iterations
at each filtering step.

https://github.com/biaslab/ExtendedVMP

Entropy 2021, 23, 815 12 of 36

Figure 4. Above: Hidden states z1:400 and their estimates (ribbon is one variance). The estimates of
ForneyLab’s Extended VMP are designated by blue while the estimates of Turing’s ADVI are marked
by red. Below: Observed synthetic data.

For comparison, we implemented a similar filtering procedure by Automatic Dif-
ferentiation Variational Inference (ADVI) [21], executed by Julia’s Turing.jl [5] package.
At each time step t, the priors over zt−1 and xt−1 are set to Gaussian distributions, the mean
and variance parameters of which are determined by sampling from the variational pos-
teriors at t − 1. The only difference between the ForneyLab and Turing implementa-
tions, in terms of posterior distribution factorization, is that in Turing’s ADVI, we posit
a fully factorized posterior distribution. This assumption decreases the number of pa-
rameters to be estimated via automatic differentiation and speeds up the inference pro-
cedure. On the other hand, pre-defined message passing rules in ForneyLab enable us
to retain the dependency structure between xt−1 and xt at time step t in exchange for
almost no run-time loss. To be more precise, at time step t, we run inference on the
following model: q f (zt−1)p(zt|zt−1)δ(wt − exp(zt))q f (xt−1)p(xt|xt−1, wt)p(yt|xt) where
q f (zt−1) and q f (xt−1) are the posterior approximations from the previous time step. In For-
neyLab, we run the inference with variational distribution q(zt−1)q f (zt)q(xt−1, xt) with
q f (xt) =

∫
q(xt−1, xt)dxt−1. We plot estimations for q f (zt) in Figure 4. In ADVI, the vari-

ational distribution is q(zt−1)q f (zt)q(xt−1)q f (xt). Once inference has completed, Turing
allows drawing samples from the variational distribution. We then calculate the mean and
variance of these samples to fit Gaussian distributions on q f (zt) and q f (xt).

The estimated tracks of zt are visualized in Figure 4. For both EVMP and ADVI,
the estimated hidden states largely coincide. However, we observe that both methods
capture the periodic character of the true hidden states z1:400 with a delay. We believe
that there are two plausible explanations for the delayed estimations: (1) in the model
specification, we assume that the data generative process is not known fully. The variables
z1:400 are originally generated from a sinusoidal function of discrete time steps. However,
in the model specification, we do not use this information; (2) in the model specification,
we define a random walk over hidden variables z1:400 that posits the mean of zt as zt−1.
Elaborating the latter factor, the random walk avoids a hidden variable zt to change
drastically, compared to zt−1 while xt forces zt to explain the volatility in the process.
Reconciling the beliefs from xt and zt−1, both Extended VMP and ADVI estimate zt with
a delay.

In Turing’s ADVI procedure, we used 10 samples per iteration for gradient estimation
and set the maximum number of iterations to 4000 per time step to be able to capture
this periodic behavior. The overall inference is completed in roughly 1.5 min (this and
furtherexperiments were carried out on a machine with the following specs: Julia 1.5.0,

Entropy 2021, 23, 815 13 of 36

Turing v0.15.9, AMD Ryzen 7 3700X 3.6 GHz 8-Core CPU, 16 GB DDR4-3200 MHz RAM.).
ForneyLab’s EVMP procedure, on the other hand, is able to perform inference in under 7 s
on this time series; see Table 1. The speed of ForneyLab stems from the hybrid inference
nature of EVMP. EVMP resorts to gradient-based optimization only to infer q f (zt) and
the sampling procedure is required only to estimate statistics related to wt to be used
in the update steps of q(xt−1, xt). In contrast, ADVI requires sampling and employs
noisy gradients in the estimation of all the components of the variational distribution.
This experiment validates EVMP as a fast automated variational inference solution for
filtering in hierarchical dynamic models.

Table 1. Run-time comparison of EVMP (in ForneyLab.jl) vs. ADVI (in Turing.jl) for the hierarchical
Gaussian filter model.

Algorithm Run Time (s)

EVMP (ForneyLab) 6.366± 0.081

ADVI (Turing) 91.468± 3.694

4.2. Parameter Estimation for a Linear Dynamical System

In this experiment, we focused attention on a system identification task in a Linear
Dynamical System (LDS) [22,23]. An LDS is generally defined as

xt|xt−1 ∼ N (Axt−1, Q) (22a)

yt|xt ∼ N (Bxt, R) (22b)

where yt are observations and xt are hidden states.
In this experiment, we are interested in inferring the transition matrix A together with

the hidden states from a set of observations. Manually derived closed-form solutions for
the system identification task are available both in maximum likelihood estimation [24] and
a variational Bayesian approximation [25] contexts. Nevertheless, the goal in this and other
papers on probabilistic programming packages is to automatically infer posteriors over
the hidden states and parameters without resorting to manual derivations. In principle,
EVMP supports to infer the hidden states, A, B, Q and R concurrently. Of course, depending
on specific circumstances such as system identifiability and the richness of the observed
data, the performance may vary.

In order to execute our experiment, we first extend (22a,b) with a prior on A as follows:

a ∼ N (µa, Va) (23a)

A = reshape(a, (m, m)) (23b)

xt|xt−1 ∼ N (Axt−1, Q) (23c)

yt|xt ∼ N (Bxt, R) (23d)

In (23a–d), a holds the vectorized representation of the transition matrix A. Note that
(23b) can be written as follows:

p(A|a) = δ(A− reshape(a, (m, m))) ,

and through this manipulation we identify reshape(a, (m, m)) as the deterministic factor in
(15). As a result, ForneyLab’s EVMP works out-of-the-box for inference of the transition
matrix in (23a–d).

We first generated a data set of T = 40 number of samples by running model (22a,b)

with parameters Q = 0.01× I2×2, R = 0.1× I2×2, B = I2×2 and A =

[
1.0 0.2
−0.5 0.8

]
.

Entropy 2021, 23, 815 14 of 36

Next, we presented the data set to a second LDS model and aimed to infer posteriors
over hidden states and transition matrix A. The prior on a was set to a ∼ N (04, I4×4) and
all other parameters were set to the same values as in the data generation process.

We compared the performance of ForneyLab’s EVMP with Turing’s ADVI and NUTS
(No U-Turn Sampler, a Hamiltonian Monte Carlo sampling-based inference method) [26]
engines, see Figure 5. Both EVMP, ADVI and NUTS successfully converged to almost
coinciding estimates of the transition matrix (no notable difference when visualized).
We also show free energy tracks for EVMP and ADVI in Figure 5. In this experiment,
Turing’s ADVI outperformed ForneyLab’s EVMP in terms of total execution time and the
free energy minimization. As a mitigating factor in this analysis, the pre-compilation of
the message passing schedule in ForneyLab takes about 13 s, while actual execution of the
generated inference algorithm is on par with Turing’s ADVI. Execution time details are
shown in Table 2.

Figure 5. Free energy tracks for EVMP on the LDS transition matrix identification task. Left: (a) Mean
estimate EVMP for the transition matrix A after 50 iterations, (b) mean estimate after 300 iterations,
(c) true transition matrix A that was used to generate the synthetic data. Right: Free energy tracks by
ForneyLab’s EVMP and Turing’s ADVI procedures.

Table 2. Run-time results for transition matrix estimation in the LDS model.

Algorithm Free Energy Total Time (s)

EVMP (ForneyLab) 135.837 58.674± 0.467

ADVI (Turing) 90.285 47.405± 1.772

NUTS (Turing) - 78.407± 4.206

4.3. EVMP for a Switching State Space Model

In this experiment, we went beyond models that only contain continuously val-
ued variables and inquired the capabilities of EVMP on a Switching State Space Model
(SSSM) [27], which consists of both continuous and discrete hidden variables. The as-
sumption of constant model parameters in the LDS of Section 4.2 does not account for the
regime changes that occur in many dynamical systems of interest. The SSSM does allow
for modeling parameter switches, and in this experiment we used the following model:

Entropy 2021, 23, 815 15 of 36

p(A) =
3

∏
k=1

Dir(A[:, k]; αk) (24a)

p(zt|zt−1) =
3

∏
k=1

3

∏
j=1

A
ztkzt−1,j
kj (24b)

p(xt|xt−1, zt) =
3

∏
k=1
N (xt|xt−1, vk)

ztk (24c)

p(yt|xt) = N (yt|xt, 1) (24d)

In this system, yt ∈ R are observations, xt ∈ R is a continuously valued hidden state and zt
is a one-hot coded three-dimensional selection variable, i.e., ztk ∈ {0, 1} and ∑3

k=1 ztk = 1.
The parameters of the system are the state variances vk and concentration parameters αk.
The elements of αk are all 1, except the kth element which is set to 100 to disfavor frequent
regime switches, e.g., α2 = [1, 100, 1]ᵀ.

We generated T = 120 data points from a random walk process (24c) and (24d) with
process noise variance parameter v = [v1, v2, v3] = [10, 4, 1]. From time step t = 2 to t = 25,
we set zt,1 = 1 and consequently p(xt|xt−1) = N (xt−1, 10). From time step t = 26 to t = 75,
we set zt,2 = 1 and between t = 76 to t = T = 120 we set zt,3 = 1. The generated time
series is shown in Figure 6.

Figure 6. Performance results for automated inference in SSSM. Top: generated data set. Bottom
4 subgraphs: posterior for regime selection variable zt by MF-EVMP, SMF-EVMP, HMC and NUTS
procedures respectively. In the Turing simulations (HMC and NUTS), the number of particles in the
Particle Gibbs sampler was set to 50. In the NUTS sampler, the adaptation step size is 1000 and the
target accept ratio is 0.65. The HMC sampler was tried with varying step sizes, including 0.001, 0.01,
0.1, 0.2, and 0.4 and leapfrog step numbers 10, 20, and 30. The best results are shown.

The main difficulty in state inference for the SSSM stems from the coupling between x
and z. This is because the variational message passing rules around the node p(xt|xt−1, zt)
are not pre-defined in ForneyLab, although technically they can be worked out to closed-
form expressions [27]. If EVMP were not available either, then a ForneyLab end user
would be expected to manually derive closed-form update rules and implement these
rules in an additional ForneyLab node. This type of manually assisted inference by end
user calculations is what we try to avoid with EVMP and with probabilistic programming

Entropy 2021, 23, 815 16 of 36

packages in general. EVMP enables the user to compensate for the lack of stored message-
passing rules by introducing an auxiliary variable s in the model with a deterministic
relation between s and z:

g(zt) =
3

∑
k=1

ztk · vk (25a)

p(st|zt) = δ(st − g(zt)) (25b)

p(xt|xt−1, st) = N (xt; xt−1, st) (25c)

p(xt|xt−1, zt) =
∫

p(xt|xt−1, st)p(st|zt)dst. (25d)

After we extend model specification (24a–d) by (25a–d), then ForneyLab can run EVMP-
based inference out of the box. Note that there is no need for manual inference calculations,
but rather a simple manipulation of the generative model that makes the system suited for
automated inference.

We tested the performance of two different constraints on the posterior distribution:

(1) a mean-field assumption, i.e., q(x1:T , z1:T) =
T
∏

t=1
q(xt)q(zt); (2) a structured mean-field as-

sumption, i.e., q(x1:T , z1:T) = q(x1:T)
T
∏

t=1
q(zt), see Figure 6. We observe that the structured

factorization, being a less stringent constraint on q, yields a slightly better performance
than the mean-field factorization, particularly in estimating the length of the first regime.

We also compared the performance of ForneyLab’s EVMP method to Turing’s infer-
ence method. As opposed to the previous two experiments, we could not use solely ADVI,
nor Hamiltonian Monte Carlo (HMC, [28,29]) and NUTS samplers in this experiment since
these procedures do not allow inference for discrete random variables. Turing does provide
the option to use a Particle Gibbs (PG) sampler [30,31] for the estimation of the discrete ran-
dom variables (z1:T) in conjunction with the estimation of the continuous random variables
(x1:T , A) by HMC and NUTS. The performance results for NUTS-PG and HMC-PG are
shown in Figure 6. The performance of the NUTS-PG and HMC-PG samplers in estimating
the correct regimes is far below the EVMP results, although the HCM-PG sampler correctly
identified the third regime. The run-time scores are shown in Table 3.

Table 3. Experimental results for switching state space model.

Algorithm Free Energy Total Time (s)

EVMP (Mean-field) 283.991 42.722± 0.197

EVMP (Structured) 273.596 51.684± 0.311

HMC-PG (Turing) - 116.291± 0.886

NUTS-PG (Turing) - 51.715± 0.441

5. Related Work

Hybrid Monte Carlo variational inference techniques have been studied prior to
our work. However, mainstream research predominantly consists of variational methods
within Monte Carlo techniques as opposed to our Monte Carlo methods within a variational
inference approach.

For instance, ref. [32] casts variational distributions as proposal distributions in a
Markov-Chain Monte Carlo (MCMC) procedure. Similarly, ref. [33] employs variational
methods to design adaptive proposal distributions for Importance Sampling (IS). In [34],
gradient estimates of a variational objective are used to tune the parameters of the proposal
distributions for MCMC. On the other hand, Monte-Carlo Co-Ordinate Ascent Variational
Inference (MC-CAVI), proposed in [35], differs from the aforementioned methods in that it

Entropy 2021, 23, 815 17 of 36

uses MCMC in the calculation of expectations required within the fixed-point iterations of
Coordinate Ascent Variational Inference (CAVI).

In this paper, we follow a similar approach as [35], but we use IS to estimate the expec-
tation quantities required in VMP. Both MCMC and IS have their own merits. IS smoothly
interfaces with the message passing interpretation of Bayesian inference, which further
leads to automated design of proposal distributions. We use Laplace approximation for
Gaussian posteriors for variables with Gaussian priors. In the context of dynamical systems,
this approach notably overlaps with Gaussian filtering techniques ([36], Section 6) that is
often achieved by Assumed Density Filtering ([37], Section 8.4).

As we show in Appendix E, in the approach that we propose, it is also possible to
run automated Bootstrap particle filtering [36,38] rather than Gaussian filtering methods.
As show in [18], particle filtering can also be framed as message passing on a factor graph.
The connection between the particle filtering and variational optimization was introduced
in [39]. Their formalism is based on an extension of Particle Belief Propagation [40] to
Tree-Reweighted Belief Propagation [41], while ours revolves around VMP. Similar to our
approach, Particle Variational Inference (PVI) [42] aims at optimizing a variational objective
by successive IS approximations to true posterior distributions. While PVI applies well to
inference for discrete random variables, our EVMP proposal applies to both continuous
and discrete random variables.

Variational inference in the context of deterministic building blocks in probabilistic
models was studied in [43]. Wheras [43] allows non-linearities to be placed only after Gaus-
sian nodes, the proposed EVMP method generalizes this concept to EF distributed factors.

Non-conjugate Variational Message Passing (NC-VMP) [44] addresses the non-conjugate
factor issue in VMP. Assuming that the posterior distribution is an EF distribution, NC-VMP
projects the messages to the distribution space of the posterior by equating their sufficient
statistics. Thus NC-VMP tunes the natural parameters of the messages in such a way that
they converge to the stationary points of the KL divergence between the approximated
and true posteriors. Ref. [44] also reports that the algorithm necessitates damping for
convergence in practice. In response, ref. [45] presents Conjugate-Computation Variational
Inference (CVI) as a universal inference method that is based on stochastic optimiza-
tion techniques. As opposed to alternative stochastic variational inference techniques,
such as Black-Box Variational Inference [46] and Automatic Differentiation Variational
Inference [21], CVI exploits the conjugacy structure of the probabilistic models, which
leads to faster convergence. In CVI, non-conjugate factors are incorporated into coordinate
ascent steps of mean-field variational inference (with ELBO objective) through a stochastic
optimization procedure to form compact posterior approximations with standard proba-
bility distributions. In our EVMP approach, the Laplace approximation entails a similarly
nested optimization procedure to form compact approximations with Gaussian distribu-
tions. Nevertheless, our particle approximations to the true posteriors obviate the need for
additional gradient-based optimizations to estimate the parameters of the posteriors.

Finally, the original VMP paper [9] itself briefly mentions sampling methods to over-
come the issues with non-conjugate priors. However, they do not extend this idea to
deterministic nodes and rather present it as a fallback method whenever soft factors are
tied to non-conjugate soft factor priors. Inspired by their vision of approximating the expec-
tation quantities by sampling techniques, we introduce here a fully automated, very broadly
applicable extended VMP procedure.

6. Discussion

In this paper, we present a method for almost universal variational inference on
factorized probabilistic models. The core of our method is the locality feature of VMP:
the messages at a soft factor are functions of expectations related to arguments of the factor.
We employ IS to estimate these expectations or directly approximate posteriors by Laplace
approximation if a Gaussian posterior is reasonable. We also extended the Julia package
ForneyLab with the proposed EVMP method. In contrast to many alternative PPLs that are

Entropy 2021, 23, 815 18 of 36

solely based on Monte Carlo methods, ForneyLab allows end users to take full advantage of
closed-form message passing rules while resorting to small-scale numerical approximations
only when needed. We showed that ForneyLab provides an efficient automated variational
Bayesian inference tool that in some instances may be preferable to the state-of-the-art
Turing package, especially for tasks that include filtering in dynamical models or discrete
variables in state space models.

While the experiments support the notion that EVMP is a promising method for
inference in non-linear and non-conjugate models, we have not tested our method yet in
high-dimensional problems. It is well-known that importance sampling is not efficient in
high dimensions [47]. Therefore, we anticipate that for high-dimensional inference tasks
with continuous random variables, Hamiltonian Monte Carlo-based methods could outper-
form EVMP both in terms of run-time and quality of the estimates. Nevertheless, it should
be possible to alleviate the deficiencies of EVMP in high dimensions by replacing IS and
Laplace approximations by HMC samplers. In essence, HMC is an MCMC method and
ref. [35] shows the efficiency of MCMC methods in estimation of the expectations that are
required in variational inference. Yet, in lower dimensions, we favor IS and Laplace approx-
imations both because of their promising performance scores in the experiments and also
because EVMP relieves users of choosing hyperparameters for the best performance. Recall
that in the SSSM experiments in Section 4.3, we tested HMC with various hyperparameters
to attain the best performance, and yet EVMP was more successful in detecting the hidden
regimes. Moreover, in contrast to EVMP, plain HMC is not applicable to estimate discrete
variables and needs to be combined with other samplers to run inference on the models
with discrete and continuous variables.

In Appendix C, we introduce a variational free energy estimation method that resorts
to approximations only if the closed-form expressions of the information-theoretic measures
are not available. This differs from alternative automated variational inference techniques,
such as Automatic Differentiation Variational Inference (ADVI), which estimates the entire
free energy over Monte Carlo summation. Moreover, like HMC, the applicability of ADVI
is also limited to continuous variables.

In EVMP, proposal distributions for importance sampling are automatically set to
forward messages. Although it is a practical solution with an elegant interpretation
in a message passing context, forward messages do not carry information regarding
observations. Therefore, we may not acquire useful samples from forward messages if the
observations lead to peaky backward messages. In future work, we aim to investigate the
effects of alternative proposal distribution design methods.

One major drawback of our ForneyLab implementation is that ForneyLab does not
allow loops during the inference procedure. We rarely encounter this problem with soft fac-
tors since the mean field assumption breaks the loops by imposing additional factorizations
in variational distributions. However, this may not be the case with deterministic nodes.
This is because the input and the output variables of deterministic nodes are tied to each
other through a deterministic mapping even after the mean field assumption. For example,
consider the following mixture model specification: p(z) = Ber(ρ), p(x|z) = δ(x− g1(z))
with g1(z) = µ1 · z + µ2 · (1− z), p(w|z) = δ(w− g2(z)) with g2(z) = w1 · z + w2 · (1− z)
and p(y|x, w) = N (x, 1/w). Although it is a valid model specification with properly de-
fined message passing rules, the EVMP algorithm is precluded due to the loop: the variable
z is connected to two deterministic nodes (p(w|z) and p(x|z)) the outputs of which are
connected to the same node p(y|x, w). Belief propagation (BP) [48,49] faces with a similar
problem on loopy graphs. Nonetheless, it has been proven that iteratively running BP
on loopy graphs often yields satisfactory approximations though the convergence is not
guaranteed ([12], Section 8.4.7), ([37], Section 22.2). Therefore, it is worth investigating the
performance of EVMP executed in a loopy setting.

There are similarities between EVMP and Expectation Propagation (EP) [50,51] in the
sense that both methods estimate the moment parameters of posteriors. In contrast to EP,
which approximates belief propagation (BP) [48,49] messages, EVMP approximates VMP

Entropy 2021, 23, 815 19 of 36

messages, which is applicable to a broader range of model specifications. In future work,
we aim to investigate and exploit this relation.

7. Conclusions

We developed a hybrid message passing-based approach to variational Bayesian
inference that supports deterministic and non-conjugate model segments. The proposed
Extended VMP (EVMP) method defaults to analytical updates for conjugate factor pairs
and uses a local Laplace approximation or importance sampling when numerical methods
are needed. EVMP was implemented in Julia’s ForneyLab package (see Appendix D) and
a set of simulations shows very competitive inference performance on various inference
tasks, particularly for state and parameter tracking in state-space models.

Author Contributions: Conceptualization, S.A.; methodology, S.A. and I.B.; software, I.B. and S.A.;
validation, I.B. and S.A.; writing—original draft preparation, S.A. and I.B.; writing—review and
editing, B.d.V. and S.A.; supervision, B.d.V.; funding acquisition, B.d.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is partly funded by GN Advanced Science.

Data Availability Statement: Not applicable.

Acknowledgments: The authors want to extend gratitude to our fellow researchers at BIASlab for
interesting discussions on the topics in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VMP Variational Message Passing
EVMP Extended Variational Message Passing
BP Belief propagation
EP Expectation propagation
FFG Forney-style Factor Graph
EF Exponential family
NEF Non-standard exponential family
LWS List of Weighted Samples
IS Importance sampling
MCMC Markov Chain Monte Carlo
HMC Hamiltonian Monte Carlo
ADVI Automatic Differentiation Variational Inference
PG Particle Gibbs

Appendix A. On the Applicability of VMP

In this section, we show that the applicability of the VMP algorithm relies on con-
nected factors being conjugate pairs in exponential family of distributions. Non-conjugate
connected factors lead to intractable posteriors and messages. Nevertheless, we show
that for a given soft factor, the corresponding VMP messages are locally expressed in
terms of some expectation quantities. If these expectations are not available in closed form,
then we can estimate them to approximate the VMP messages around the non-conjugate
factor pairs.

Let us focus on Figure 2. We postulate the following assumptions:

Entropy 2021, 23, 815 20 of 36

Figure A1. Deterministic conditional distributions often complicate VMP. An example deterministic
conditional is visualized for fδ(x, zk) = p(x|zk) = δ(x− g(zk)). fδ(x, zk) and fc(x, zk+1:K) together
form the composite node fb(zk:K).

• fa(z1:k) is an element of the exponential family (EF) of distributions, i.e.,

fa(z1:k) = p(zk|z1:k−1)

= ha(zk) exp(φa(zk)
ᵀηa(z1:k−1)− Aa(z1:k−1)). (A1)

In this equation, ha(zk) is a base measure, ηa(z1:k−1) is a vector of natural (or canoni-
cal) parameters, φa(zk) are the sufficient statistics, and Aa(z1:k−1) is the log-partition
function, i.e., Aa(z1:k−1) = log(

∫
ha(zk) exp(φa(zk)

ᵀηa(z1:k−1))dzk). It is always pos-
sible to write the log-partition function as a function of natural parameters Aηa(ηa),
such that Aηa(ηa) = Aa(z1:k−1). Throughout the paper, we sometimes prefer the
natural parameter parameterization of the log partition.

• We differentiate a few cases for fb:

1. fb is also an element of the EF, given by the following:

fb(zk:K) = p(zK|zk:K−1)

= hb(zK) exp(φb(zK)
ᵀηb(zk:K−1)− Ab(zk:K−1)) , (A2)

and is a conditionally conjugate pair with fa for zk. This (conditional conjugacy)
property implies that, given zk+1:K, we can modify fb in such a way that its
sufficient statistics will match the sufficient statistics of fa. Technically, this means
we can rewrite fb as follows:

fb(zk, zk+1:K) = hb(zK) exp(φa(zk)
ᵀηba(zk+1:K) + cba(zk+1:K)). (A3)

The crucial element of this rewrite is that both fa(z1:k) and fb(zk:K) are written as
exponential functions of the same sufficient statistics function φa(zk). This case
leads to the regular VMP update equations, see Appendix A.1.
Our Extended VMP does not need this assumption and derives approximate
VMP update rules for the following extensions.

2. fb is an element of the EF, but not amenable to the modification given in (A3),
i.e., it cannot be written as an exponential function of sufficient statistics φa(zk).
Therefore, fb is not a conjugate pair with fa for zk.

3. fb(zk:K) is a composition of a deterministic node with an EF node, see Figure A1.
In particular, in this case fb(zk:K) can be decomposed as follows:

fb(zk:K) =
∫

δ(x− g(zk)) fc(x, zk+1:K)dx (A4a)

= fc(g(zk), zk+1:K), (A4b)

where x = g(zk) is a deterministic, possibly nonlinear transformation and
fc(x, zk+1:K) is an element of the EF:

fc(x, zk+1:K) = p(zK|x, zk+1:K−1)

= hc(zK) exp(φc(zK)
ᵀηc(x, zk+1:K−1)− Ac(x, zk+1:K−1)). (A5)

Entropy 2021, 23, 815 21 of 36

We assume that the conjugate prior to fc for random variable x has sufficient
statistics vector φ̂c(x), and hence (A5) can be modified as follows:

fc(x, zk+1:K) = hc(zK) exp(φ̂c(x)ᵀη̂c(zk+1:K) + ĉc(zk+1:K)), (A6)

where ĉc(zk+1:K) refers to the terms that does not include x.

Appendix A.1. VMP with Conjugate Soft Factor Pairs

The original VMP algorithm arises as an efficient inference procedure in models
that solely consist of conjugate factor pairs. This is because conjugate factor pairs yield
analytically tractable messages and posterior calculations. Next, we shortly review the
effect of conjugate factor pairs on VMP updates.

Appendix A.1.1. Messages and Posteriors

The VMP message from the factor fa to zk can easily be evaluated by applying (3)
to (A1):

−→m zk (zk) ∝ ha(zk) exp
(

φa(zk)
ᵀ〈ηa(z1:k−1)〉q(z1:k−1)

)
. (A7)

Since fb is conjugate to fa, its functional form can be modified as (A3) and by applying (3)
to (A3), we find the VMP message from the factor fb to zk:

←−m zk (zk) ∝ exp
(

φa(zk)
ᵀ〈ηba(zk+1:K)〉q(zk+1:K)

)
. (A8)

Given that the messages −→m zk (zk) and ←−m zk (zk) have the same sufficient statistics,
the posterior update step reduces to summation of the messages’ natural parameters:

q(zk) ∝ ha(zk) exp

φa(zk)
ᵀ (〈ηa(z1:k−1)〉+ 〈ηba(zk+1:K)〉)︸ ︷︷ ︸

ηab

. (A9)

For the sake of brevity, the distribution subscripts in the expectation notations are dropped.
Note that we evaluate the posterior up to a normalization constant. Nevertheless, the log-
normalizer function Aηa(·) is readily available for EF distributions having sufficient statis-
tics vector φa(zk). As a consequence, the posterior evaluates to the following:

q(zk) = ha(zk) exp
(
φa(zk)

ᵀηab − Aηa(ηab)
)
. (A10)

Having showed that the conjugate factor pairs lead to a closed-form expression
for posterior q(zk), we now investigate which expectation quantities related to q(zk) are
required in the outgoing VMP messages from the factors fa and fb to, say z1 and zK:

←−m z1(z1) ∝ exp
(
〈log fa(z1:k)〉q(z2:k)

)
, (A11a)

−→m zK (zK) ∝ exp
(
〈log fb(zk:K)〉q(zk:K−1)

)
. (A11b)

In practice, the message←−m z1(z1) is explicitly calculated by isolating the terms with z1 in
a sufficient statistics vector as it is done for zk in (A8). Similarly, −→m zK (zK) is explicitly
calculated, analogous to message −→m zk (zk) in (A7). Here, we follow a rather different
approach to explicitly show the expectations related to q(zk) in the message calculations.
Substituting fa and fb with (A1) and (A3) in (A11a,b), and keeping in mind that the mean-
field assumption allows separation of the expectation quantities with distinct random
variables, the messages evaluate to the following:

Entropy 2021, 23, 815 22 of 36

←−m z1(z1) ∝ exp
(
〈φa(zk)〉ᵀq(zk)

〈ηa(z1:k−1)〉q(z2:k−1)
− 〈Aa(z1:k−1)〉q(z2:k−1)

)
, (A12a)

−→m zK (zK) ∝ hb(zK) exp
(
〈φa(zk)〉ᵀq(zk)

〈ηba(zk+1:K)〉q(zk+1:K−1)
+ 〈cba(zk+1:K)〉q(zk+1:K−1)

)
. (A12b)

Notice that both messages require the expectation of the sufficient statistic vector
φa(zk). Fortunately, in EF distributions, 〈φa(zk)〉q(zk)

is available in closed-form as the
gradient of the log-normalizer ([52], Proposition 3.1):

〈φa(zk)〉q(zk)
= ∇ηa Aηa |ηa=ηab . (A13)

For the sake of completeness, we now show that this equality holds. Recall that Aηa(ηa) =
log(

∫
ha(zk) exp(φa(zk)

ᵀηa)dzk). Then,

∇ηa Aηa(ηa) =
∇ηa

∫
ha(zk) exp(φa(zk)

ᵀηa)dzk∫
ha(zk) exp(φa(zk)ᵀηa)dzk

=

∫
φa(zk)ha(zk) exp(φa(zk)

ᵀηa)dzk

exp(Aηa(ηa))

=
∫

φa(zk)ha(zk) exp(φa(zk)
ᵀηa − Aηa(ηa))dzk. (A14)

Evaluating this gradient at ηa = ηab, we reach the following:

∇ηa Aηa |ηa=ηab =
∫

φa(zk) ha(zk) exp(φa(zk)
ᵀηab − Aηa(ηab))︸ ︷︷ ︸

q(zk)

dzk

= 〈φa(zk)〉q(zk)
. (A15)

Appendix A.1.2. Free Energy

As in the message and the posterior calculations, conjugacy eases the free energy calcu-
lation. We investigate it for (5), the free energy terms that include zk. Fk is decomposed as
follows:

Fk = −Eq(z1:k)
[log fa(z1:k)]−Eq(zk:K)

[log fb(zk:K)]︸ ︷︷ ︸
Average energy terms

+Eq(zk)
[log q(zk)].︸ ︷︷ ︸

Negative entropy

(A16)

Substituting fa, fb and q(zk) with (A1), (A3) and (A10) in the above expression:

Fk =− 〈log(ha(zk))〉q(zk)
− 〈φa(zk)〉ᵀq(zk)

〈ηa(z1:k−1)〉q(z1:k−1)
+ 〈Aa(z1:k−1)〉q(z1:k−1)

− 〈log(hb(zK))〉q(zK)
− 〈φa(zk)〉ᵀq(zk)

〈ηba(zk+1:K)〉q(zk+1:K)
− 〈cba(zk+1:K)〉q(zk+1:K)

+ 〈log(ha(zk))〉q(zk)
+ 〈φa(zk)〉ᵀq(zk)

ηab − Aηa(ηab). (A17)

The expectation terms related to zk in Fk are 〈φa(zk)〉q(zk)
and 〈log(ha(zk))〉q(zk)

.
The former expectation is available in closed form, (A13). Thus Fk is analytically tractable
for those distributions that possess closed-form solution for 〈log(ha(zk))〉q(zk)

.
In short, conjugate factor pairs facilitate the VMP procedure by allowing closed-form

expressions for updates of messages (3), posteriors (4) and FE (5). Moreover, although
exceptions exist, similar to the normalization of the posterior (A10), the messages −→m zk (zk)
and←−m zk (zk) can be effortlessly normalized if the required expectations are known. There-
fore, we can directly parameterize them with standard probability distributions and draw
samples from them. This property of EF distributions plays a pivotal role in our automation
of the importance sampling procedure.

Entropy 2021, 23, 815 23 of 36

Appendix A.2. VMP with Non-Conjugate Soft Factor Pairs

Suppose that the soft factors fa and fb are no longer conjugate pairs, i.e., fb given in
(A2) can be written in the following form:

fb(zk:K) = hb(zK) exp(φ̂b(zk)
ᵀη̂b(zk+1:K) + ĉb(zk+1:K)), (A18)

where crucially φ̂b(zk) 6= φa(zk). Notice that η̂b(6= ηb) is the natural parameters after the
modification of (A2) to isolate the terms with zk in the sufficient statistics vector. Therefore,
the messages −→m zk (zk) and←−m zk (zk) differ in sufficient statistics:

−→m zk (zk) ∝ ha(zk) exp
(

φa(zk)
ᵀ〈ηa(z1:k−1)〉q(z1:k−1)

)
, (A19a)

←−m zk (zk) ∝ exp
(

φ̂b(zk)
ᵀ〈η̂b(zk+1:K)〉q(zk+1:K)

)
. (A19b)

In this case, the normalization constant calculation in the posterior update step (5) is
not straightforward anymore; and worse, it is often intractable. The term intractable refers
to integrals that are not available in closed-form for continuous variables. For discrete
variables, it refers to summations that are not achievable in a feasible amount of time.
The lack of the normalization constant,

∫ −→m zk (zk)
←−m zk (zk)dzk, hinders the calculation of

the expectations with zk terms that appear in out-going VMP messages from fa and fb to
variables z1:k−1 and zk+1:K, respectively, e.g., 〈φa(zk)〉q(zk)

and
〈
φ̂b(zk)

〉
q(zk)

in

←−m z1(z1) ∝ exp
(
〈φa(zk)〉ᵀq(zk)

〈ηa(z1:k−1)〉q(z2:k−1)
− 〈Aa(z1:k−1)〉q(z2:k−1)

)
, (A20a)

−→m zK (zK) ∝ hb(zK) exp
(〈

φ̂b(zk)
〉ᵀ

q(zk)
〈η̂b(zk+1:K)〉q(zk+1:K−1)

+ 〈ĉb(zk+1:K)〉q(zk+1:K−1)

)
. (A20b)

As a result, non-conjugacies obstruct the VMP procedure by hampering closed-form
expectation calculations. Bear in mind that even though VMP procedure is obstructed due
to intractable expectations, the messages are distinctly fixed for soft factors as functions
of certain expectation quantities that are supposed to be calculated over their arguments.
We use this property in our Extended VMP method.

Appendix A.3. VMP with Composite Nodes

In this subsection, we shed light on the issues with composite nodes that are con-
structed by composition of EF distribution soft factors and deterministic conditionals, i.e.,
the following:

fb(zk:K) =
∫

fδ(x, zk) fc(x, zk+1:K)dx, (A21)

where fδ(x, zk) = p(x|zk) = δ(x− g(zk)) is a deterministic conditional distribution. Com-
posite nodes enable us to build almost arbitrary factor nodes. For example, a mixture
likelihood distribution p(y|z) = N (y; µ1, σ2)zN (y; µ2, σ2)(1−z) with z a one-hot coded
selection variable, can be constructed by composing an EF soft factor, a Gaussian, with a
deterministic factor as

∫
p(y|x)p(x|z)dx, where p(y|x) = N (y; x, σ2) and p(x|z) = δ(x−

zµ1− (1− z)µ2). However, composite nodes impose new challenges on inference procedures.
Now, let us try to calculate q(zk). The forward VMP message −→m zk (zk) is given in

(A19a). Suppose that the conjugate prior to EF soft factor fc for x has the sufficient statistics
vector φ̂c(x) (see (A6)). Then, the VMP message from fb to zk is as follows:

Entropy 2021, 23, 815 24 of 36

←−m zk (zk) ∝ exp

(〈
log
(∫

δ(x− g(zk)) exp
(
φ̂c(x)ᵀη̂c(zk+1:K)

)
dx
)〉

q(zk+1:K)

)
∝
∫

δ(x− g(zk)) exp
(

φ̂c(x)ᵀ〈η̂c(zk+1:K)〉q(zk+1:K)

)
︸ ︷︷ ︸

VMP:←−m x(x)

dx

︸ ︷︷ ︸
BP

= exp
(

φ̂c(g(zk))
ᵀ〈η̂c(zk+1:K)〉q(zk+1:K)

)
︸ ︷︷ ︸

←−m x(g(zk))

. (A22)

Note that the above message reduces to VMP message from fc to x followed by Belief
Propagation (BP) [48,49]. The resulting backward message ←−m zk (zk) has the sufficient
statistics vector φ̂c(g(zk)). If φ̂c(·) = φa(g−1(·)), this case reduces to ordinary VMP as
discussed in Appendix A.1; otherwise this case is a special case of Appendix A.2 and q(zk)
is not available in closed-form. Hence, the outgoing messages from the factor nodes fa and
fb:

←−m z1(z1) ∝ exp
(
〈φa(zk)〉ᵀq(zk)

〈ηa(z1:k−1)〉q(z2:k−1)
− 〈Aa(z1:k−1)〉q(z2:k−1)

)
, (A23a)

−→m zK (zK) ∝ exp

(〈
log
(∫

δ(x− g(zk))

hc(zK) exp
(
φ̂c(x)ᵀη̂c(zk+1:K) + ĉc(zk+1:K)

)
dx
)〉

q(zk:K−1)

)
= hc(zK) exp

(〈
φ̂c(g(zk))

〉ᵀ
q(zk)
〈η̂c(zk+1:K)〉q(zk+1:K−1)

+ 〈ĉc(zk+1:K)〉q(zk+1:K−1)

)
= hc(zK) exp

(〈
φ̂c(x)

〉ᵀ
q(x)〈η̂c(zk+1:K)〉q(zk+1:K−1)

+ 〈ĉc(zk+1:K)〉q(zk+1:K−1)

)
(A23b)

are intractable. The last line in the above derivations follows from the transformation of
variables [53], i.e., q(zk) = q(x)| dx

dzk
|, and expose the automatable nature of Variational Mes-

sage Passing: the VMP message −→m zK (zK) requires expectation quantities that are related
to arguments of the soft factor zK is tied to, which is in this case fc. Therefore, once the
VMP message passing rule is defined for the factor fc as a function of its arguments, we can
instantiate the messages by providing the required expectation quantities. For example,
the required expectation quantities related to argument x are contained in the sufficient
statistics vector φ̂c(x).

Appendix B. Derivation of Extended VMP

Here, we show the details of our solution approach that is based on importance
sampling (IS) and Laplace approximation. First, we address the issues with deterministic
mappings of random variables. The resulting technique emerges as a remedy for non-
conjugate soft factor pairs problem as well.

Appendix B.1. Deterministic Mappings with Single Inputs

We first address the issues with single-input deterministic mappings and generalize
our solution to multiple inputs later on. Consider the sub-graph given in Figure A1, where
the deterministic conditional p(x|zk) is defined as fδ(x, zk) = δ(x− g(zk)). As derived in
(A23a,b), we need the expectations 〈φa(zk)〉q(zk)

and
〈
φ̂c(x)

〉
q(x) to calculate VMP messages

towards edges z1:k−1 and zk+1:K, respectively. Suppose that Φ(·) is an element in the
sufficient statistic vectors φa(zk) and φ̂c(x). Then we need to be able to calculate 〈Φ(x)〉q(x)
and 〈Φ(zk)〉q(zk)

. Let us start with evaluating 〈Φ(x)〉q(x) first:

Entropy 2021, 23, 815 25 of 36

〈Φ(x)〉q(x) =
∫

q(x)Φ(x)dx =
∫

q(zk)Φ(g(zk))dzk.

The second equality in the above expression is due to the transformation of variables, i.e.,
q(x) = q(zk)|dzk

dx | [53].
Substituting q(zk) with (4) in the above integral yields the following:

〈Φ(x)〉q(x) =
∫ −→m zk (zk)

←−m zk (zk)∫ −→m zk (zk)
←−m zk (zk)dzk

Φ(g(zk))dzk, (A24)

where ←−m zk (zk) = ←−m x(g(zk)), as given in (A22). Recall from Appendix A.3 that the
normalizer,

∫ −→m zk (zk)
←−m zk (zk)dzk, is often hard to calculate analytically.

We use importance sampling [11,36] to approximate the integral in (A24):

〈Φ(x)〉qx
=
∫ −→m zk (zk)

←−m x(g(zk))π(zk)

π(zk)∫ −→m zk (zk)
←−m x(g(zk))π(zk)

π(zk)
dzk

Φ(g(zk))dzk

≈
N

∑
i=1


−→m zk (z

(i)
k)←−m x(g(z(i)k))

π(z(i)k)

N
∑

j=1

−→m zk (z
(j)
k)←−m x(g(z(j)

k))

π(z(j)
k)


︸ ︷︷ ︸

w(i)

Φ(g(z(i)k)), (A25)

where z(i)k for i = 1, . . . , N are drawn from the proposal distribution π(zk), i.e., z(i)k ∼ π(zk).

g(z(i)k) for i = 1, . . . , N are particles and their corresponding weights are denoted by w(i).
The design of a good proposal distribution has a critical role in IS. First, it is supposed

to be an easy-to-sample distribution. Secondly, its support is required to be no smaller than
the support of −→m zk (zk)

←−m x(g(zk)) [36]. Lastly, the proposal distribution is desired to be a

good representation of qk(zk) =
−→m zk (zk)

←−m zk (zk)∫ −→m zk (zk)
←−m zk (zk)dzk

to attain a fast convergence [47]. In our

automated design, −→m zk (zk) constitutes the proposal distribution. Our choice is not optimal
in a sense that information regarding the evidence is most often carried out by the backward
message and it is not incorporated in our proposal design. However, −→m zk (zk) satisfies
the first two conditions since the messages are parameterized with standard distributions
(easy-to-sample) and it has nonzero probability everywhere that the posterior has, too.
Substituting π(zk) with −→m zk (zk) in (A25) yields the following:

〈̂Φ(x)〉q(x) =
N

∑
i=1


←−m x(g(z(i)k))

N
∑

j=1

←−m x(g(z(j)
k))


︸ ︷︷ ︸

w(i)

Φ(g(z(i)k)), (A26)

where z(i)k ∼
−→m zk (zk) for i = 1, . . . , N and 〈̂Φ(x)〉q(x) denotes our estimator for 〈Φ(x)〉qx

.
Let us summarize the procedure in (A26) to define our first set of rules related to

the deterministic nodes. (A26) consists of samples that are drawn from −→m k(zk) and trans-
formed through deterministic mapping g(.). We cast this process as the forward message
−→m x(x) calculation. Once the samples are transformed, i.e., g(z(i)k), the weights w(i) are
determined over←−m x(.). We interpret this process as the collision of the forward −→m x(x)
and the backward messages←−m x(.); hence, we relate it to the posterior calculation. Setting
Φ(g(z(i)k)) to δ(x− g(z(i)k)), our interpretation of message collision becomes obvious since

Entropy 2021, 23, 815 26 of 36

Φ(g(z(i)k)) := δ(x− g(z(i)k)) results in a Monte Carlo estimate for q(x). As a result, we in-
troduce our first set of rules related to deterministic nodes and the posterior approximation
at the output edge of the deterministic node:

−→m x(x) ≈
{(

1
N

, g(z(1)k)

)
, . . . ,

(
1
N

, g(z(N)
k)

)}
, (A27a)

q(x) ∝ −→m x(x) · ←−m x(x) ≈
{(

w(1)
x , x(1)

)
, . . . ,

(
w(N)

x , x(N)
)}

, (A27b)

where z(i)k ∼
−→m k(zk), x(i) = g(z(i)k), w(i)

x =
←−m x(x(i))

N
∑

j=1

←−m x(x(i))
. (A27c)

Here, we introduce the term list of weighted samples (LWS) to refer to the distributions that
are represented by a set of samples and corresponding weights. Above, −→m x(x) and q(x)
are represented by LWS distributions.

Now, we turn our attention to calculation of q(zk) and the expectation quantity
〈Φ(zk)〉q(zk)

. For this task we have two different strategies: if −→m zk (zk) is a Gaussian
message, we approximate q(zk) by Laplace approximation which is also automatable
thanks to automatic differentiation and otherwise we follow the IS procedure introduced
above. Let us go over them starting from the latter.

Appendix B.1.1. Non-Gaussian Case

This time we are supposed to evaluate 〈Φ(zk)〉q(zk)
so that the VMP messages toward

z1, . . . , zk−1 can be computed. Notice that the procedure is exactly same with (A25), except
that the expectation quantity of interest, 〈Φ(zk)〉q(zk)

, does not involve the deterministic
mapping g(.), this time. Therefore, by using −→m zk (zk) as the proposal distribution, we can
estimate 〈Φ(zk)〉q(zk)

as the following:

̂〈Φ(zk)〉q(zk)
=

N

∑
i=1


←−m x(g(z(i)k))

N
∑

j=1

←−m x(g(z(j)
k))


︸ ︷︷ ︸

w(i)

Φ(z(i)k). (A28)

This gives us the second set of rules related to deterministic mappings. An element of this
new set of rules is that the backward message is directly passed in probability distribution
function (pdf) form:

←−m zk (zk) =
←−m x(g(zk)). (A29)

Recall from Appendix A.1 that the messages used to carry standard EF distributions. Now,
we make an exception and introduce←−m zk (zk), which is no longer associated with any of the
standard EF distributions. Nonetheless,←−m zk (zk) takes an exponential form since←−m x(·) is
an EF distribution (see (A22)). Therefore, we call←−m zk (zk) a non-standard exponential family
(NEF) distribution. Having defined the backward message, let us evaluate the posterior
q(zk). Similar to q(x), substituting Φ(zk) with δ(zk − z(i)k) in (A28) gives us a Monte Carlo
estimate of q(zk):

q(zk) ∝ −→m zk (zk) · ←−m zk (zk) ≈
{(

w(1)
zk , z(1)k

)
, . . . ,

(
w(N)

zk , z(N)
k

)}
, (A30a)

where z(i)k ∼
−→m zk (zk), w(i)

zk =
←−m zk (z

(i)
k)

N
∑

j=1

←−m zk (z
(j)
k)

. (A30b)

Entropy 2021, 23, 815 27 of 36

Appendix B.1.2. Gaussian Case

In FFGs, the models are often constructed in such a way that the most prevailing
message types will be Gaussians. This is because Gaussian messages facilitate inference
by allowing many inference related operations to be executed in closed form, such as
summation, conditioning, scaling and shifting by constants, etc. In order to retain the
computational advantages of Gaussian distribution, we take it as an implicit hint that the
posterior distribution is Gaussian-like, if −→m zk (zk) is a Gaussian message. Then, we use
Laplace approximation ([12], Section 4.4) to approximate q(zk) with N (zk; µzk , Vzk):

µzk = arg max
zk

(
log−→m zk (zk) + log←−m zk (zk)

)
, (A31a)

Vzk = (−∇∇zk (log−→m zk (zk) + log←−m zk (zk))|zk=µk)
−1, (A31b)

where ∇zk f denotes the gradient of f with respect to zk and ∇∇zk f |zk=µk refers to the
Hessian of f with respect to zk evaluated at µk. Note that the gradient and the Hessian
respectively reduce to the first and the second derivatives if zk is scalar. Laplace approxi-
mation is a mode-seeking algorithm. We use automatic differentiation (autodiff) [13] to
evaluate the gradient∇zk (log−→m zk (zk) + log←−m zk (zk)) and employ it in a gradient-ascent al-
gorithm to seek the mode (we supply the implementation details in Appendix D). Once the
mode is reached, we evaluate the Hessian at the mode to fit the variance term for our
Gaussian approximation.

The assumption we make here that −→m zk (zk) implies a Gaussian-like q(zk) paves the
way of automating many well known inference procedures achieved through Laplace
approximation, such as Bayesian logistic regression ([37], Section 8.4), Laplace-Gaussian
filtering and smoothing in state space models [54], Poisson Linear Dynamical Systems [55],
etc. However, our assumption would not be appropriate for all configurations. For ex-
ample, Gaussian prior on rate parameter of a Poisson distribution would result in an
ambiguous posterior since the domain of the rate is the positive real numbers while the
Gaussian approximated posterior has a support on the entire real axis. A better model spec-
ification could be achieved by mapping a Gaussian distributed random variable to the rate
parameter through an inverse-link function, exp in this example. Likewise, a multi-modal
backward message←−m zk (zk) with a support on real numbers often yields a multi-modal
posterior which can be better captured with particle methods. (In Appendix E, we show
that it is possible to run particle filtering through Gaussian factor nodes in our technique.)

In summary, our method resorts to Laplace approximation to approximate q(zk) with
a Gaussian distribution whenever −→m zk (zk) is Gaussian. Therefore, the user of our method
must keep in mind the consequences of prior choices and build her model accordingly.

Figure A2. Messages around a deterministic node are visualized together with posterior approxima-
tions. In EVMP algorithm, forward messages from single input deterministic nodes are approximated
by LWS representations. Backward messages, on the other hand, take non-standard exponential
family distribution forms.

The overall procedure for single input deterministic functions is depicted in Figure A2.
In the next subsection, we extend this procedure to multiple input deterministic mappings.

Entropy 2021, 23, 815 28 of 36

Appendix B.2. Deterministic Mappings with Multiple Inputs

Consider the deterministic node, fδ(x, z1:k) = δ(x− g(z1:k)), given in Figure A3 where
the inputs to the deterministic function g(.) are z1, . . . , zk and the output is x.

Figure A3. A deterministic node with inputs z1, . . . , zk and output x.

Before starting the discussion on the backward messages, let us define the forward
message −→m x(x). Analogous to the single input case, we define −→m x(x) with an LWS as
the following:

−→m x(x) ≈
{(

1
N , g(z(1)1:k)

)
, . . . ,

(
1
N , g(z(N)

1:k)
)}

,

where z(i)1 ∼
−→m z1(zk), . . . , z(i)k ∼

−→m zk (zk).

(A32)

Once the message is calculated as a set of equally weighted samples, we scale the weights
according to the importance score of their corresponding samples to represent q(x):

q(x) ∝ −→m x(x) · ←−m x(x) ≈
{(

w(1)
x , x(1)

)
, . . . ,

(
w(N)

x , x(N)
)}

, (A33a)

where x(i) = g(z(i)1:k), w(i)
x =

←−m x(x(i))
N
∑

j=1

←−m x(x(i))
. (A33b)

Now, let us define the backward messages propagated by the deterministic node.
The exact backward message towards one of the input variables, say zk, is the following:

←−m zk (zk) =
∫

δ(x− g(z1:k))
−→m z1(z1) . . .−→m zk−1(zk−1)

←−m x(x)dz1 . . . dzk−1dx. (A34)

Unfortunately, the above integral is often intractable. Even if all the variables are discrete
and integral is replaced by summation, it becomes intractable in practice as the number of
variables increases. Here, we address this issue with two different approximation strategies.
As it is in the above subsection, type of the approximation depends on the incoming mes-
sages to the deterministic node from the input edges: if the messages −→m z1(z1), . . . ,−→m zk (zk)
are all Gaussian, we approximate the joint posterior distribution of z1, . . . , zk by a Gaussian
distribution. Then, we calculate the backward messages over the approximated joint poste-
rior and incoming messages. Otherwise, we use Monte Carlo summation. Let us start with
the latter case.

Appendix B.2.1. Monte Carlo Approximation to the Backward Message

Monte Carlo approximation to the the integral in (A34) is

←−m zk (zk) ≈
1
N

N

∑
i=1

←−m x(g(z(i)1 , . . . , z(i)k−1, zk)), (A35)

where z(i)j ∼
−→m zj(zj) for j = 1, . . . , k− 1.

Entropy 2021, 23, 815 29 of 36

Once the message←−m zk (zk) is approximately calculated and propagated as an NEF
distribution, q(zk) is also approximated either by IS or Laplace, depending on the message
type −→m zk (zk) as it is discussed in Appendix B.1.

Appendix B.2.2. Gaussian Approximation to the Backward Message

The above procedure yields two consecutive approximation processes in the calcu-
lation of q(zk). Considering that we assumed −→m zk (zk) implies that q(zk) is Gaussian-like,
we can avoid the approximation in (A35) if all the incoming messages−→m z1(z1), . . . ,−→m zk (zk)
are Gaussian. We achieve this by approximating the joint posterior q(z1:k) with Laplace,
followed by a marginalization to evaluate q(zk) and←−m zk (zk) ∝ q(zk)/

−→m zk (zk).
More precisely, consider the incoming messages −→m zj(zj) = N (zj; µ′zj , V′zj) for j =

1, . . . , k. Note that these messages carry posterior beliefs on z1, . . . , zk, which can be rep-
resented with a joint belief −→m z1:k (z1:k) constituted by concatenation of z1, . . . , zk: z1:k =
z1 ⊕ z2 ⊕ . . .⊕ zk =

[
z1 . . . zk

]ᵀ:

−→m z1:k (z1:k) = N (µ′z1:k , V′z1:k)

= N


µ′z1

...
µ′zk

,

V′z1 . . . 0
...

. . .
...

0 . . . V′zk


. (A36)

Now, we approximate q(z1:k) by a Gaussian distribution N (µz1:k , Vz1:k) with a La-
place approximation:

µz1:k = argmax
z1:k

log−→m z1:k (z1:k) + log←−m x(g(z1, . . . , zk)), (A37a)

Vz1:k = (−∇∇z1:k (log−→m z1:k (z1:k) + log←−m x(g(z1, . . . , zk)))|z1:k=µz1:k
)−1. (A37b)

By marginalizing out z1, . . . zk−1, we find q(zk):

q(zk) =
∫

q(z1:k)dz1 . . . dzk−1 = N (µzk , Vzk). (A38)

Recall that q(zk) ∝ −→m zk (zk)
←−m zk (zk). This yields the following backward message

←−m zk (zk) ∝ q(zk)/
−→m zk (zk) = N (µ

′′
zk

, V
′′
zk
), (A39)

where V
′′−1
zk

= V−1
zk
−V

′−1
zk

and V
′′−1
zk

µ
′′
zk
= V−1

zk
µzk −V

′−1
zk

µ′zk . Note that we intentionally
parameterize the Gaussian backward message←−m zk (zk) with a precision-weighted mean
V
′′−1
zk

µ
′′
zk

and precision V
′′−1
zk

. The canonical parameterization (weighted-mean and pre-
cision) brings computational advantages, especially in state space models, by avoiding
certain matrix inversions [15]. The approach that we introduced in this section resembles
Expectation Propagation (EP) [50,51] in the sense that we first find the posterior, q(zk),
and then the backward message is evaluated by dividing the posterior to the incoming
message. As it is stated in [51], Laplace Propagation [56] proposes an iterative Laplace
approximation approach to mitigate intractable integral issues that sometimes emerge
in EP.

So far, we have discussed how to extend VMP to those models with deterministic
conditional distributions. To summarize, the resulting technique approximates the forward
messages in deterministic nodes by LWS. Backward messages, on the other hand, are either
directly propagated in NEF form or approximated with Gaussian distributions. We also
showed posterior approximations related to these message types. In the next subsection,
we attack the problem regarding the non-conjugate soft factor pairs.

Entropy 2021, 23, 815 30 of 36

Appendix B.3. Non-Conjugate Soft Factor Pairs

Next, we address the problems defined in Appendix A.2. Consider the generic edge
depicted in Figure 2. Suppose that the messages −→m zk (zk) and ←−m zk (zk) differ in suffi-
cient statistics and hence the normalization constant

∫ −→m zk (zk)
←−m zk (zk)dzk is analytically

intractable. Recall that the very much same problem emerges in Appendix B.1 while
calculating q(zk). Therefore, the approximation rules defined in Appendix B.1 applies
to non-conjugate factor pairs, as well. For the sake of comprehensiveness, the rules are
summarized below.

1. If−→m zk (zk) is a Gaussian message, apply Laplace to approximate q(zk) with a Gaussian
distribution as in (A31a,b).

2. Otherwise, use IS as in (A30a,b).

Appendix C. Free Energy Approximation

Recall from Section 2 that variational inference transforms a difficult inference task to
an easier optimization problem of a variational bound called the free energyF . Considering
the fact that VMP converges to a stationary point by updating one posterior factor at a
time, we anticipate that our approximations approach near the local optima.

As it is shown inAppendix A.1.2, the free energy is amenable to analytical calculations
for those models that are solely comprised of conjugate factor pairs. The models that we
address here do not allow the free energy to be calculated analytically. This is because
analytically intractable expectation quantities, which complicates VMP in practice, also ap-
pear in the free energy calculation. Therefore, we provide an approximate free energy to
the user so that they can track the convergence of the inference and also make a model
comparison [9,57].

We introduce our free energy approximation approach over the sub-graph given in
Figure A1, where fa(z1:k) is a standard EF distribution (A1) and fb(zk:K) is a composite node,
i.e., fb(zk:K) =

∫
δ(x− g(zk)) fc(x, zk+1:K)dx = fc(g(zk), zk+1:K). Recall that fc(x, zk+1:K) is

modified as follows:

fc(x, zk+1:K) = hc(zK) exp(φ̂c(x)ᵀη̂c(zk+1:K) + ĉc(zk+1:K)).

This sub-graph is a part of a larger FFG. First, we decompose the free energy as the follow-
ing:

F = F̃ −Eq(z1:k)
[log fa(z1:k)]−Eq(zk:K)

[log fb(zk:K)]︸ ︷︷ ︸
Average energy terms

+Eq(zk)
[log q(zk)]︸ ︷︷ ︸

Negative
entropy︸ ︷︷ ︸

Fk

, (A40)

where F̃ stands for the free energy terms that are not subject to variables zk. Explicitly
writing the average energy terms, we have the following:

−Eq(z1:k)
[log fa(z1:k)] = −〈log(ha(zk))〉q(zk)

− 〈φa(zk)〉ᵀq(zk)
〈ηa(z1:k−1)〉q(z1:k−1)

+ 〈Aa(z1:k−1)〉q(z1:k−1)
(A41a)

−Eq(zk:K)
[log fb(zk:K)] = −

〈
log
(∫

δ(x− g(zk))

hc(zK) exp
(
φ̂c(x)ᵀη̂c(zk+1:K) + ĉc(zk+1:K)

)
dx
)〉

q(zk:K)

= −〈log(hc(zK))〉q(zK)
−
〈
φ̂c(x)

〉ᵀ
q(x)〈η̂c(zk+1:K)〉q(zk+1:K)

− 〈ĉc(zk+1:K)〉q(zk+1:K)
. (A41b)

The above derivations closely follow the derivations in (A23a,b). Note that the ex-
pectation terms regarding zk in (A41b) are substituted by the expectations related to x,

Entropy 2021, 23, 815 31 of 36

which are contained in the sufficient statistics vector φ̂c(x). This quantities are exactly
same with the ones required to calculate VMP messages towards zk+1:K, and we used IS to
estimate them in (A26). Therefore,

〈
φ̂c(x)

〉
q(x) for the estimation of −Eq(zk:K)

[log fb(zk:K)]

is readily available.
Next, we investigate the terms related to zk in −Eq(z1:k)

[log fa(z1:k)]. Recall that for
q(zk), we have two approximation methods: (1) a Gaussian approximation to q(zk) with
Laplace, (2) an LWS approximation. q(zk) is approximated with a Gaussian when −→m zk (zk)
is a Gaussian and this is the case if the factor node fa(z1:k) = p(zk|z1:k−1) is a Gaus-
sian distribution. In this case, φa(zk) = [zk, z2

k]
ᵀ (φa(zk) = [zk, zkzᵀk]

ᵀ for a multivariate
Gaussian), log(ha(zk)) = −0.5 log(2π) (log(ha(zk)) = −0.5d log(2π) for a d-dimensional
multivariate Gaussian), and 〈log(ha(zk))〉q(zk)

, 〈φa(zk)〉q(zk)
are available in closed-form.

Similarly, the entropy term −Eq(zk)
[log q(zk)] is available in closed-form for a Gaussian

q(zk). This completes the calculation of the expectation terms with zk in Fk.
In the case that q(zk) is approximated with LWS as in (A30a,b), we approximate

〈log(ha(zk))〉q(zk)
and 〈φa(zk)〉q(zk)

with IS as in (A28). Therefore, the approximations for
the average energy terms are straightforward. For LWS approximated q(zk), the main
difficulty in the estimation of Fk stems from the entropy calculation. This is because
log(q(zk)) does not persist in functional form. The entropy approximation for weighted
sample approximated distributions is often carried out by probability density estimates on
weighted samples [58]. Fortunately, in our case, we do not need to fit a density estimate on
LWS since the messages −→m zk (zk) and←−m zk (zk) afford the information regarding the density
q(zk). Let us derive an estimator for the entropyHzk :

Hzk = −
∫

q(zk) log q(zk)dzk

= −
∫

q(zk) log

(−→m zk (zk)
←−m zk (zk)∫ −→m zk (zk)
←−m zk (zk)dzk

)
dzk

= −
∫

q(zk) log
(−→m zk (zk)

←−m zk (zk)
)
dzk︸ ︷︷ ︸

H1
zk

+
∫

q(zk) log
(∫
−→m zk (zk)

←−m zk (zk)dzk

)
dzk︸ ︷︷ ︸

H2
zk

. (A42)

We estimate the first term with the following Monte Carlo summation:

Ĥ1
zk
= −

N

∑
i=1

w(i)
zk log

(−→m zk (z
(i)
k)←−m zk (z

(i)
k)
)

. (A43)

The term with the log inH2
zk

is constant since zk is integrated out inside the log. Therefore
H2

zk
simplifies further:

H2
zk
= log

(∫
−→m zk (zk)

←−m zk (zk)dzk

) ∫
q(zk)dzk︸ ︷︷ ︸

1

. (A44)

Recall from (A28) that the samples z(1)k , . . . , z(N)
k are drawn from the message −→m zk (zk).

Therefore, the Monte Carlo estimate of H2
zk

is as follows:

Ĥ2
zk
= log

(
1
N

N

∑
i=1

←−m zk (z
(i)
k)

)
. (A45)

This completes the estimation of the terms with zk in Fk.

Entropy 2021, 23, 815 32 of 36

Appendix D. Implementation Details in ForneyLab

Our extensions to VMP are readily available in ForneyLab [8], which is a Julia package
for message passing based probabilistic programming. In this section, we provide the
reader with some of the core implementation details and automation process of the method.
First, the number of particles that commutes through deterministic nodes is set to 1000 by
default. The user can change the number of samples during model specification. Similarly,
the posterior of the variables that are connected to non-conjugate soft factor pairs are
approximated by 1000 samples. For Laplace approximations, gradients are automatically
calculated by automatic differentiation tools of Julia language. We use the ForwardDiff
package [59] since it is a mature, universal automatic differentiation tool that aligns well
with the needs of our approach.

Appendix E. Bonus: Bootstrap Particle Filtering

Having implemented importance sampling to get around the complications in VMP,
we now show how our technique inherently supports bootstrap particle filtering in state
space models [36,38].

Recall that we automate Laplace approximation to retain the computational conve-
nience of Gaussian filtering and smoothing. Although this choice sounds reasonable for
those cases, we believe that the distributions over hidden states possess unimodal behavior,
so it would not be sufficient to capture multi-modal distributions [36]. Similarly, due to
non-linearities in the model specification and/or non-Gaussian process noise, Gaussian
distribution might not be a plausible representation of the hidden states. In these cases,
Sequential Monte Carlo methods [60] could be appealing because they flexibly recover
asymmetric and mixture distributions.

In VMP setting, our method employs samples and their corresponding weights to
deploy VMP messages which are parameterized by exponential family distributions. Alter-
natively, in Belief Propagation (BP) setting, a soft factor collects samples to instantiate the
conditional distributions, and then draw samples from these conditionals. This process is
depicted in Figure A4 with two samples for the sake of ease of visualization.

Figure A4. Bootstrap Particle Filtering employs the state transition distributions, p(zk|zk−1) as
proposal distributions, which can easily be supported in our framework by defining BP rules at soft
factors for incoming messages that are LWS. The rule is straightforward to implement: weights stay
unchanged; for each incoming sample, instantiate a new conditional distribution and draw a sample

from it. The weight update is automatically carried out at equality node by w̃(i)
k ∝ p(yk|z

(i)
k)w(i)

k−1,

which is followed by a normalization: w(i)
k =

w̃(i)
k

∑
j=1

w̃(j)
k

.

Having implemented the BP rule at a soft factor for incoming LWS messages, we have
to show how posteriors are approximated through updating weights. Suppose that−→m zk (zk)
is a message that carries LWS, and←−m zk (zk) is parameterized either by an EF or an NEF.
Then, we define the posterior update rule as follows:

Entropy 2021, 23, 815 33 of 36

Given −→m zk (zk) =
{(

w(1)
k−1, z(1)k

)
, . . . ,

(
w(N)

k−1, z(N)
k)

)}
,

q(zk) ∝ −→m zk (zk)
←−m zk (zk)

≈
{(

w(1)
k , z(1)k

)
, . . . ,

(
w(N)

k , z(N)
k)

)}
, (A46a)

where w(i)
k ∝ w(i)

k−1
←−m zk (z

(i)
k). (A46b)

In Bootstrap particle filtering, these rules update the weights at equality nodes, automati-
cally. A major drawback of sequential importance sampling methods is that the further
samples commute over time steps, the more they lose their ability to recover the under-
lying process, and many of the weights approach to zero. This phenomenon is known as
the degeneracy problem and can be alleviated by resampling [36,60]. In our automated
setting, at each weight update step, we measure the effectiveness of the existing samples by
neff =

1
N
∑

i=1
(w(i))

2
, as it is shown in [36]. Then, we resample if neff < N/10 [36]. A user can

effortlessly execute a particle filtering procedure in our method by putting an LWS prior
on the first hidden state of a sequential model and running BP inference on the model (For
demonstration purposes, we implemented BP rules at Gaussian node for LWS messages.
The user can implement the very same rules for other soft factors according to their needs.
Visit https://github.com/biaslab/ForneyLab.jl/blob/master/demo/bootstrap_particle_
filter.ipynb (accessed on 25 June 2021) for a toy example.).

Appendix F. Illustrative Example

Consider the following model visualized in Figure A5: p(x) = N (x; µx, vx), p(z) =
N (z; µz, vz), p(w|z) = δ(w− exp(z)), p(y|x, w) = N (y; x, 1/w), with observation y. In [9],
VMP messages are provided as an example for a normal node parameterized by mean
and precision. Here, we augment their example by a deterministic node to illustrate how
Extended VMP operates to approximate the posteriors for x, w and z:

Figure A5. The model p(x) = N (x; µx, vx), p(z) = N (z; µz, vz), p(w|z) = δ(w − exp(z)),
p(y|x, w) = N (y; x, 1/w) is visualized together with the messages. The EVMP algorithm approx-
imates the backward VMP message towards x by estimating 〈w〉 with Monte Carlo summation.
Once this VMP message is approximated, the update for q(x) is available in closed form. The back-
ward message toward w and z requires 〈x〉 and

〈
x2〉. These expectations can be computed analytically

since they are the sufficient statistics of q(x). However, this time, the forward and the backward
messages differ in sufficient statistics, which impedes the analytical calculations for q(w) and q(z).
We approximate them by IS and Laplace, respectively.

• Initiate q(x), q(z) by Normal distributions and q(w) by an LWS.
• Repeat until convergence the following three steps:

https://github.com/biaslab/ForneyLab.jl/blob/master/demo/bootstrap_particle_filter.ipynb
https://github.com/biaslab/ForneyLab.jl/blob/master/demo/bootstrap_particle_filter.ipynb

Entropy 2021, 23, 815 34 of 36

1. – Choose w for updating.
– Calculate VMP message←−m w(w) by (14). In this case,

←−m w(w) ∝ exp
([

log w
w

]ᵀ[0.5
〈x〉y− 0.5

(〈
x2〉+ y2)])

∝ Ga
(

w; 1.5,−〈x〉y + 0.5
(〈

x2
〉
+ y2

))
,

where Ga(x; α, β) is a Gamma distribution with shape α and rate β.
– Calculate −→m w(w) by the following (16):

−→m w(w) =

{(
1
N

, exp(z(1))
)

, . . . ,
(

1
N

, exp(z(N))

)}
,

where z(i) ∼ −→m z(z) = N (z; µz, vz).

– Update q(w) by Section 3.5 rule (3).
2. – Choose z for updating.

– Calculate←−m z(z) by (18), which is a NEF distribution:

←−m z(z) =
←−m w(exp(z)) ∝ exp

([
z

exp(z)

]ᵀ[0.5
〈x〉y− 0.5

(〈
x2〉+ y2)]).

– The forward message is simply the prior: −→m z(z) = N (z; µz, vz)
– Update q(z) by Section 3.5 rule (2)(a).

3. – Choose x for updating.
– Calculate VMP message←−m x(x) by (14). In this case,

←−m x(x) ∝ exp
([

x
x2

]ᵀ[〈w〉y
−0.5〈w〉

])
∝ N (x; y, 1/〈w〉).

– The forward message is the prior:

−→m x(x) = N (x; µx, vx) ∝ exp
([

x
x2

]ᵀ[
µx/vx
−0.5/vx

])
.

– Update q(x) by Section 3.5 rule (1), i.e., the following:

q(x) ∝ exp
([

x
x2

]ᵀ[
µx/vx + 〈w〉y
−0.5(1/vx + 〈w〉)

])
= N

(
x;

µx + 〈w〉vxy
1 + 〈w〉vx

,
vx

1 + 〈w〉vx

)
.

The expectation quantities 〈w〉, 〈x〉,
〈

x2〉 that appear in the message calculations are
computed according to Section 3.8. Therefore, while 〈w〉 is estimated via a Monte Carlo
summation, 〈x〉 and

〈
x2〉 are available in closed form.

References
1. van de Meent, J.W.; Paige, B.; Yang, H.; Wood, F. An Introduction to Probabilistic Programming. arXiv 2018, arXiv:1809.10756.
2. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan:

A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1–32. [CrossRef]
3. Dillon, J.V.; Langmore, I.; Tran, D.; Brevdo, E.; Vasudevan, S.; Moore, D.; Patton, B.; Alemi, A.; Hoffman, M.; Saurous, R.A.

TensorFlow Distributions. arXiv 2017, arXiv:1711.10604.
4. Bingham, E.; Chen, J.P.; Jankowiak, M.; Obermeyer, F.; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall, P.;

Goodman, N.D. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 2019, 20, 1–6.

http://doi.org/10.18637/jss.v076.i01

Entropy 2021, 23, 815 35 of 36

5. Ge, H.; Xu, K.; Ghahramani, Z. Turing: A Language for Flexible Probabilistic Inference. In International Conference on Artificial
Intelligence and Statistics; PMLR, 2018; pp. 1682–1690.

6. Titsias, M.; Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference. In International Conference on
Machine Learning; PMLR, 2014; pp. 1971–1979.

7. Minka, T.; Winn, J.; Guiver, J.; Zaykov, Y.; Fabian, D.; Bronskill, J. Infer.NET 0.3. 2018. Available online: https://dotnet.github.io/
infer/ (accessed on 25 June 2021).

8. Cox, M.; van de Laar, T.; de Vries, B. A factor graph approach to automated design of Bayesian signal processing algorithms.
Int. J. Approx. Reason. 2019, 104, 185–204. [CrossRef]

9. Winn, J.; Bishop, C.M. Variational message passing. J. Mach. Learn. Res. 2005, 6, 661–694.
10. Dauwels, J. On Variational Message Passing on Factor Graphs. In Proceedings of the IEEE International Symposium on

Information Theory, Nice, France, 24–29 June 2007; pp. 2546–2550.
11. Tokdar, S.T.; Kass, R.E. Importance sampling: A review. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 54–60. [CrossRef]
12. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.
13. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach.

Learn. Res. 2017, 18, 5595–5637.
14. Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A fast dynamic language for technical computing. arXiv 2012,

arXiv:1209.5145.
15. Loeliger, H.A.; Dauwels, J.; Hu, J.; Korl, S.; Ping, L.; Kschischang, F.R. The factor graph approach to model-based signal processing.

Proc. IEEE 2007, 95, 1295–1322. [CrossRef]
16. Loeliger, H.A. An introduction to factor graphs. IEEE Signal Process. Mag. 2004, 21, 28–41. [CrossRef]
17. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

[CrossRef]
18. Dauwels, J.; Korl, S.; Loeliger, H.A. Particle methods as message passing. In Proceedings of the IEEE International Symposium

on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 2052–2056.
19. Şenöz, I.; De Vries, B. Online variational message passing in the hierarchical Gaussian filter. In Proceedings of the 2018 IEEE 28th

International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018; pp. 1–6.
20. Mathys, C.D.; Lomakina, E.I.; Daunizeau, J.; Iglesias, S.; Brodersen, K.H.; Friston, K.J.; Stephan, K.E. Uncertainty in perception

and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 2014, 8, 825. [CrossRef]
21. Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D.M. Automatic differentiation variational inference. J. Mach. Learn. Res.

2017, 18, 430–474.
22. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
23. Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
24. Ghahramani, Z.; Hinton, G.E. Parameter Estimation for Linear Dynamical Systems; Technical Report CRG-TR-92-2; Department of

Computer Science, University of Toronto: Toronto, ON, Canada, 1996.
25. Beal, M.J. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Thesis, UCL (University College London), London,

UK, 2003.
26. Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623.
27. Ghahramani, Z.; Hinton, G.E. Variational learning for switching state-space models. Neural Comput. 2000, 12, 831–864. [CrossRef]

[PubMed]
28. Neal, R.M. MCMC using Hamiltonian dynamics. Handb. Markov Chain Monte Carlo 2011, 2, 113–162.
29. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434.
30. Wood, F.; Meent, J.W.; Mansinghka, V. A new approach to probabilistic programming inference. In Artificial Intelligence and

Statistics; PMLR, 2014; pp. 1024–1032.
31. Andrieu, C.; Doucet, A.; Holenstein, R. Particle markov chain monte carlo methods. J. R. Stat. Soc. Ser. B 2010, 72, 269–342.

[CrossRef]
32. De Freitas, N.; Højen-Sørensen, P.; Jordan, M.I.; Russell, S. Variational MCMC. In Proceedings of the Seventeenth Conference on

Uncertainty in Artificial Intelligence; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001; pp. 120–127.
33. Wexler, Y.; Geiger, D. Importance sampling via variational optimization. In Proceedings of the Twenty-Third Conference on

Uncertainty in Artificial Intelligence; AUAI Press: Arlington, VA, USA, 2007; pp. 426–433.
34. Salimans, T.; Kingma, D.; Welling, M. Markov chain monte carlo and variational inference: Bridging the gap. In International

Conference on Machine Learning; PMLR, 2015; pp. 1218–1226.
35. Ye, L.; Beskos, A.; De Iorio, M.; Hao, J. Monte Carlo co-ordinate ascent variational inference. In Statistics and Computing; Springer:

Berlin/Heidelberg, Germany, 2020; pp. 1–19.
36. Särkkä, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013; Volume 3.
37. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
38. Gordon, N.J.; Salmond, D.J.; Smith, A.F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar

Signal Process. 1993, 140, 107–113. [CrossRef]

https://dotnet.github.io/infer/
https://dotnet.github.io/infer/
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1002/wics.56
http://dx.doi.org/10.1109/JPROC.2007.896497
http://dx.doi.org/10.1109/MSP.2004.1267047
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.3389/fnhum.2014.00825
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1162/089976600300015619
http://www.ncbi.nlm.nih.gov/pubmed/10770834
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1049/ip-f-2.1993.0015

Entropy 2021, 23, 815 36 of 36

39. Frank, A.; Smyth, P.; Ihler, A. Particle-based variational inference for continuous systems. Adv. Neural Inf. Process. Syst. 2009,
22, 826–834.

40. Ihler, A.; McAllester, D. Particle belief propagation. In Artificial Intelligence and Statistics; PMLR, 2009; pp. 256–263.
41. Wainwright, M.J.; Jaakkola, T.S.; Willsky, A.S. A new class of upper bounds on the log partition function. IEEE Trans. Inf. Theory

2005, 51, 2313–2335. [CrossRef]
42. Saeedi, A.; Kulkarni, T.D.; Mansinghka, V.K.; Gershman, S.J. Variational particle approximations. J. Mach. Learn. Res. 2017,

18, 2328–2356.
43. Raiko, T.; Valpola, H.; Harva, M.; Karhunen, J. Building Blocks for Variational Bayesian Learning of Latent Variable Models.

J. Mach. Learn. Res. 2007, 8, 155–201.
44. Knowles, D.A.; Minka, T. Non-conjugate variational message passing for multinomial and binary regression. Adv. Neural Inf.

Process. Syst. 2011, 24, 1701–1709.
45. Khan, M.; Lin, W. Conjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to

Inferences in Conjugate Models. In Artificial Intelligence and Statistics; PMLR, 2017; pp. 878–887.
46. Ranganath, R.; Gerrish, S.; Blei, D. Black box variational inference. In Artificial Intelligence and Statistics; PMLR, 2014; pp. 814–822.
47. Mackay, D.J.C. Introduction to monte carlo methods. In Learning in Graphical Models; Springer: Berlin/Heidelberg, Germany,

1998; pp. 175–204.
48. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988.
49. MacKay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
50. Minka, T.P. Expectation Propagation for approximate Bayesian inference. In Proceedings of the 17th Conference in Uncertainty in

Artificial Intelligence; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 362–369.
51. Vehtari, A.; Gelman, A.; Sivula, T.; Jylänki, P.; Tran, D.; Sahai, S.; Blomstedt, P.; Cunningham, J.P.; Schiminovich, D.; Robert, C.P.

Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data. J. Mach. Learn. Res. 2020,
21, 1–53.

52. Wainwright, M.J.; Jordan, M.I. Graphical Models, Exponential Families, and Variational Inference. Found. Trends Mach. Learn.
2008, 1, 1–305. [CrossRef]

53. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL,
USA, 2013.

54. Koyama, S.; Castellanos Pérez-Bolde, L.; Shalizi, C.R.; Kass, R.E. Approximate methods for state-space models. J. Am. Stat. Assoc.
2010, 105, 170–180. [CrossRef]

55. Macke, J.H.; Buesing, L.; Cunningham, J.P.; Yu, B.M.; Shenoy, K.V.; Sahani, M. Empirical models of spiking in neural populations.
Adv. Neural Inf. Process. Syst. 2011, 24, 1350–1358.

56. Smola, A.J.; Vishwanathan, S.; Eskin, E. Laplace propagation. In Proceedings of the 16th International Conference on Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 2004; pp. 441–448.

57. Acerbi, L. Variational bayesian monte carlo. arXiv 2018, arXiv:1810.05558.
58. Ajgl, J.; Šimandl, M. Differential entropy estimation by particles. IFAC Proc. Vol. 2011, 44, 11991–11996. [CrossRef]
59. Revels, J.; Lubin, M.; Papamarkou, T. Forward-Mode Automatic Differentiation in Julia. arXiv 2016, arXiv:1607.07892.
60. Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice; Springer: Berlin/Heidelberg, Germany, 2001.

http://dx.doi.org/10.1109/TIT.2005.850091
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1198/jasa.2009.tm08326
http://dx.doi.org/10.3182/20110828-6-IT-1002.01404

	Introduction
	Problem Statement
	Specification of EVMP Algorithm
	Distribution Types
	Factor Types
	Message Types
	Posterior Types
	Computation of Posteriors
	Computation of Messages
	Computation of Free Energy
	Expectations of Statistics
	Pseudo-Code for the EVMP Algorithm

	Experiments
	Filtering with the Hierarchical Gaussian Filter
	Parameter Estimation for a Linear Dynamical System
	EVMP for a Switching State Space Model

	Related Work
	Discussion
	Conclusions
	On the Applicability of VMP
	VMP with Conjugate Soft Factor Pairs
	Messages and Posteriors
	Free Energy

	VMP with Non-Conjugate Soft Factor Pairs
	VMP with Composite Nodes

	Derivation of Extended VMP
	Deterministic Mappings with Single Inputs
	Non-Gaussian Case
	Gaussian Case

	Deterministic Mappings with Multiple Inputs
	Monte Carlo Approximation to the Backward Message
	Gaussian Approximation to the Backward Message

	Non-Conjugate Soft Factor Pairs

	Free Energy Approximation
	Implementation Details in ForneyLab
	Bonus: Bootstrap Particle Filtering
	Illustrative Example
	References

