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Response of soil biological properties 
and bacterial diversity to different levels 
of nitrogen application in sugarcane fields
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Abstract 

To select an eco-friendly nitrogen (N) application level for sugarcane production, soil fertility and soil bacterial diver-
sity under different nitrogen application levels were analyzed. Four levels of urea applications were high Nitrogen 
(H, 964 kg ha−1), medium Nitrogen (M, 482 kg ha−1), low Nitrogen (L, 96 kg ha−1) and no Nitrogen (CK, 0 kg ha−1) 
treatments, respectively. The results showed that the soil microbial biomass carbon and phosphorus were altered sig-
nificantly by CK and L treatments. Moreover, the indexes of soil bacterial richness and diversity in the sugarcane field 
could be significantly improved by L. At the genus level, SC-I-84, Mycobacterium, Micropepsaceae, Saccharimonadales, 
Subgroup_2 and Acetobacteraceae were the unique dominant bacteria in the soil with the H treatment. JG30-KF-CM45 
and Jatrophihabitans were the unique dominant genera in the M treatment. Subgroup_6, HSB_OF53-F07, Streptomyces, 
67–14, SBR1031 and KD4-96 were the unique dominant genera in the L treatment. In contrast, FCPS473, Actinospica, 
1921–2, Sinomonas, and Ktedonobacteraceae were the unique dominant genera in the CK treatment. The findings 
suggest that soil fertility all could be changed by different N application levels, but the most increasing integral effect 
only could be found in L. Moreover, even though soil bacterial richness could be significantly promoted by the M and 
H treatments, but soil bacterial diversity could not be significantly improved. On the contrary, soil bacterial diversity 
and richness all could be improved by L treatment. In addition, higher abundance of unique soil dominant bacteria 
could be only found in L treatment which compared to the CK, M and H treatments. These findings suggest that the 
rate of 96 kg ha−1 N application is ecofriendly for sugarcane production in Guangxi.
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Introduction
Sugarcane (Saccharum officinarum L.), an important 
sugar crop, is utilized as a source of biofuel and renew-
able bioenergy around the world (Chandel et  al. 2011). 
China is the third-largest sugar-producing country in 
the world followed by Brazil and India (Raza et al. 2019). 
In China, approximately 90% of the sugarcane crops 
are planted in southern and southwest regions, includ-
ing Guangxi, Guangdong, and Yunnan provinces (Yang 

et al. 2021). In particularly, Guangxi Province is the top 
sugarcane and sugar producer of China, accounting for 
more than 65% of the sugar production of the nation 
since 1993 (Li 2004). However, low sugarcane yield is 
still a major problem in China (Tayyab et  al. 2021). To 
improve cane yield, chemical fertilizers were overused 
by farmers in Guangxi, China. The nitrogen (N) fertilizer 
is applied at 600–800 kg  ha−1 annually for sugarcane in 
China, but only 60 kg  ha−1 for newly planted canes and 
80–120  kg  ha−1 for ratoon canes are applied in Brazil 
(Li and Yang 2015). Moreover, overuse of chemical ferti-
lizer not only negatively influences microbial systems but 
also disrupts terrestrial and aquatic ecosystem functions 
(Robertson and Vitousek 2009). A method to reduce 
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chemical fertilizer inputs and enhance crop production 
in an ecofriendly manner is an urgent need for sugarcane 
production, particularly in Guangxi, China.

Nitrogen (N) is one of the important essential nutri-
ents affecting the growth of crops and is also a key pillar 
of global food security (Mueller et al. 2012). N is a lim-
ited resource; even so, the yield and quality of crops are 
largely determined by plant demand for N (Hawkesford 
2014). However, the N surplus, can cause massive losses 
through denitrification, leaching, volatilization, and run-
off, making the soil unable to meet human demands for 
clean water, clean air, and abundant healthy food (Mat-
son et al. 1998; Erisman et al. 2013). In contrast, N input 
consistently below crop N requirements (i.e., N lacks) 
leads to soil nitrogen extraction and soil quality degra-
dation (Sanchez 2002; Sanchez and Swaminathan 2005). 
Currently, face a challenge in finding an effective balance 
between N input and crop N requirements to achieve 
high crop yields while maintaining soil quality and reduc-
ing the environmental footprint (Lassaletta et  al. 2014; 
Zhang et al. 2015). Niu et al. (2021) found that water sol-
uble fertilizer affected the enrichment of microorganisms 
by improving the nutrient content of the soil, thereby 
affecting the growth and yield of sugarcane. Meanwhile, 
Compton et al. (2004) also found that soil microbial bio-
mass decreased with the application of nitrogen. And Yao 
et al. (2014) found that soil microbial diversity decreased 
with the increasing N deposition.

Soil quality depends on numerous physical, chemical, 
biological, biochemical and microbiological parameters 
(Chaer et  al. 2009). In particular, the latter two param-
eters are the most sensitive indicators that respond rap-
idly to changes in soil quality (Bastida et  al. 2008). Soil 
enzyme activity is not only a sensitive biochemical indi-
cator of quality (Raiesi and Beheshti 2014) but is also 
capable of reflecting ecosystem processes (Doran and 
Zeiss 2000). However, enzymatic activity is presented 
only in absolute terms, and soil microbial biomass car-
bon (MBC), microbial biomass N (MBN) and microbial 
biomass phosphorus (MBP) are also used as tools for 
monitoring soil quality (Pandey et al. 2014). In addition, 
soil microorganisms play an important role in soil bio-
geochemical processes such as N, phosphorus and other 
element cycles (Urbanová et  al. 2015). Soil microbial 
community composition and diversity are imperative to 
maintain soil health and crop productivity (Mangan et al. 
2010).

Previous studies have also shown that soil microbial 
community structure and activity of soil microorgan-
isms can be altered by fertilization (Guo et al. 2018; Chen 
et  al. 2019). For example, the application of chemical N 
fertilizers is related to change in the community richness 
and the structure of ammonia-oxidizing bacteria (Chen 

et  al. 2014). Meanwhile, excessive fertilization will ulti-
mately affect the richness of nitrifying bacteria in the soil 
(Geisseler and Scow 2014). Therefore, in this study, we 
objectify to (1) compare soil fertility and (2) analyze the 
response of the soil bacterial community structure to dif-
ferent nitrogen applications.

Methods
Field site description and experimental designs
The samples were collected on May 12, 2020, from 
the Experimental Base of Sugarcane Research Insti-
tute, Guangxi Academy of Agricultural Sciences, where 
is located on Longan County (107°75′E and 23°17′N), 
Guangxi Zhuang Autonomous Region, China. The sugar-
cane variety Guitang49 was planted in early March 2019.

Four N treatments were applied as follows: applica-
tion of 964  kg  ha−1 urea with pure N input of 450  kg 
(H); application of 482 kg ha−1 urea with pure N input of 
225 kg (M); and application of 96 kg ha−1 urea with pure 
N input of 45 kg (L) and no urea application (CK). And 
300 kg  ha−1 calcium, magnesium, and phosphorus were 
likewise applied in 4 different treatments as basal ferti-
lizer. The conventional field management measures were 
carried out identically except for the differences in nitro-
gen application levels. Each nitrogen application pattern 
was randomly treated with three replications. A total of 
12 plots, each plot area was 42  m2. In every plot, there 
were five rows, and the row length and space were 7 m 
and 1.2 m, respectively. The planting density was approx-
imately 90,000 buds per hectare.

Soil sampling and soil biological properties analysis
Soil samples were collected in May 2020 from 12 plots 
that represented all the treatments in different nitro-
gen application experiments. To collect soil samples, 
the auger was sprayed with 75% ethanol for disinfection 
firstly, and then soil samples were collected by sterilized 
auger with the same depth of 40  cm in each treatment 
plot. From each plot, soil samples were collected from 
12 random sites and mixed well. These soil samples were 
collected in sterile plastic bags and placed on ice in an 
ice box. The samples were immediately transferred to the 
laboratory, where they were sieved through a 2-mm mesh 
stainless steel sieve, and then stored in a refrigerator at 
4 °C for immediate analysis or were stored at − 80 °C for 
later use. Meanwhile, portions of the soil samples were 
air dried for soil chemical analyses (Yang et  al. 2021). 
The chemical properties of the soil were as follows: pH 
5.1, and the contents of organic matter, total nitrogen, 
phosphorus and potassium were 17.6 g kg−1, 0.92 g kg−1, 
0.92  g  kg−1 and 0.56  g  kg−1, respectively. The contents 
of available nitrogen, phosphorus and potassium were 
85 mg kg−1, 35.3 mg kg−1 and 125 mg kg−1, respectively.
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Soil enzyme activities
Soil microbial biomass carbon, nitrogen and phosphorus 
and the activity of enzymes such as β-glucosidase, phos-
phatase and protease were analyzed using the following 
methods:

β-Glucosidase (EC.3.2.1.21) assay was based on 
ρ-nitrophenol (ρNP) release after cleavage of a syn-
thetic substrate (ρ-nitrophenyl-β-D-glucoside). The 
color of released ρ-nitrophenol was measured at 400 nm 
in a spectrophotometer (UV-1700, Shimadzu, Japan). 
A standard curve was plotted using 0–80  μg  mL−1 
ρ-nitrophenol. The enzyme activities were expressed as n 
moles ρNP released per g dry soil per minute (n mol ρNP 
g−1 min−1) (Deng and Tabatabai 1994).

Acid Phosphatase (phosphodiesterase) activity in soils 
was estimated by measuring the amount of ρ-nitrophenol 
released after incubating the samples with ρ-nitrophenyl 
phosphate (Alef et al. 1995). In a reaction tube, 0.25 mL 
toluene, 4.0 mL modified universal buffer (pH 6.0; made 
by dissolving 12.1 g tris, 11.6 g maleic acid, 14.0 g citric 
acid and 6.3 g boric acid in 500 mL 1 M NaOH and mak-
ing the volume 1 L) and 1.0 mL ρ-nitrophenyl phosphate 
(15  mmol L−1) were added to 1.0  g soil sample and the 
mixture was incubated at 37 °C for 1 h. The reaction was 
terminated by adding 1.0  mL of 0.5  mol L−1 CaCl2 and 
4.0 mL of 0.5 mol L−1 NaOH to the mixture prior to fil-
tration. The absorbance of released ρNP was measured 
at 400 nm in a spectrophotometer (UV-1700, Shimadzu, 
Japan), and the phosphatase activity was expressed in mg 
ρ-NP g−1 h−1.

Aminopeptidase activity was measured by the 
method described by Pansombat et  al. (1997) using 
0.002  M  N-benzoyl-Lxycarbonyl glycyl L-phenylalanine 
(ZGP). The absorbance was measured in a spectropho-
tometer at 570 nm wavelength. All the analyses were con-
ducted in 5 replicates.

Soil microbial biomass
Soil microbial biomass N (MBN) and soil microbial bio-
mass C (MBC) were determined using the chloroform 
fumigation-extraction method as described by Brookes 
et  al. (1985) and Vance et  al. (1987). Soil microbial bio-
mass P (MBP) was determined by the phosphorus molyb-
denum blue colorimetric method (Powlson et al. 1987).

Analysis of soil microbial diversity
Microbial community genomic DNA was extracted 
from samples using the E.Z.N.A.® soil DNA Kit (Omega 
Biotek, Norcross, GA, U.S.) according to manufacturer′s 
instructions. The DNA extract was checked on a 1% aga-
rose gel, and DNA concentration and purity were deter-
mined with a NanoDrop 2000 UV–vis spectrophotometer 

(Thermo Scientific, Wilmington, USA). PCR amplifica-
tion and sequencing of total DNA extraction from rhizos-
phere soil samples were performed by Shanghai Majorbio 
Biopharm Technology Co., Ltd. The V3-V4 hypervari-
able region of the bacterial 16S rRNA gene was amplified 
with bacterial primer pairs 338F (5′-ACT​CCT​ACG​GGA​
GGC​AGC​AG-3′) and 806R (5′-GGA​CTA​CHVGGG​
TWT​CTAAT-3′) by an ABI GeneAmp® 9700 PCR ther-
mocycler (ABI, CA, USA). PCR amplification was per-
formed by ABI GeneAmp® 9700 PCR thermocycler (ABI, 
CA, USA), and the PCR products were recovered by 2% 
agar-gel electrophoresis. The products were purified by 
an AxyPrep DNA Gel Extraction Kit (Axygen, USA) and 
quantified by a Quantus Fluorometer (Promega, USA). 
Purified amplicons were pooled in equimolar amounts 
and paired-end sequenced (2 × 300) on an Illumina 
MiSeq platform (Illumina, San Diego, USA) according to 
the standard protocols by Majorbio Bio-Pharm Technol-
ogy Co., Ltd. (Shanghai, China). Raw reads were depos-
ited in the NCBI Sequence Read Archive (SRA) database 
(Accession Number: SRP302628).

Statistical analyses
Quantitative insights into microbial ecology (QIIME) 
(version 1.17) was used to truncate the 250  bp reads 
(average quality score < 20 over a 50 bp sliding window). 
Ambiguous reads were removed, followed by assembling 
of overlapped sequences containing longer than 10  bp 
sizes (Tayyab et  al. 2021). Operational taxonomic units 
(OTUs) with 97% similarity cutoff were clustered using 
UPARSE (version 7.1, http://​drive5.​com/​uparse/), and 
chimeric sequences were identified and removed. The 
taxonomy of each OTU representative sequence was 
analyzed by RDP Classifier (http://​rdp.​cme.​msu.​edu/) 
against the 16S rRNA database using confidence thresh-
old of 0.7.

Statistical analyses were carried out by SPSS software 
using a multiple range test at a 0.95 level of probability 
to determine significant differences (p < 0.05) between 
the treatments. The results are shown as the standard 
deviation of the mean (mean ± SD). The experimental 
data were analyzed using Excel 2019 and Statistical Prod-
uct and Service Solutions (SPSS) Statistics 21, and online 
data analysis was conducted by using the free online 
platform of the Majorbio Cloud Platform (www.​major​
bio.​com) of Majorbio Bio-Pharm Technology Co., Ltd. 
(Shanghai, China).

Results
Soil enzyme activities
The trends in soil enzyme activity under different N 
applications are shown in Table  1. The activities of 
β-glucosidase and acid phosphatase in soil under high 
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N application (H) were all significantly higher than the 
activities in CK. However, the activity of β-glucosidase 
in the M or L treatments was not significantly different 
between CKs. The activity of acid phosphatase in the L 
treatment was significantly higher than that of CK, but 
there was no significant difference between the M treat-
ment and the CK. In addition, the activities of amin-
opeptidase in N applications were all significantly lower 
than those in CK, and there were no significant differ-
ences between each of the N applications. This result 
suggested that the activities of soil enzymes related to 
carbon, N and phosphorus cycles in soil were all affected 
by N application. The activities of β-glucosidase and acid 

phosphatase were significantly increased by higher N 
application, but the activity of aminopeptidase was sig-
nificantly decreased by N application.

Soil microbial biomass
The soil microbial biomass N (MBN) in the differ-
ent nitrogen application treatments was significantly 
higher than the MBN in the CK treatment. In contrast, 
soil microbial biomass carbon (MBC), except in the low 
N application treatment, was significantly lower than 
that in the CK. The soil microbial biomass phosphorus 
trend was similar with MBC except in the M treatment, 
which was not significant between the M treatment and 
CK. These results indicated that soil microbial biomass 
C, N and P were also significantly affected by N applica-
tion. However, the trends of soil microbial biomass were 
dependent and affected by N application (Table 2).

Soil bacterial diversity and richness
In Table  3, the Shannon index was significantly higher 
only in the low nitrogen application treatment than in the 
other treatments. The Simpson index showed the oppo-
site trend to the Shannon index, which was significantly 
lower than those of the other treatments. In addition, 
the Ace and Chao1 indexes, which were used as indica-
tors of bacterial richness, in the N application treatments 
were all significantly higher than those in the CK. Moreo-
ver, the highest Ace and Chao1 indexes were all shown 

Table 1  Soil enzyme activities under four different N application 
treatments (nmol g−1 min−1)

All data are presented as the mean ± SD (standard deviation)

H high N application in the sugarcane soil (964 kg ha−1), M medium N 
application in the sugarcane soil (482 kg ha−1), L low N application in the 
sugarcane soil (96 kg ha−1), CK no N application in the sugarcane soil (0 kg ha−1)

Different letters in the same column indicate significant differences between 
treatments at P < 0.05 among the means of the four treatments

Treatments β-Glucosidase Aminopeptidase Acid phosphatase

H 0.25 ± 0.08a 14.00 ± 1.57b 0.42 ± 0.14a

M 0.17 ± 0.02ab 14.09 ± 0.20b 0.25 ± 0.06b

L 0.06 ± 0.01c 11.68 ± 1.87b 0.43 ± 0.04a

CK 0.12 ± 0.01bc 18.55 ± 1.22a 0.12 ± 0.03b

Table 2  Effect of different N applications on soil microbial biomass C, N and P in sugarcane fields (mg kg−1)

All data are presented as the mean ± SD (standard deviation)

H high N application in the sugarcane soil (964 kg ha−1), M medium N application in the sugarcane soil (482 kg ha−1), L low N application in the sugarcane soil 
(96 kg ha−1), CK no N application in the sugarcane soil (0 kg ha−1)

Different letters in the same column indicate significant differences between treatments at P < 0.05 among the means of the four treatments

Treatments Microbial biomass C Microbial biomass N Microbial biomass P

H 112.42 ± 3.83c 29.23 ± 2.34b 44.50 ± 1.05c

M 12.91 ± 1.00d 35.85 ± 0.62a 202.41 ± 7.78b

L 146.65 ± 5.33a 20.20 ± 0.62c 242.16 ± 19.81a

CK 130.33 ± 9.26b 8.50 ± 0.81d 198.81 ± 8.97b

Table 3  Indexes of soil bacterial diversity and richness in sugarcane fields under four N application treatments

All data are presented as the mean ± SD (standard deviation)

H high N application in the sugarcane soil (964 kg ha−1), M medium N application in the sugarcane soil (482 kg ha−1), L low N application in the sugarcane soil 
(96 kg ha−1), CK no N application in the sugarcane soil (0 kg ha−1)

Different letters in the same column indicate significant differences between treatments at P < 0.05 among the means of the four treatments

Treatments Shannon index Simpson index Ace index Chao1 index Coverage

H 6.19 ± 0.06b 0.0053 ± 0.0001a 2726.32 ± 276.81b 2697.06 ± 257.66b 0.98

M 6.19 ± 0.15b 0.0052 ± 0.0011a 2902.96 ± 279.16b 2856.06 ± 258.19b 0.98

L 6.64 ± 0.12a 0.0035 ± 0.0007b 3600.80 ± 36.77a 3621.92 ± 28.72a 0.98

CK 6.04 ± 0.09b 0.0059 ± 0.0007a 2133.27 ± 155.38c 2138.07 ± 159.11c 0.99
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in the low N application treatment, which was signifi-
cantly higher than all the other treatments. This result 
suggested that soil bacterial diversity and richness in 
sugarcane fields could all be improved by N application. 
In particular, the greatest effect was shown by the low N 
application.

Bacterial community structure and composition
At the phylum level, soil bacterial communities in the 
four N applications were dominated (≥ 1%) by Proteo-
bacteria (23.3–29.4%), Actinobacteria (22.7–32.6%), 
Chloroflexi (15.3–26.2%), Acidobacteria (10.6–16.0%), 
Gemmatimonadetes (less than 1–2.67%), Bacteroidetes 
(1.01–1.95%), Planctomycetes (1.37–1.87%), WPS-2 (less 
than 1–4.58%), Patescibacteria (less than 1–1.41%), Fir-
micutes (less than 1–1.25%), Verrucomicrobia (less than 
1–1.03%) and others (1.79–2.81%) (Fig. 1). Moreover, the 
numbers of identified bacterial phyla in the H, M, L and 
CK treatments were 11, 10, 9 and 9, respectively. All these 
results showed that the N applications not only changed 
the proportions of dominant soil bacterial phyla, but also 
altered the compositions of soil bacterial communities. 
Furthermore, Proteobacteria, Actinobacteria, Chloroflexi 
and Acidobacteria were the four most abundant soil bac-
terial phyla in sugarcane fields with different N applica-
tion levels. Proteobacteria are easily enriched under high 
N application conditions, and Actinobacteria and Acido-
bacteria sensitively responded to low or medium N appli-
cations. By contrast, Chloroflexi could be enriched in the 
soil of sugarcane fields without N application (Additional 
file 1: Table. S1).

At the genus level, there were 28, 22, 26 and 25 domi-
nant bacterial genera with relative abundances greater 
than 1% in the high, medium, low and no N application 
treatments, respectively (Fig.  2). Compared to the CK, 
the dominant bacterial genera all increased in the high- 
or low-nitrogen treatments, but they decreased in the 
medium-nitrogen application treatments. Meanwhile, 
there were special dominant bacterial genera in every N 
application treatment, Mycobacterium, SC-I-84, Saccha-
rimonadales, Micropepsaceae, Subgroup_2 and Aceto-
bacteraceae were the unique dominant genera in the H 
treatment. JG30-KF-CM45 and Jatrophihabitans were 
the unique dominant genera in the M treatment; Sub-
group_6, HSB_OF53-F07, Streptomyces, 67–14, SBR1031 
and KD4-96 were the unique dominant genera in the L 
treatment. FCPS473, Actinospica, 1921–2, Sinomonas 
and Ktedonobacteraceae were the unique dominant gen-
era in the CK treatment. All the above results indicate 
that the soil bacterial community structure in sugarcane 
fields could be significantly affected by N input. In par-
ticularly, more sensitive effects are triggered by low or 
high N application (Additional file 1: Table. S2).

The number of bacteria obtained at the OTU (Oper-
ational Taxonomic Units) level under the H, M, L and 
CK treatments was 3237, 3318, 3923 and 2576, respec-
tively. The numbers of unique bacteria in the H, M, L 
and CK treatments at the OTU level were 222, 152, 852 
and 254, respectively (Fig.  3A). In addition, the num-
bers of bacteria in the H, M, L and CK treatments at 
the genus level were 587, 588, 631 and 508, respectively. 
Moreover, the numbers of unique bacteria in the H, 
M, L and CK treatments at the genus level were 18, 4, 

Fig. 1  Compositions of soil bacterial communities at phylum level under four N application treatments. H: high N application in the sugarcane 
soil (964 kg ha−1), M: medium N application in the sugarcane soil (482 kg ha−1), L: low N application in the sugarcane soil (96 kg ha−1), CK: no N 
application in the sugarcane soil (0 kg ha−1)
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59 and 11, respectively (Fig.  3B). All the above results 
suggested that the soil bacterial community structure 
could be significantly altered by nitrogen application. 
However, higher nitrogen inputs (964  kg  ha−1 and 
482 kg  ha−1) were not helpful for improving the num-
ber of unique soil bacteria in sugarcane fields. On the 
contrary, low nitrogen application (96  kg  ha−1) was 
more efficient for improving soil bacterial diversity and 
richness in sugarcane fields.

The top 50 most abundant soil bacteria at the 
genus level in sugarcane fields under different nitro-
gen applications were selected to form the heat map 
(Fig.  4). The horizontal level represents the different 
treatments, and the longitudinal direction shows the 
abundance of bacterial species. As seen in Fig.  4, the 
distribution of soil dominant bacteria under low, high 
and medium nitrogen applications was different from 
the distribution of CK, and there was also a difference 

Fig. 2  Compositions of soil bacterial communities at genus level under four N application treatments. H: high N application in the sugarcane 
soil (964 kg ha−1), M: medium N application in the sugarcane soil (482 kg ha−1), L: low N application in the sugarcane soil (96 kg ha−1), CK: no N 
application in the sugarcane soil (0 kg ha−1)

Fig. 3  Venn analysis of soil bacteria in sugarcane fields under four N application treatments at the OTU (A) and genus (B) levels. H: high N 
application in the sugarcane soil (964 kg ha−1), M: medium N application in the sugarcane soil (482 kg ha−1), L: low N application in the sugarcane 
soil (96 kg ha−1), CK: no N application in the sugarcane soil (0 kg ha−1)
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between each treatment. However, the distribution of 
soil dominant bacteria was quite similar between the 
CK and high or medium nitrogen application treat-
ments. In contrast, the composition and abundance of 
dominant soil bacteria under low nitrogen application 
changed significantly between CK. This finding indi-
cates that the response of the soil bacterial commu-
nity structure to nitrogen application is more sensitive 
under low nitrogen input at 96 kg ha−1.

Principal component analysis
As seen in Fig. 5, the contribution rates of the first and 
second principal components (PC1 and PC2) were 
40.75% and 19.04%, respectively. In addition, low and 
medium nitrogen applications were distributed mainly in 
the positive direction of PC1, but high and nonnitrogen 
applications were found primarily in the negative direc-
tion of PC1. Meanwhile, low, medium and nonnitro-
gen applications were distributed mainly in the positive 

Fig. 4  Heatmap of four N application treatments with three replicates based on the relative abundances of the top 50 most abundant genera. A 
color zone represents relative abundance. H: high N application in the sugarcane soil (964 kg ha−1), M: medium N application in the sugarcane soil 
(482 kg ha−1), L: low N application in the sugarcane soil (96 kg ha−1), CK: no N application in the sugarcane soil (0 kg ha−1)
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direction of PC2, and only high nitrogen application was 
found in the negative direction of PC2. Moreover, only 
the low nitrogen application treatment was located on 
the first quadrant, which suggested that low nitrogen 
application was positively correlated with the first and 
second principal components.

Discussion
Guangxi is the main producing area for sugarcane in 
China, and more than 60% of sugar is produced in 
Guangxi (Li and Yang 2015). However, overuse of chemi-
cal fertilizer and a low utilization rate of fertilizer remain 
the principal problems in Guangxi sugarcane production 
(Deng et  al. 2017). Our study provides the in  situ evi-
dence in searching an eco-friendly method of N appli-
cation amount for sugarcane production in Guangxi, 
China.

It is generally accepted that soil enzymes play key bio-
chemical functions throughout the decomposition of 
organic matter in the soil system (Ellert et al. 1997), not 
only catalyzing microbial life processes in soil and stabi-
lizing soil structure, decomposing organic waste, forming 
organic matter and cycling nutrients (Dick et al. 1994) but 
also maintaining soil ecological physicochemical proper-
ties and soil health. However, soil enzyme activities may 
be affected by land management measures (Carney et al. 
2004; Kaye et al. 2005; Acosta-Martínez et al. 2010). The 
results showed that the activities of β-glucosidase and 
phosphatase in sugarcane field under high N application 
were all significantly higher than those of CK. However, 

the activity of aminopeptidase in all N application treat-
ments was significantly lower than that of CK. Further-
more, the activities of β-glucosidase and phosphatase in 
the sugarcane field under medium N application were not 
significantly different between CKs. However, except for 
the activities of β-glucosidase and aminopeptidase, the 
activity of acid phosphatase in the sugarcane field under 
low N stress (L) was significantly higher than that of CK. 
The findings that the activities of soil enzymes were sen-
sitively affected by N application, but the activities of soil 
enzymes were not all improved by higher N input. For 
example, only the activity of acid phosphatase was signif-
icantly improved by low N application corroborated the 
same trends of the previous studies using different nitro-
gen treatments (Wang et al. 2014; Shi et al. 2016).

Soil microbial biomass is also an important indicator of 
soil quality to maintain soil fertility and crop productiv-
ity (Powlson et  al. 1987). The greater the microbial bio-
mass in the soil, the greater is the capacity of the soil to 
provide nutrients to plants through mineralization of 
organic nutrients (Dwivedi and Soni 2011). Among these 
organic nutrients, soil microbial biomass carbon (MBC) 
can not only promote the formation of new humus with 
high activity in soil but also reflect the slight change in 
the soil before the change in soil total carbon content 
(Doran et al. 1996). Soil microbial biomass N (MBN) can 
also reflect the availability of soil N and play an impor-
tant role in the supply and circulation of soil N (Doran 
et  al. 1996). Soil microbial biomass phosphorus (MBP) 
can reflect the supply level of soil phosphorus (Kwabiah 
et al. 2003). In addition, although soil microbial biomass 
phosphorus cannot be directly absorbed and utilized by 
plants, it can be slowly released as inorganic phospho-
rus, so it has always been considered the source of avail-
able phosphorus in the soil, which is very important for 
plant growth (Khan and Joergensen 2009). The results 
showed that soil microbial biomass C and P in the sugar-
cane field under high N application (H) were significantly 
decreased, only the microbial biomass N was significantly 
increased compared with CK. In the medium N applica-
tion treatment, only the microbial biomass N increased, 
but the microbial biomass C was significantly decreased, 
and there was no significant difference in soil microbial 
biomass P between CK. However, in contrast to CK, 
the soil microbial biomass C, N and P in the sugarcane 
field under low N application (L) were all significantly 
increased. It indicated that low N application (96 kg ha−1) 
was more effective in improving soil fertility than other N 
applications (964 kg ha−1 and 482 kg ha−1) in sugarcane 
fields. Moreover, the finding that medium and high-level 
N additions although increased soil microbial biomass 
nitrogen, but medium and high-level N applications 
decreased soil microbial C and P, which are in agreement 

Fig. 5  Principal component analysis of the relative abundance of soil 
bacteria at the OTU level in sugarcane fields under four N application 
treatments. H: high N application in the sugarcane soil (964 kg ha−1), 
M: medium N application in the sugarcane soil (482 kg ha−1), L: low N 
application in the sugarcane soil (96 kg ha−1), CK: no N application in 
the sugarcane soil (0 kg ha−1)
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with numerous studies in big or small-scales N applica-
tions experiments (Yue et  al. 2017; Zhou et  al. 2017a; 
Soong et al. 2018).

In addition, microorganisms play a prominent role in 
agricultural ecosystems, and with the gradual recogni-
tion of people, the effect of N fertilizer on soil micro-
organisms has received increasing attention (Zhou 
et al., 2017b; Wang et al. 2018). Our results showed that 
medium (482  kg  ha−1) and high-level (964  kg  ha−1) N 
applications had no significant effect, but low N applica-
tion (96 kg ha−1) showed a significant effect on soil bac-
terial diversity and richness in this study, which is quite 
different with numerous studies that have reported the 
declines in soil bacterial diversity and richness following 
N enrichment (Ling et al. 2017; Zhang et al. 2018; Wang 
et al. 2018). The causes of inhibitory N effect on soil bac-
terial diversity and richness in previous studies attrib-
uted to the availability of C decreasing for soil microbes 
by forming stable compounds (Guo et  al. 2017), or 
decreased soil microbial biomass with excessive N addi-
tions (Wang et al. 2018). And our results support that the 
decreasing of soil microbial biomass C and P is the main 
reason for nonsignificant effects of medium and higher-
level N additions on soil bacterial diversity and richness. 
Similar as our study, Ramirez et al. (2012) also found that 
high-level N additions significantly increased the rela-
tive abundance of Actinobacteria and Firmicutes, and N 
enrichment significantly decreased the relative abun-
dance of Acidobacteria, Verrucomicrobia, Cyanobacteria, 
and Planctomycetes, etc. Moreover, FCPS473, Actino-
spica, 1921–2, Sinomonas and Ktedonobacteraceae were 
the unique dominant bacterial genera in CK. In contrast 
to CK, _SC-I-84, Mycobacterium, Micropepsaceae, Sac-
charimonadales, Subgroup_2 and Acetobacteraceae were 
the unique dominant soil bacterial genera in the sugar-
cane field under high-level N application. And JG30-KF-
CM45 and Jatrophihabitan; Subgroup_6, HSB_OF53-F07, 
Streptomyces, _67-14, SBR1031 and KD4-96 were the 
unique dominant soil bacterial genera under medium 
and low N applications, respectively. Meanwhile, the 
numbers of unique dominant soil bacterial genera or 
OTUs level in low nitrogen application were all higher 
than those of CK, medium (482 kg ha−1) and high-levels 
(964  kg  ha−1) nitrogen application treatments (Fig.  3). 
As soil bacterial community is sensitive indicators used 
for the assessment of soil quality (Wu et  al. 2017). Our 
results suggested that soil quality did not decreased in 
sugarcane field under low N application (96 kg ha−1).

Our study focused on the effect of different amount 
of N application on soil fertility and soil quality in sug-
arcane fields of Guangxi. We found that soil fertility 
all could be changed by different N application levels, 

but the most integral improvement effect only could 
be found in low N application (96 kg  ha−1). Moreover, 
even though soil bacterial richness could be signifi-
cantly promoted by the medium (482 kg ha−1) and high 
N (964  kg  ha−1) applications, but soil bacterial diver-
sity could not be significantly improved. On the con-
trary, soil bacterial diversity and richness all could be 
improved by low N application (96  kg  ha−1). In addi-
tion, higher abundance of unique soil dominant bac-
teria could be found low N application (96  kg  ha−1) 
which compared to the CK, medium and high-level 
N applications. These findings suggest that the rate of 
96  kg  ha−1  N application is ecofriendly for sugarcane 
production in Guangxi.
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