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Abstract

Background: The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the
start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be ,6% and 9%,
respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA
to 15%, but the large majority of sequences remain uncharacterized.

Principal Findings: Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16
fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria
accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene
sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic
analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the
patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the
rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of
DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene
sequences.

Conclusions/Significance: Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales,
contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed
no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The
bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage
in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of
endogenous DNA in the sample.
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Introduction

The new developments in sequencing technologies have

enabled analyses of mitochondrial and nuclear genomes of ancient

organisms that lived thousands of years ago. Using these

technologies, draft genome sequences have been assembled from

short DNA fragments extracted from bone specimens of a 38,000-

year-old Neanderthal found at Vindija Cave in Croatia [1], [2].

Bone fragments and hair have also been used as a source of DNA

for the assembly of the genomes of 28,000 and 43,000 years old

mammoths discovered in the Taimyr permafrost and in the

Bolshaya Kolopatkaya river in Russia [3], [4], [5]. Recently, a draft

genome was assembled from DNA extracted from the bone of

a 5,300-year-old corpse discovered on the Tisenjoch Pass in the

Italian part of the Ötztal Alps and referred to as the Tyrolean

Iceman [6].

The preservation of the ancient DNA varies greatly in these

samples, depending on many factors including the age and nature

of the specimen as well as on the temperature and composition of

the surrounding environment. Typically, the content of ancient

DNA is only a few percent, although some permafrost-preserved

specimens can contain up to 90% of endogenous DNA [1], [3].

Thus, the sequence data collected from these samples does not

only contain DNA from the organism of interest, but also DNA

from other sources, in varying quantities. These sequences could

be derived from microbial contamination during the handling of

the fossil, ancestrally present microbes or from microbes involved

in the taphonomic process.

Despite attempts to increase the fraction of endogenous DNA

by treating the samples with restriction enzymes that target GC-

rich bacterial sequences prior to sequencing, most of the

sequenced DNA in Neanderthal sample could not be affiliated

with any currently known species [2]. This could be because the

colonizers of the bone represent uncultivated bacteria for which no

genome is yet sequenced, or because the commonly used BLASTn

methods are not suitable for the assignment of short (,100 bp)

reads, leaving a large majority of reads unassigned. Of the small

fraction classified, the estimates of bacterial reads range from 1%

in the bones of the Tyrolean Iceman to 9% in the Neanderthal

bones and 15% in the woolly mammoth [1], [3], [5], [6].
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Actinomycetales is reported to be the most populous order in the

Neanderthal bone, representing 6.8% of the total reads. It is

hypothesized that the microbial reads are derived bacteria that

colonized the bone after the death of the Neanderthal [1], while

the Borrelia-like sequences identified in the Iceman sample were

considered to represent ancient bacteria that colonized the Iceman

while he lived [6].

Because it is of general interest to learn more about ancient and

modern bacteria that colonize, and possibly degrade, bone

material, we have here undertaken a study of the large fraction

of previously unknown sequences in the Neanderthal metagenome

projects. To this end, we have reanalysed a fraction of the

Neanderthal metagenome dataset, with a focus on the bacterial

DNA present in the sample. We have also investigated substitution

patterns and searched for enzymes putatively involved in the

decomposition of the bone. In doing so, we aimed to reconstruct

a community profile of the organisms living in the bone of

a Neanderthal and set up an approach that can be used for

taxonomic profiling of the microbial DNA in ancient DNA

samples whether its origin is ancient or not.

Results

Data Sets and Work Flow
Data sets. Our starting data set was 54 million reads of 454

sequence data from one Vindija Neanderthal Vi33.16 fossil (Table

S1). For comparison, we included 30 and 85 million reads from

sequencing runs in which the extracted DNA had been digested

with two different mixtures of restriction enzymes (Mix1 and

Mix2) that cut at GC-rich sequences [2]. The aim of this treatment

was to eliminate GC-rich bacterial sequence fragments that

contain these restriction sites and thereby increase the otherwise

low proportion of Neanderthal DNA.

We removed artificially duplicated reads using a standard

metagenomic clustering method (cd-hit-454), which resulted in

three datasets of 4.83 Gb (untreated sample), 1.99 Gb (Mix 1) and

4.75 Gb (Mix 2) (Table S1). These datasets were used for broad

analyses of taxonomic composition patterns (Figure 1). In parallel,

we removed duplicated reads from the untreated sample using

a slower, but more strict, clustering procedure (clustar) (Table S2)

that was developed for the analyses of this particular dataset [1].

This clustering method reduced the sequence data in the untreated

sample to 39.5 million reads and 3.95 Gb. This dataset consisted

of a large fraction of short reads with a peak size of 44 bp and

a smaller fraction of long sequence reads with a peak size of

255 bp (Figure S1). We used the smaller clustar dataset to examine

the phylogenetic placements of the most abundant bacterial taxa,

the nucleotide substitution patterns and the possible role of the

bacteria inhabiting the Neanderthal bone, as schematically

depicted in Figure 1.

Testing the performance of BLAST searches of short

sequence reads to microbial genomes databases. To

evaluate the behavior of short DNA sequences using BLAST

analyses, we used a whole-genome 454 sequence data set

comprising circa 300,000 reads with a read length of ,100 bp

derived from the ,1.5 Mb genome of the alphaproteobacterium

Bartonella bovis, here called Bbovis. We checked the sensitivity of

taxonomic assignments for these short reads using BLAST

searches against a database that included more than 2,000

microbial genomes of which more than 100 were from the

Alphaproteobacteria, including 9 Bartonella genomes with an

overall sequence identity to B. bovis of about 80%. Homologous

sequences for about 90% of the B. bovis genome could be identified

in the other Bartonella genomes, so the expectation was that at least

90% of the reads should yield significant hits in these searches.

However, only 61% of the B. bovis reads gave a hit in BLASTn

searches against this database (E,e23). When the Bartonella

genomes were removed from the microbial database, the fraction

of hits was reduced to only 12%, of which 47% were correctly

classified as Alphaproteobacteria (Table S3). In a more stringent

search (E,e210), only 2% of the reads produced significant hits to

sequences in the database, of which 63% were correctly classified

as Alphaproteobacteria. We conclude that the performance of

BLASTn searches with queries consisting of 100 bp long sequence

reads is very poor unless very closely related genomes are present

in the databases.

Testing the performance of BLAST searches of short

sequence reads to rRNA gene sequence database. Next, we

asked whether searches against designated rRNA gene sequence

databases would be a better approach for automatic, large-scale

taxonomic classification schemes. In this test we used the SILVA

Ref111 rRNA sequence database, which we manually curated to

remove problematic entries, such as sequences containing tRNA

genes or metagenomic sequences of unknown origin (eSILVA). In

the tests, we used the first hit for assignment (Table S3). As

expected, only a small fraction of reads yielded hits to the rRNA

gene sequence database (0.05%), of which 95% to 96% were

correctly identified as Alphaproteobacteria even if all Bartonella

sequences had been removed from the database. The median E-

values of the hits were high (e243 to e252) and the fraction of hits

was constant over a range of E-value cutoff values (e23 to e210).

To further inspect the performance of the eSILVA search we

calculated the sensitivity and the specificity (Table S4). In this

analysis, true positives were defined as hits overlapping the SSU

and LSU rRNA genes with at least 50 bp, while false positives

were defined as those mapping outside the rRNA operons and

a 1 kb flanking sequence on both sides. Reads mapping to the

borders of the gene or within the neighboring 1 kb were ignored

for the calculations. The performance of the searches against the

eSILVA database was extremely good with a recall of 96–99%,

meaning that less than 4% of the hits were false positives.

Moreover, a sensitivity of 92–94% showed that less than 8% of the

rRNA sequence reads were missed in the analysis. To further

improve the robustness of the assignment, we implemented

a lowest common ancestor procedure, taking all hits with the

same best e-value and making a majority-based assignment with

the exclusion of potential single misclassified hits as described in

the Methods.

Taxonomic Compositions
The neanderthal sample. We used the modified rRNA

database search approach outlined above for the taxonomic

analyses of the fossil metagenome data sets. Thus, broad

taxonomic assignments of both the untreated and the treated

Neanderthal data sets were inferred from BLASTn searches

(E,10210) against the eSILVA rRNA gene sequence database.

Using this procedure, we identified from 48,000 to 140,000 rRNA

gene reads per sample, of which 89% to 96% were classified as

Bacteria, less than 10% as Eukaryota and less than 2% as Archaea

(Table S5). Within bacteria, the diversity at the phylum level was

low, with a large majority of the bacterial sequence reads, 74%–

95%, being assigned to the Actinobacteria (Figure 2A, Table S6).

Proteobacteria accounted for another 3%–14% and represented

the second most abundant group (Table S6). Finally, within the

Actinobacteria, the majority of sequence reads, 20%–35% were

assigned to the Streptomycetales (Figure 2B, Table S7). There was

no significant difference (t-test in R, p-value .0.32) in the content

of Streptomycetales between two different extractions from the

The Neanderthal Bone Metagenome
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bone (Figure S2A, Table S8). Nor was there any difference in the

abundance of Streptomycetales between subsets of short

(,150 bp) and long (.150 bp) sequence reads (Figure S2B).

The cave sediment sample. We hypothesized that the

bacterial sequences in the Neanderthal dataset might be derived

from bacteria in the cave sediments. To test this hypothesis, we

extracted bacterial DNA from cave sediment samples collected

from the same place and G-layer as the remains of the

Neanderthal bones. We amplified the SSU rRNA genes using

universal primers and sequenced the amplified products. The 278

rRNA gene sequences were aligned and classified according to

their positions in a maximum likelihood phylogenetic tree that

included a set of reference species. The results indicated a similarly

low level of diversity in the soil as in the Neanderthal sample, with

83% of the rRNA gene sequences classified as Actinobacteria and

9% as Proteobacteria (Figure 2A, Table S9). To ensure a good

representation of the actinobacterial DNA, we also performed

PCR amplifications using actinobacterial specific primers. How-

ever, in contrast to the dominance of Streptomycetales in the

Neanderthal DNA, only a single such rRNA gene sequence was

tentatively identified. Instead, Pseudonocardiales (40%) and

Propionibacteriales (31%) dominated the bacterial rRNA gene

sequences in the cave sediment sample (Figure 2B, Table S10).

The mammoth sample. For comparison, we included

a dataset from the mammoth mandible (GPID 16317), which

after clustering consisted of 0.2 million reads amounting to

21.2 Mb of sequence data (Table S1). Actinobacteria (27%) and

Proteobacteria (31%) were the most abundant phyla in the

mammoth sample as well (Table S9), although the majority of the

actinobacterial sequence reads were assigned to the Micrococcales

(74%) (Table S10).

Actinobacterial Phylogeny
We performed phylogenetic analyses to directly compare the

relationship of the actinobacterial rRNA gene sequences identified

in the bone with those in the cave sediment sample, and also

Figure 1. Schematic overview of the analysis workflow.
doi:10.1371/journal.pone.0062799.g001
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PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62799



included other publicly available actinobacterial sequences. For

this analysis, we used the 3.95 Gb dataset in which duplicate reads

had been removed by the clustar method. To circumvent

problems caused by low resolution in the phylogeny due to the

short fragments of the rRNA reads in the Neanderthal sample, we

assembled the individual reads into longer consensus sequences

using a two-step procedure. We first extracted the 3,875 SSU

rRNA gene sequences tentatively assigned to Streptomycetales in

the BLASTn search against the eSILVA database (Table S7). In

a second step, we filtered the reads for high BLAST score and then

assembled them. By filtering reads carrying SNPs characteristic of

the Streptomycetales, we reduced the risk of assembling reads

belonging to different phyla. Moreover, we manually inspected the

assembly and removed reads of low quality and misassembled

reads. The result was a single full-length contig (here called

SSU_Streptomycetales C11) that contained 2,754 sequence-reads

and covered most of the SSU rRNA gene.

The maximum likelihood phylogeny showed that the consensus

C11 sequence clustered with Streptomyces vitaminophilus with 100%

bootstrap support (Figure 3). The same placement was also

observed for five shorter consensus sequences obtained if short and

long reads were assembled separately (data not shown). The

sequence identity of the consensus C11 sequence and S.

vitaminophilus SSU rRNA gene was 97% over 1361 bp, and

contained three indels of 13–15 bp. A comparison with the rRNA

gene sequences of S. griseus and S. coelicolor indicated that the indels

correspond to one insertion and two deletions in S. vitaminophilus

(see positions 378, 644 and 1322 in Figure S3). Additionally, the

consensus C11 and the S. vitaminophilus rRNA gene sequences

differ by 29 substitutions, 1 bp indel and 9 homopolymer

differences distributed across the genes (Figure S3). The read

coverage of the consensus sequence was very high, with a mean of

261 and a minimum of 158 reads in the sequence aligned to S.

vitaminophilus. The mean Phred quality score was 73, which

corresponds to less than one error in 10,000 bp, and the minimum

quality was 27 at one position. However, it should be recalled that

these scores do not reflect the possibility of polymorphisms at any

position, just the dominance of one particular base over all others.

The sole sequence assigned to Streptomyces in the cave sediment

sample (ACT primers clone A5_G07) was placed distantly from

the C11 consensus sequence in the phylogeny (Figure 3), with 24

substitutions and 2 homopolymer differences distributed across the

aligned 645 bp (Figure S3). Using a similar procedure we also

assembled sequence reads initially classified as Pseudonocardia or

Propionibacterium in the taxonomy analyses into longer consensus

sequences. Also in this case, the phylogenies confirmed the

taxonomic assignments, but indicated that the Neanderthal

consensus sequences clustered separately from the sediment rRNA

gene sequences (Figures S4, S5).

Substitution Patterns
A key question is whether the actinobacterial DNA is of ancient

or more recent origin. We reasoned that it should be possible to

use signs of DNA damage as a proxy for age. Previous studies have

shown that C2.T changes are drastically elevated in the

Neanderthal DNA compared to the substitution pattern in the

modern human DNA due to increased frequencies of deamination

of cytosine to uracil [7], [8]. Moreover, these studies showed that

the rate of deamination is enhanced as much as 50- to 60-fold at

the ends of the sequence reads, presumably because cytosine

residues at the ends of molecules are more susceptible to

deamination than cytosine residues inside the molecule [7].

To infer substitution patterns in the Neanderthal and bacterial

sequence reads, we identified single nucleotide changes in the

individual reads through comparisons with the assembled SSU

and LSU rRNA gene consensus sequences from Streptomyces

Figure 2. Taxonomic assignments of rRNA gene reads from the
Neanderthal and the cave sediment samples. Bacterial commu-
nity composition patterns at (A) the phylum level and (B) within
Actinobacteria. The Neanderthal rRNA gene sequence reads were
classified based on BLASTn searches to the SSURef111NR database in
SILVA, modified as described in the methods section. The cave
sediment rRNA gene sequence reads were classified based on
a maximum likelihood phylogeny that included related reference
sequences. Bacterial composition patterns at the phylum level were
inferred from PCR-amplifications of the bacterial DNA extracted from
the cave sediment using (A) universal primers and (B) actinobacterial-
specific primers. Scales refer to % of all (A) Bacteria and (B)
Actinobacteria.
doi:10.1371/journal.pone.0062799.g002
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(Figure 4). For comparison, we used three consecutive Neander-

thal consensus sequences that covered most of the SSU rRNA and

two shorter LSU rRNA contigs. The coverage of the bacterial

rRNA gene sequences was about 250-fold, which was one order of

magnitude higher than the coverage of the Neanderthal rRNA

gene sequences. Because of the high coverage and the high

frequency of frameshift errors at homopolymer sites in 454

sequence data that leads to the introduction of gaps, the total

length of the bacterial rRNA gene sequences in the assembly are

longer than the actual gene lengths (Figure 4).

We observed dramatically increased frequencies of C-.T and

G-.A substitutions in the Neanderthal rRNA gene sequence

reads, with an estimated 1.5 to 1.661022 substitutions per site. To

avoid problems caused by the inclusion of partial adaptor

sequences in the bacterial sequence reads, we counted only

nucleotide differences following the first 5 consecutive bases that

were identical to the consensus sequence, and excluded sequence

reads that contained more than 5 substitutions. Using this more

stringent procedure, the frequency of changes in the Neanderthal

rRNA gene sequence reads decreased to 5–761023 substitutions

per site. However, the strong over-representation of C2.T and

G2.A substitutions was still very striking (Figure 4A). All other

nucleotide changes in the Neanderthal rRNA gene sequence reads

were ,1 61023 changes per site, i.e. approaching the error rate

of the 454 instrument, which was previously estimated to be

461024 errors per site [7].

The estimated frequencies of nucleotide substitutions for the

bacterial rRNA gene sequences were in all cases in the range of the

estimated level of sequencing errors, with no indications of an

enhanced rate of C2.T and G2.A changes (Figure 4B). This

suggests that the Streptomyces sequence reads originate from

undamaged bacterial DNA. At this low level of diversity, only

381 of the 2754 reads contained nucleotide changes that were not

at the end of the reads, of which we excluded 21 reads that

contained more than 5 changes. Even if all of these relatively few

reads containing a nucleotide change would be derived from the

same gene, the diversity of strains represented in the assembly

would be less than 1%. We did not attempt to infer substitution

patterns for the other bacteria in the sample, due to much fewer

Figure 3. Phylogeny of rRNA gene sequences. The longest rRNA consensus sequence assembled from the Neanderthal data and assigned to
Streptmycetales is shown in red (SSU_Streptomycetales C11). The rRNA gene sequences amplified from the cave sediment are shown in green colour.
Streptomyces coelicolor, used as a reference in the alignment is shown in blue. The PCR-amplified sequences from the cave sediment are shown in
green. ‘‘ACT primers clone A5_G07’’ refer to amplifications with the actinobacterial-specific primers, while the four sequences obtained from the
universal primers 27f and 1492r are referred to as ‘‘universal primers clone u2_C02, 05, 08 and 090. The phylogeny was inferred using the maximum
likelihood method. Numbers refer to bootstrap support values higher than 75%.
doi:10.1371/journal.pone.0062799.g003
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reads per consensus rRNA gene sequence and higher levels of

polymorphisms.

Actinobacterial Collagenases and Proteases
The fate of archaeological bones, referred to as bone diagenesis,

depends on the environmental conditions and the extent of

microbial activity [9], [10]. Bone is a composite structure made of

inorganic and organic components and the main protein is

collagen, a protein with an atypically high content of proline,

hydroxyproline and glycine. Collagenase is a key enzyme involved

in the breakdown of collagen, and such an activity has been

identified in Streptomyces parvulus and Streptomyces griseus [11], [12],

[13], [14]. We hypothesized that the Streptomyces-like sequences

might have been derived from a bacterium involved in the

degradation of the bone, and therefore that collagenase genes

might be present in the dataset.

Identification of collagenases. To identify such sequences,

we first extracted all protein sequences annotated as collagenases

in the non-redundant database (search for bacterial and archaeal

proteins with ‘Name’ collagenase) and used these as queries in

BLASTn searches against the Neanderthal metagenome

(E,1025). Metagenomic sequence reads thus identified were

assembled to create longer consensus sequences. The same low

levels of polymorphisms as in the rRNA gene assemblies were

observed, with the frequencies of nucleotide changes in the

individual reads being in the range of the error level of the

instrument (Figure S6). The protein sequences were then used to

search the MEROPS database for homologous proteins to be

included in subsequent phylogenetic analyses. MEROPS is

a designated protease domain database that contains 248,584

entries, including collagenases. We reasoned that protein domain

designations would be more comprehensive and accurate in the

MEROPS database and we therefore used this database (rather

than the non redundant database) to annotate the consensus

sequences and identify related sequences for the phylogenies. The

four longest consensus sequences covered full-length collagenase

genes and showed their best hits (E,102160) to the Streptomyces

lividans or the Streptosporangium roseum microbial collagenase V, from

the M09 family.

Phylogenetic analysis confirmed that the consensus sequences

clustered with Streptomyces and Streptosporangium collagenases of the

M09A type with a bootstrap support of 89% (Figure 5). The less

abundant collagen-degrading protein families included the M43

protease and the U32 collagenase family, each of which were

assembled from up to 25 reads, or were singletons. Finally, we

observed that the assembled collagenase sequences of the U32

type, which is broadly distributed in bacteria and eukaryotes,

clustered with collagenases from bacterial species such as

Pseudomonas, Enterobacteriaceae, Acinetobacter and Burkholderiales

(Figure S7).

Identification of proteases. Collagenase degrades the

collagen molecule into peptides, which, if used for nutrition, have

to be further degraded and transported into the cell. As such,

collagenases represent a small subset of a much larger family of

proteases. To identify other types of proteases in Streptomyces we

searched the MEROPS database with BLASTx using the

Neanderthal sequence reads as the query (E,10210). Protein

family S33, which contains prolyl aminopeptidases that degrade

proline-rich protein substrates, was assigned to about 6% of all

reads (Table S11). Other abundant protease families identified in

this search included collagen- (M23) and protein-degrading

enzymes (M38, S09, S08, M20, M24, C26), as well as transport

proteins (C44). However, most of the hits were to unassigned

peptidases or non-peptidase homologs.

To investigate the taxonomic affiliations of the S33 protein

family, the identified reads were assembled, yielding more than

a thousand contigs in total. The consensus protein sequences of the

four contigs that contained a majority of reads were compared to

reference protein sequences of the S33 family in the MEROPs

database in a maximum likelihood analysis (Figure 6). Two of the

consensus sequences (C1103 and C1104) belonged to a clade with

actinobacterial tripeptidyl peptidase B (S33.006) for which the

holotype sequence is from Streptomyces lividans (100% bootstrap

support). C1104 was placed as a sister taxa to Streptomyces sviceus

with 100% bootstrap support and there was some support for

a clustering also of C1103 with Streptomyces. To ensure the best

possible match, we included all S33.006 sequences and all S33

sequences from S. sviceus, and top hits from the search against the

MEROPs database where consensus sequences were used as

queries.

The coverage of the consensus Streptomyces-like aminopeptidase

and the collagenase sequences was about 25- and 40-fold,

respectively, as compared to 200-fold coverage for the Streptomy-

ces-like SSU and LSU rRNA consensus sequences (Table S12).

Thus, the coverage levels of the Streptomyces-like sequences are

roughly comparable if we assume one copy of each of the

collagenase and aminopeptidase genes and six copies of the rRNA

genes per genome [15], [16], [17], suggesting that these genes may

be derived from the same Streptomyces species.

Discussion

The recent large-scale genome projects on ancient organisms

provide exciting opportunities to investigate and compare the

microflora of archaeological bones of different ages and varied

state of preservation. The findings presented in this study show

that more than 90% of the identified rRNA gene sequences in the

Neanderthal bone Vi33.16 were bacterial, with a majority being

derived from Actinobacteria. Ancient DNA typically shows

a different spectrum of nucleotide misincorporations than modern

DNA, with atypically high rates of hydrolytic deaminations of C to

T. These characteristics in nucleotide substitution patterns have

helped distinguish the Neanderthal sequences from the human

DNA, and it has also been observed in bacterial DNA from Yersinia

pestis obtained from the teeth of victims of the Black Death during

the 14th century [18], [19].

To investigate the pattern of nucleotide misincorporations in the

Neanderthal metagenome data, we compared individual rRNA

sequence reads to the assembled consensus sequences. However,

we soon realized that it was difficult to infer base changes at the

ends of the sequence reads due to the presence of partial adaptor

sequences in many reads. Single misassembled reads also had to be

excluded not to inflate the frequency of base changes. To

circumvent these problems we applied a more stringent procedure

that only included base changes after the first 5 nucleotides that

were identical in sequence to the consensus sequence. Although

Figure 4. Substitution patterns in the Neanderthal and Streptomyces rRNA genes. Substitution frequencies inferred from the (A)
Neanderthal and (B) Streptomyces small and large subunit rRNA gene contigs. Complementary substitutions ratios are reported together giving six
groups in total. Vertical bars indicate the estimated level of sequencing errors. Coverage of sequence reads for the (C, D) small subunit and (E, F) large
subunit rRNA gene sequences from (C, E) Metazoa and (D, F) Streptomycetales.
doi:10.1371/journal.pone.0062799.g004
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Figure 5. Phylogeny of microbial collagenases. Collagenase consensus sequences are coloured in red (Contigs 108, 111–113). The
actinobacterial clade is highlighted in yellow and subfamilies M09A and B are indicated. The Streptomyces reference sequences from the MEROPS M09
family are shown in green and the family holotypes in blue. MEROPS references displayed with species names and (arbitrary) collagenase copy
number. The phylogeny was inferred using the maximum likelihood method. Numbers refer to bootstrap support values higher than 75%.
doi:10.1371/journal.pone.0062799.g005
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this approach reduced the overall level of changes, we observed

the typical pattern of C to T changes and/or of its strand-

equivalent substitution A to G in the Neanderthal DNA, consistent

with chemical damage to the DNA after the death of the

Neanderthal.

If the bacterial rRNA gene sequences were of the same age as

the Neanderthal DNA, and had undergone similar DNA damage,

a comparably high frequency of C to T changes was expected.

This was not the case; the inferred substitution frequencies were

extremely low for the Streptomyces-like sequence reads, in the range

of the error level of the instrument. In viable cells, cytosine

deamination errors are corrected by on-going DNA repair

mechanisms, and it has been suggested that cells with low

metabolic activity can persist over geological time scales [20]. This

was thought to explain the lack of an increased frequency of C to

T changes in DNA from Actinobacteria obtained from permafrost

samples [20], [21], and could potentially also explain the lack of

deamination errors in the bacterial fraction of the Neanderthal

sample.

Ancient DNA is normally fragmented, and indeed the large

majority of the Neanderthal sequence reads were of short sizes.

The longer sequence reads were mostly of bacterial origin, but the

short reads also contained bacteria in similar abundances. We

considered the possibility that bacterial sequence reads of different

sizes could be of different age. However, the same taxonomic

composition and the same low substitution frequencies were

observed for both short and long rRNA gene sequence reads, with

no indications of increased rates of deamination damage in the

short read pool. Based on this analysis, we conclude that the

Streptomyces-like DNA was derived from live bacteria.

The inoculation and enrichment process in the bone could have

occurred during the thousands of years when the fossil was kept in

Figure 6. Phylogeny of prolyl aminopeptidases. Propyl aminopeptidase consensus sequences are coloured red (Contigs C1103–C1106). The
clade containing contig C1104 and two Streptomyces species is shown in yellow. The Streptomyces reference sequences from MEROPS S33 family are
shown in green and family holotypes in blue. MEROPS id is indicated for each sequence. The phylogeny was inferred using the maximum likelihood
method. Numbers refer to bootstrap support values higher than 75%.
doi:10.1371/journal.pone.0062799.g006
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the cave sediment, or perhaps, during the past 20 years when the

fossil has been located at a museum in Zagreb. Another possibility

is that the identified bacterial DNA in the Neanderthal sample was

derived from contaminations with cave sediments during the

handling of the fossil. However, we have not detected a single case

in which a bone contig sequence and a sediment clone sequence

were placed as sister groups in the phylogenies, which rules out

contamination with sediments as the source of the bacterial DNA.

Rather, we hypothesize that Streptomyces was active early in the

taphonomic process by utilizing bone as nutrient source, and then

decreased its metabolic activity when conditions became un-

favourable for growth. The identified Streptomyces-like collagenase

sequences as well as many other proteases and peptidases, such as

propyl aminopeptidase, are likely to have facilitated bacterial

growth in the bone specimen. The bone collagen may first have

been degraded into longer peptides by the collagenase and then

further processed by propyl aminopeptidase and other proteases to

shorter peptides.

Also of importance for long-term survival in the bone is the

spore-forming ability of Streptomyces [22]. This is particularly

relevant to this discussion since most of the Streptomyces population

is thought to be present in the form of spores under natural

conditions in the soil [23]. The presence of both viable and

dormant forms of cells has also been reported from studies of deep

subseafloor sediments [24], [25]. The type of spores that

Streptomyces species produce lack some proteins and surface layers

present in for example the Bacillus-type of spores and can thereby

decompose more easily, releasing free DNA. Since the library

preparation step of the Neanderthal DNA omitted the normal

fragmentation step, the expectation is that free, fragmented DNA

was preferentially sequenced [1]. Thus, some of the Streptomyces

DNA may have been derived from spores that have lysed during

the preparation of the DNA from the specimen [1].

Knowledge about the nucleotide composition of the micro-

biomes of archaeological samples is not only of scientific interest,

but may also help implement strategies to eliminate contaminating

bacterial DNA from ancient specimens. Even without such

detailed knowledge, restriction digests targeted to GC-rich

sequences had been applied to the Neanderthal DNA to reduce

the bacterial DNA content and thereby increase the relative

fraction of endogenous DNA [2]. In retrospect, we examined the

relative fraction of bacterial rRNA gene sequences before and after

the treatment with restriction enzymes and found these to be

similar (Table S13). This may however not be surprising since

rRNA genes are known not to be as biased in GC composition

patterns as the rest of the genome due to secondary structural

constraints and slow rates of sequence evolution, and will therefore

be less affected than the majority of protein coding genes. Indeed,

in silico digests with the restriction enzymes used in Mix2 and Mix1

of 11 Streptomyces genomes resulted in fragment lengths of only

14 bp and 30 bp on the average (Table S14). This suggests that

most of the Streptomyces DNA was eliminated by these treatments.

Finally, our results differ from the first survey of the

Neanderthal data in 2006 in that we estimated a much higher

content of bacteria in the sample [1]. We reasoned that the

difference in estimates might be due to the different methodologies

used. The previous study [1] identified bacterial DNA by

nucleotide BLASTn searches of individual reads against the public

databases. Biased taxonomic representation of species in these

databases, as well as nucleotide- instead of protein-level compar-

ison hamper the detection of similarity. Moreover, short queries

often fail to identify similar sequences with statistical significance,

especially when used to search databases of large sizes, as

confirmed by our B. bovis test dataset. Our approach differed in

that we used designated rRNA gene sequence databases for the

searches. The advantages are that rRNA genes are highly

conserved in sequence, the databases contain orders of magnitude

fewer sequences than the generalized sequence databases, yet have

a much broader representation of taxa.

Clearly, much remains to be learned about the abundance,

species richness and function of the microflora inhabiting human

and animal fossils, and specifically what role the microbial

community plays in the deterioration process. Here, there is

much to hope from the initiatives worldwide to sequence ancient

DNA from vertebrates. Studies of the microbial composition in

archaeological samples are now feasible and should be of general

interest to both microbial ecologists and archaeologists.

Materials and Methods

Data Sets and Samples
Ethics statement. All necessary permits were obtained for

the described field studies. Bone as well as soil samples were

collected under the auspices of the Memorandum of Understand-

ing of December 8, 2006 between the Croatian Academy of

Sciences and Arts, The Berlin Brandenburg Academy of Sciences

and the Max Planck Institute for Evolutionary Anthropology on

the determination and analysis of genome-wide DNA sequences in

hominid fossils from Vindija, Croatia.

Sequence data. The Neanderthal sequence data set for fossil

Vi33.16 (previously Vi-80) are available in the European Short

Read Archive (EBI accession ERP002047). The two restriction

enzyme treated 454 runs (Mix1 and Mix2) are available in the

European Short Read Archive (EBI accession ERP000119, runs

listed in table S6 in [2]). Mixture 1 was digested with BstUI

(CGCG), BsiEI (CGRYCG) and Hpy99I (CGWCG) and Mixture 2

with BstUI, BsiEI plus Taq1 (TCGA), MspI (CCGG), TauI

(GCSGC) and HinP1I (GCGC). The mammoth dataset was

downloaded from NCBI (GPID 16317, [3]).

Sediment samples. Sediment from Vindija cave, Croatia,

layer G3 (the exact location of Neanderthal Vi-33.16) was sampled

and stored in 280uC. DNA was extracted with an UltraClean soil

DNA isolation kit (MoBio Laboratories, CA, USA). Approximate-

ly 0.5 g of soil was processed following the manufacturer’s protocol

for maximum extraction yields.

Data Processing
Adaptors. Oligonucleotide adaptors were retained in the

Neanderthal dataset to designate the end of the template (see

Figure 1 in [7]). Depending on the length of the template, they

were fully present, partially present or missing from the sequence

reads. Adaptors were removed from the Neanderthal sequence

reads by alignment to a reference human sequence. Since the

bacterial sequence reads lacked a reference genome, we removed

adaptors by two procedures. For estimates of total bp, the end

adaptor was mapped with PatMaN (v. 1.2 with default settings

[26]), and trimmed from the read if it was situated at the end. For

use in assemblies, a slower and more sensitive smalt indexing using

shortest possible word length and step size was carried out

(indexing run with the parameters – k 3– s 1; mapping run with

default parameters; smalt version 0.5.7 http://www.sanger.ac.uk/

resources/software/smalt/). Additionally, the substitution calcula-

tions were modified to ignore adaptor leftovers, as described

below.

Quality. The quality of the Neanderthal reads was high

(mean 27) and did not require any additional filtering steps. The

quality of the many mammoth reads were low and the dataset was
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filtered to remove reads with mean quality below 20 using an in-

house script, which increased the mean read quality from 19 to 25.

Clustering. To account for artificially multiplied reads,

a known artifact of emulsion PCR [1], the sequence reads in the

untreated Neanderthal data were first clustered using clustar,

which was developed to suit this particular dataset. In short, the

procedure consisted of a pairwise global alignment followed by

single linkage clustering with a suitably selected cutoff (Table S2)

for each emulsion set separately (Janet Kelso, personal commu-

nication). Additionally, a faster and less strict clustering with cd-hit

version 3.1.2 using 97% identity threshold and 80% of the

sequence in the alignment (cd-hit-454–c 0.97–aL 0.8, [27]), was

applied to this and the three other datasets (Mix 1 and 2 and the

mammoth dataset) for ease of comparisons of the different

datasets. The stricter clustar clustering, which is probably more

accurate, was only applied to the untreated Neanderthal dataset

and used for the in-depth analysis of phylogeny, substitution

patterns and proteases.

Testing the Performance of BLAST
The B. bovis dataset consisted of 304,666 pyrosequencing reads

from 1.6 Mb genome of Bartonella bovis (SRA accession

SRR351456 [28], with mean read length of 106 bp. The genome

was assembled using several kinds of sequencing data, with

additional gap closure, producing high quality late draft that was

estimated to contain 95% of the genome [28]. Completed

bacterial and archaeal genomes were downloaded from NCBI

(2211 genomes as of 8.03.2013) and formatted into a Blast

database (P+). The shared sequence length of the assembled B.

bovis genome and the Bartonella genomes in the databases were

estimated by dividing the length of the shared blocks using

progressive Mauve alignment [29] with the scaffold length. In

order to investigate the impact of removing closely related

sequences, a reduced database (P-) was prepared in which all

Bartonella genomes were removed (B. australis Aust/NH1, B.

bacilliformis KC583, B. clarridgeiae 73, B. grahamii as4aup, B. henselae

Houston-1, B. quintana RM-11, B. quintana Toulouse, B. tribocorum

CIP 105476 and B. vinsonii berkhoffii Winnie).

The performance of searches based on rRNA gene sequence

similarities was evaluated by comparing the regular eSIL-

VARef111 database (eSILVA+) to the same database without

Bartonella sequences (eSILVA-). The assembler used 290,081 of the

raw reads and their annotation was inferred from the position in

the assembly. The expected number of rRNA hits was defined as

all reads with at least 50 bp overlap with either the SSU (427

reads) or the LSU (837 reads) rRNA genes. False positives were

defined as hits among the pool of reads after excluding the rRNA

operons (287,772 reads). To make sure no adjacent sequence was

left all reads that overlapped the operon boundaries plus 1000 bp

flanking sequence were removed.

Ribosomal RNA Sequence Analysis
PCR amplification, cloning and sequencing of the SSU

rRNA gene. PCRs of SSU ribosomal rRNA gene sequences

were conducted in a total reaction volume of 25 ml with two

different sets of primers. Bacteria-specific primers 27f (59-AGA

GTT TGA TCC TGG CTC AG) and 1492r (59-TAC GGY TAC

CTT GTT ACG ACT T) were used at 0.5mM concentrations.

Actinobacteria-specific primers ACT235f (59-CGC GGC CTA

TCA GCT TGT TG) and ACT878r (59-CCG TAC TCC CCA

GGC GGG G) were used at 0.5 mM concentrations. In both cases

200 mM concentrations of each deoxynucleoside triphosphate

were used and approximately 10 ng of template was added. In the

PCR with SSU rRNA gene primers 27f and 1492r, 4 ml of

Phusion HF Buffer and 0.2 ml of Phusion Hot Start DNA

polymerase (Finnzymes, Finland) were used, and the reaction was

run starting with 30 s at 98uC, followed by 35 cycles of

denaturation at 98uC for 5 s, annealing at 50uC for 5 s, and

extension at 72uC for 60 s and the final extension at 72uC for 60 s.

In the PCR with Actinobacteria-specific SSU gene primers

ACT235f and ACT878r, 5 ml of Phire Reaction buffer and

0.5 ml of Phire Hot Start DNA polymerase (Finnzymes, Finland)

were used, and reactions were run starting with 30 s at 98uC,
followed by 35 cycles of denaturation at 98uC for 5 s, annealing at

60uC for 5 s, and extension at 72uC for 30 s and the final

extension at 72uC for 60 s. Confirmation of the PCR product size

was achieved by agarose gel electrophoresis of 1 ml of each PCR

sample, staining with ethidium bromide, and visualization under

UV light.

Products from the amplifications with universal primers were

directly ligated into pCR-Blunt vectors using Zero Blunt PCR

Cloning Kit (Invitrogen), and transformed into One Shot TOP10

Competent Escherichia coli cells (Invitrogen). Products from the

actinobacterial primers were purified with Illustra GFX PCR

DNA and Gel Band Purification Kit (GE Healthcare), and

phosphorylated using the PCR Terminator End Repair Kit

(Lucigen) following manufacturer’s recommendations for low

amount of DNA. Products were then repurified, ligated into

pSMART vectors using Clone Smart Blunt Cloning Kit (Lucigen)

for 2 h, and transformed into XL2-Blue Ultracompetent Escherichia

coli cells (Stratagene) using half the volume of competent cells

(50 ml). DNA sequences were screened for vector and primer

sequence and quality, and mate pairs were assembled using

PhredPhrap’s default settings.

Identification and taxonomic assignment of the SSU rRNA

gene sequence reads. To identify and assign rRNA gene

sequences to a taxon, we performed BLASTn with an E-value

threshold of 10210 against a custom rRNA database based on

SILVA Ref 111 [30] (EMBL release 111, March 2012). The

LSURef111 and SSURef111NR databases in SILVA were

modified prior to the searches by removing poorly aligned

(align_quality_slv ,75), potentially chimeric (pintail,100) se-

quences and unaligned ends (align_cutoff_head_slv, align_cutoff_-

tail_slv). This procedure is similar to the concept behind the

truncated version of the SILVA database with the difference that

a few sequences containing tRNA genes were deleted (see Table

S15 for list of accession numbers of tRNA containing sequences).

Our customized database excluded all sequences for which the

taxonomic annotation differed at the domain level between the

available taxonomies (Silva, EMBL, Greengenes, RDP), mostly

due to different annotations of mitochondrial and chloroplast

sequences. Taxonomically uninformative sequences, such as

metagenome reads, were also excluded. To avoid pushing the

classification closer to the root due to single misclassified sequences

in the SILVA database, the taxonomic assignment of reads were

based on an abundance criterion such that from all hits with the

same best e-value, a lowest common ancestor was assigned based

on the taxon associated with 50% or more of these hits. The few

reads that had hits to different phyla were classified only to the

level of the domain.

Sequence assembly. Reads identified by searches against

the modified SILVARef111 database as described above were

further filtered such that only reads that also had high BLAST

scores (.75) were used for the assembly. The reads were binned

according to their taxon identification, and separately for small

and large rRNA subunit gene. After adaptor removal, assemblies

were performed separately for each bin with PhredPhrap (-

minmatch 30– maxmatch 55–max_subclone_size 50000–revise_-
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greedy – vector_bound 20). Contigs used for the downstream

analyses were manually inspected in Consed to assess potential

misassemblies and levels of polymorphisms. The names designated

for the resulting consensus sequences were chosen to provide

information about the BLAST-based bin and the contig number

within that bin. The Streptomycetales SSU rRNA gene sequences

were also assembled using GS De Novo Assembler 2.3 (‘‘cDNA’’

with default settings except for: ‘‘overlap identity’’ set to 99%,

‘‘reads limited to one contig’’ and ‘‘extending low depth overlaps’’)

454 Life Sciences, Branford, CT [31]. This assembly generated

a consensus sequence that was identical to the largest Streptomy-

cetales SSU rRNA contig (C11), except for homopolymer errors.

Phylogenetic analysis. The rRNA consensus sequences and

the rRNA gene sequences from the cave sediments were aligned

with reference rRNA gene sequences using the integrated

automatic aligner in ARB [32]. The alignments were analyzed

using maximum likelihood methods implemented in RAxML [33]

and the consensus sequences were classified according to their

position in the resulting maximum likelihood tree.

Consensus SSU rRNA gene sequences longer than 500 bp and

tentatively assigned to Pseudonocardiales, Propionibacterales, and

Streptomycetales were added to the SILVA phylogenetic guide

tree [30]. These alignments were manually refined using the

closest neighbors as assigned by the most parsimonious placement

of the sequence in the tree and exported. Alignment blocks were

chosen after removal of poorly aligned regions such that regions

that represented the PCR clones were retained (alignment files are

available at the github repository, Table S16). Phylogenetic

analyses were performed with maximum likelihood methods

implemented in RAxML [33], using the GTRGAMMA model

and with 100 bootstrap resampling replicates.

Substitution Frequencies
The substitution patterns in the SSU and LSU rRNA gene

sequences assigned to metazoan (Neanderthal) and bacteria

(Streptomyces) were determined by comparing each of the individual

reads to the consensus sequence. The ratio of the total number of

changes to total bp in the contig was calculated for the 6 possible

pairs of complementary changes, such as C2.T and A2.G. To

account for unaligned reads due to partial adaptor sequences in

the bacterial reads, the calculations included only nucleotide

changes after the first 5 contiguous bases that agreed with the

consensus and reads containing more than 5 changes in total were

discarded.

Analysis of Collagenases and Proteases
Identification of collagenase and protease

sequences. Collagen sequence reads were identified in the

Neanderthal metagenome with the use of a custom made dataset

created by searching the NCBI protein database for collagenases

(query ‘collagenase’ in field Name done on 28.09.2011) and

extracting representative proteins from Bacteria and Archaea

longer than 300 amino acids. After removal of duplicated copies

from the same organism the database contained 106 sequences.

To identify all proteases, the Neanderthal sequence reads were

searched with BLASTx (e-value threshold 10210) against the

MEROPS peptidase protein sequence database (pepunit.lib

downloaded on 09.03.2012) that consisted of 248,584 sequences.

The results of the search were summarized by calculating number

of hits assigned to each of the MEROP’s ids (for example

S33.UNW).

Assembly. Individual sequence reads were grouped into

subsets based on the identification as collagenases or proteases,

separately for each family (for example S33). After adaptor

removal, PhredPhrap was used to assemble (–minmatch 30 –

maxmatch 55 –minscore 55 –max_subclone_size 50000 –revise_-

greedy –vector_bound 20) the reads identified for each type of

protease into longer contigs. Assemblies used in the downstream

phylogenetic analysis were manually inspected in Consed. Genes

were called with the aid of prodigal [34] using metagenomic

option for partial genes (–p meta).

Alignment and phylogeny. The consensus protein se-

quences were used to identify reference collagenase sequences in

the MEROPS database (as of 6.12.2011) by an online BLAST

with default settings [35]. All identified and inferred protein

sequences were aligned using MAFFT (einsi, linsi and mafft-profile

with default parameters, [36]). The alignments were manually

checked to remove poorly aligned blocks and used for phyloge-

netic analysis with RAxML with 100 bootstrap replicates (2#100

-m PROTCATLG). The model for protein evolution was chosen

using the script for model selection available from the RaxML

website (http://www.exelixis-lab.org/).

Scripts and Analysis Files
Lists of scripts and analysis files are listed in Table S16 and

available in the github repository: https://github.com/kasiazar/

NeandertalBoneMetagenome.

Supporting Information

Figure S1 Read length distribution of raw reads and
identified ribosomal RNA reads. Raw reads for mammoth

and Neanderthal datasets, with separate y-axis scale on the right

for the larger Neanderthal dataset (A). Vertical lines correspond to

distribution peaks. Read length distribution of rRNA reads

separated according to the presence/absence of the end-adaptor

sequence (B). Reads classified as Neanderthal (Metazoa) plotted

separately.

(PDF)

Figure S2 Abundance variation of Streptomycetales
reads. The variation in abundance of SSU and LSU rRNA

sequence reads classified as Streptomyces is shown for two

different extractions from the bone, as detailed in Table S8 (A)

and for two different subsets of sequence reads (B), with short reads

defined as below 150 bp and long reads above 150 bp in size.

(PDF)

Figure S3 Alignment of SSU rRNA gene sequences from
Streptomyces. Alignment of the consensus Streptomyces C11

sequence with reference SSU rRNA gene sequences from S.

vitaminophilus, S. griseus and S. coelicolor, and sediment clones

A5_G07 (actinobacterial primers) and u2_C02, 05, 08 and 09

(universal primers).

(PDF)

Figure S4 Phylogeny of SSU rRNA gene sequences from
Propionibacterineae. The phylogeny includes previously

sequenced SSU rRNA gene sequences as well as assembled

consensus sequences assigned to Propionibacterineae, Pseudono-

cardineae and Actinomycetales. The consensus sequences are

coloured red, with names including information about contig

length, number of reads and whether the consensus sequence was

assembled from the short read length pool with adaptor (A) or

from the long read length pool with no adaptor (N). Sequences

obtained by PCR amplification from the cave sediments are

coloured in green. The phylogeny was inferred using the

maximum likelihood method. Numbers refer to bootstrap support

values higher than 75%.

(PDF)
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Figure S5 Phylogeny of SSU rRNA gene sequences from
Pseudonocardineae. The phylogeny includes previously se-

quenced SSU rRNA gene sequences as well as assembled

consensus sequences assigned to Pseudonocardineae and Bacteria.

The consensus sequences are coloured red, with names including

information about contig length, number of reads and whether the

consensus sequence was assembled from the short read length pool

with adaptor (A) or from the long read length pool with no adaptor

(N). Sequences obtained by PCR amplification from the cave

sediments are coloured in green. The phylogeny was inferred using

the maximum likelihood method. Numbers refer to bootstrap

support values higher than 75%.

(PDF)

Figure S6 Substitution patterns in the collagenases
MEROPS M09 and proteases S33 genes. Substitution

frequencies inferred from the largest assembled contigs used for

(A) collagenase phylogeny in Figure 5 and (B) protease phylogeny

in Figure 6. Complementary substitutions ratios are reported

together giving six groups in total. Vertical bars indicate the

estimated level of sequencing errors. Coverage overview of the

assembled gap-containing contigs aligned relative to the largest (C)

collagenase Contig113 and (D) protease contig C1106.

(PDF)

Figure S7 Phylogeny of collagenases belonging to the
MEROPS family U32. The phylogeny includes previously

sequenced collagenase sequences as well as assembled consensus

sequences. Colour coding refers to bone consensus sequences (red)

and family holotypes from MEROPS (blue). The names of the

MEROPS sequences include information about species, (arbitrary)

collagenase copy number and a gene name for the Escherichia coli

sequences. The contigs were numbered during assembly and the

displayed name includes ORF parameters (# start # stop). The

phylogeny was inferred using the maximum likelihood method.

Numbers refer to bootstrap support values higher than 75%.

(PDF)

Table S1 Statistics for the raw and pre-processed datasets. The

raw reads of the Mammoth dataset contains the 4 bp adaptor

sequence at the beginning of each read. The raw reads of the

Neanderthal dataset contains the 4 bp adaptor sequence at the

beginning of each read and a complete 44 bp, a partial or no

adaptor sequence at the end of each read.

(DOCX)

Table S2 Clustering with clustar for each of the library

emulsions in the untreated Neanderthal dataset.

(DOCX)

Table S3 Performance tests of database searches. Performance

of BLASTn searches using raw reads and reads in the assembly of

the Bartonella bovis genome as queries against a database of more

than 2,000 microbial genomes (P) and a cleaned up version of the

SILVARef111 rRNA sequence database (eSILVA), respectively.

Searches were performed against databases that included (P+ and

eSILVA+) or excluded (P- and eSILVA-) related Bartonella

sequences.

(DOCX)

Table S4 Precision and recall of searches against the eSILVA

database. Reads in the assembly of the Bartonella bovis genome was

used as queries with the e-value threshold set at e-10. The

precision was calculated as TP/(TP+FP) and the recall as TP/

(TP+FN). TP=True positives, calculated as the number of hits

with .=50 bp overlap with the SSU/LSU gene. FP=False

positives, calculated as the number of reads showing hits that map

outside the rRNA operons. FN=False negatives, calculated as true

rRNA reads with no hits. SSU=Small Subunit rRNA; LSU= -

Large Subunit rRNA.

(DOCX)

Table S5 Classification of the identified small and large subunit

rRNA gene sequences in the Neanderthal dataset at the domain-

level. Included in the analyses were the untreated and restriction

enzyme treated (Mix1 and Mix2) datasets.

(DOCX)

Table S6 Classification of the identified small and large subunit

rRNA gene sequences in the Neanderthal dataset at the phylum-

level. Included in the analyses were the untreated and restriction

enzyme treated (Mix1 and Mix2) datasets. The category called

‘‘Bacteria’’ include phyla other than those specified, as well as

reads that could not be classified below the domain level.

(DOCX)

Table S7 Classification of the identified small and large subunit

rRNA gene sequences in the Neanderthal dataset within the

Actinobacteria. Included in the analyses were the untreated and

restriction enzyme treated (Mix1 and Mix2) datasets. The category

called ‘‘Actinobacteria’’ include groups other than those specified,

as well as reads that could not be classified below the phylum level.

(DOCX)

Table S8 List of the 454 library emulsions. Listed are the

emulsions of two DNA extractions (extract and re-extract) and the

sequencing runs corresponding to the extract (see table S2 for a list

of sequencing runs for each emulsion set).

(DOCX)

Table S9 Classification of the identified rRNA gene sequences

in the DNA extracted from the cave sediment sample and in the

Mammoth dataset at the phylum-level. Universal primers (27f,

1492r) were used for the PCR amplifications of the small subunit

rRNA gene sequences from the cave sediment sample. The

category called ‘‘Bacteria’’ include phyla other than those

specified, as well as reads that could not be classified below the

domain level. The number of identified sequences is shown, with

the percent given in parenthesis.

(DOCX)

Table S10 Classification of the identified rRNA gene sequences

in the DNA extracted from the cave sediment and in the

Mammoth dataset within the Actinobacteria. The number of

identified sequences is shown, with the percent given in

parenthesis.

(DOCX)

Table S11 The most abundant MEROPS protease families

identified in the Neanderthal dataset. Family type peptidase refer

to the protein that is the representative of the whole family. The

ten most abundant MEROPS protease families were chosen from

the list of MEROPS identities that had at least 0.5% abundance.

The abundance was calculated from the number of hits to each of

the families in a BLASTx search of all reads against the MEROPS

peptidase protein sequence database (e-value threshold 10210).

The biological function description was taken directly from the

MEROPS website.

(DOCX)

Table S12 Statistics for the assembled contigs of the rRNA,

collagenase and aminopeptidase genes putatively assigned to

Streptomyces. The relative gene copy numbers are based on the

assumption that that the collagenase and aminopeptidase are
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singly-copy genes, while the rRNA genes are present in six copies

per genome.

(DOCX)

Table S13 Comparison of the fraction of rRNA and total

bacterial gene sequences in the Neanderthal datasets. The

threshold for the identification of the rRNA genes was set to an

e-value of ,e-10 and a score of .100. The dataset in the upper

row was clustered with cluster, while the three other datasets were

clustered with cd-hit-454.

(DOCX)

Table S14 Mean lengths of genomic fragments after DNA

digestions with restriction enzymes in silico. The restriction sites

were mapped to the genomes with patman. Several Streptomyces

genomes as well as a few other genomes of lower GC was included

in the analysis.

(DOCX)

Table S15 List of sequences containing rRNAs in the truncated

SILVA database, as detected by tRNAscan-SE.

(DOCX)

Table S16 List of scripts and analysis files available in the github

repository. https://github.com/kasiazar/

NeandertalBoneMetagenome.

(DOCX)
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