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Abstract
In Parkinson’s disease, the dysfunction of the dopaminergic nigrostriatal tract involves the loss of function of dopa-
minergic neurons of the substantia nigra pars compacta followed by death of these neurons. The functional recovery of 
these neurons requires a deep knowledge of the molecules that maintain the dopaminergic phenotype during adulthood 
and the mechanisms that subvert their activity. Previous studies have shown that transcription factor NURR1, involved 
in differentiation and maintenance of the dopaminergic phenotype, is downregulated by α-synuclein (α-SYN). In this 
study, we provide a mechanistic explanation to this finding by connecting α-SYN-induced activation of glycogen 
synthase kinase-3 (GSK-3) with NURR1 phosphorylation followed by proteasomal degradation. The use of sequential 
deletion mutants and single point mutants of NURR1 allowed the identification of a domain comprising amino acids 
123-PSSPPTPSTPS-134 that is targeted by GSK-3 and leads to subsequent ubiquitination and proteasome degradation. 
This study provides a detailed analysis of the regulation of NURR1 stability by phosphorylation in synucleinopathies 
such as Parkinson’s disease.
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Introduction

Midbrain dopaminergic (DAergic) neurons are the main 
source of dopamine (DA) in the mammalian central nerv-
ous system. Several transcription factors have been impli-
cated in DAergic differentiation [1]. Among them, nuclear 
receptor‐related factor 1 (NURR1; also known as NR4A2) 
is a transcription factor of the orphan nuclear receptor class 
that participates in acquisition of the DAergic phenotype in 
neurons during development and in the maintenance of their 
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• Aggregated α-synuclein reduces NURR1 protein levels and its 
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functionality during adulthood [2–4]. It regulates the expres-
sion of several genes involved in DA metabolism, includ-
ing tyrosine hydroxylase (TH) [5–7], dopamine transporter 
(DAT) [8], amino acid decarboxylase (AADC) [9], vesicular 
monoamine transporter-2 (VMAT2) [9], as well as other non-
DAergic genes such as NRP1 [10] and RET (GDNF receptor) 
[11]. Ablation of NURR1 in adult rodents results in reduced 
expression of its target genes and loss of functional DAergic 
midbrain neurons [12–14]. Mutations in the human NURR1 
gene have been identified in association with Parkinson’s 
disease (PD), where neurodegeneration of the DAergic neu-
rons of the SN occurs [15, 16].

DAergic neuronal loss is associated with abnormal 
accumulation and aggregation of the protein α-synuclein 
(α-SYN) in the form of Lewy bodies and Lewy neurites [17]. 
Point mutations, duplications, and triplications of α-SYN 
gene (SNCA) are associated with familiar forms of PD [18, 
19], which indicate a key role of this protein in the neuro-
degenerative process of the disease. The toxicity elicited 
by α-SYN oligomers correlates with its phosphorylation at 
serine 129 as this event promotes fibril formation [20, 21]. 
Related to NURR1, a seminal study, demonstrated that aber-
rant expression of human α-SYN in murine DAergic neu-
rons correlates with exacerbated proteasomal degradation of 
NURR1 and loss of the DAergic phenotype [22]. However, 
little is known about the molecular mechanisms that connect 
synucleinopathy with loss of NURR1 stability and loss of 
DAergic neuron functionality, which may be more impor-
tant than frank cell loss [3, 12]. This information is crucial 
to identify early signs of damaged DAergic neurons and to 
apply a neuroprotective therapy before the manifestation of 
DAergic cell death.

Phosphorylation is a mechanism used in many proteins 
to target their proteolytic degradation. For instance, gly-
cogen synthase kinase 3 (GSK-3) phosphorylates several 
proteins to create a phosphorylation-dependent degrada-
tion domain (phosphodegron) that is then recognized by 
a variety of E3 ubiquitin ligase adapters leading to pro-
teasomal degradation of the phosphorylated protein [23]. 
Considering that GSK-3 is activated by α-SYN aggregates 
[24–28], here, we analyzed if NURR1 is phosphorylated 
by GSK-3 and sent to ubiquitin proteasome degradation 
phosphorylation by GSK-3. The two isoforms of GSK-3 
(GSK-3α and GSK-3β) play critical roles in metabolism, 
neurogenesis, proliferation, neuronal differentiation, and 
neuronal death [29], and their dysregulation is associated 
with neurodegenerative diseases. For instance, abnormal 
GSK-3β activity leading to TAU phosphorylation and 
aggregation has been extensively reported in Alzheimer’s 
disease [30–32] but also in connection with several hall-
marks of PD [33–36]. Thus, in postmortem PD brain sam-
ples, GSK-3β activity is increased in regions related to PD 
pathology, and GSK-3β co-localizes with α-SYN in Lewy 

bodies [35, 36]. α-SYN pathology leads to GSK-3β activa-
tion, subsequent phosphorylation of several transcription 
factors such as Jun, Myc, HSF-1, and CREB, and neuronal 
death, thus opening the possibility of a similar regulation 
of NURR1 [28].

In this study, using several models of synucleinopathy, 
we found that α-SYN-induced activation of GSK-3β leads 
to phosphorylation of NURR1 and its subsequent ubiqui-
tin–proteasome degradation, which precedes loss of the 
DAergic phenotype.

Materials and Methods

A detailed description of methods is presented 
in Supplemental Material

Cell Culture and Reagents  Human embryonic kidney 
293 T with SV40 T antigen (HEK293T) cells were grown 
in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich, Madrid, Spain) supplemented with 10% fetal 
bovine serum (Invitrogen, CA, USA) and 80 µg/ml gen-
tamycin (Gibco, MA, USA). Human neuroblastoma cells 
(SH-SY5Y) were cultured in RPMI supplemented with 
10% fetal bovine serum (Invitrogen) and 80 µg/ml gen-
tamicin. The SH-SY5Y-α-SYN Tet-Off cells, described 
previously [37, 38], were cultured in RPMI with 10% fetal 
bovine serum, 250 µg/ml G418 (Gibco), 50 µg/ml hygro-
mycin B (Invitrogen), and 2 µg/ml doxycycline (DOX) 
(Sigma-Aldrich). The expression of α-SYN was switched 
on by DOX removal. Transient transfection of HEK293T 
cells was performed with TransFectin Lipid Reagent (Bio-
RAD, CA, USA). The inhibitors SB216763, LY294002, 
and MG132 were from Sigma-Aldrich. Cycloheximide 
(CHX) was from Boehringer Mannheim (Stuttgart, 
Germany).

Plasmids and Lentiviruses  The vectors pCGN-HA-GSK-
3βΔ9, pCGN-HA-GSK-3βWT, and pCGN-HA-GSK-3βY216F 
were provided by Dr. Akira Kikuchi (Department of Bio-
chemistry, Faculty of Medicine, Hiroshima University). Vec-
tors pGL3-NBRE3xLuc and pGL3-TkLuc were provided by 
Dr. Philippe Lefebvre (INSERM Institut Pasteur de Lille, 
Lille, France). The HA-Ubiquitin expression vector was pro-
vided by Dr. Tadashi Nakagawa (Division of Cell Prolifera-
tion, ART, Tohoku University Graduate School of Medicine, 
Sendai, Japan). The plasmid pcDNA3.1-Nurr1WT-V5/6xHis 
has been described previously [39]. The lentiviral particles 
used in this study were purchased from Addgene and were 
generated in HEK293T cells as described previously ([40] 
and Supplemental Material).
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α‑SYN Pre‑formed Fibrils (PFF)  Purified monomeric α‐SYN 
was purchased from Proteos, Inc (cat no. RP‐003), and PFFs 
were formed according to the protocol provided by the man-
ufacturer [41, 42] (see Supplemental Material).

Immunoblotting  This protocol was performed as described 
in [43]. Briefly, cells were homogenized in lysis buffer 
(TRIS pH 7.6 50 mM, 400 mM NaCl, 1 mM EDTA, 1 mM 
EGTA, and 1% SDS), and samples were heated at 95 °C for 
15 min, sonicated and pre-cleared by centrifugation. Proteins 
were resolved in SDS-PAGE and transferred to Immobilon-P 
(Merck-Millipore, MA, USA) membranes. Proteins of inter-
est were detected with the primary antibodies indicated in 
the Supplemental Table 2. Proper peroxidase-conjugated 
secondary antibodies were used for detection by enhanced 
chemiluminescence (GE Healthcare).

Immunofluorescence  SH-SY5Y cells were seeded in 
24-well plates (5 × 103 cells/well) on poly-D-Lys-covered 
slides and treated with 1 µg/ml PFFs. The protocols have 
been previously described [39, 44, 45]. Primary antibodies 
recognized TH (Merck-Millipore), human α-SYN (Santa 
Cruz Biotechnology, Dallas, TX, USA) and α-SYN-pSer129 
(Abcam, Cambridge, UK). Secondary antibodies were as 
follows: Alexa Fluor 488 donkey anti-mouse, and Alexa 
546 donkey anti-rabbit (1:500; Thermo Fisher Scientific, 
Waltham, MA, USA) and Alexa Fluor 546-conjugated don-
key anti-mouse IgG (Molecular Probes, Eugene, OR, USA). 
Control sections were treated identically but omitting the 
primary antibody.

In vivo Ubiquitination Assay  HEK293T cells co-transfected 
with expression plasmids for HA-Ubiquitin (HA-Ub), 
Nurr1WT-V5/6xHis, or Nurr1MUT2-V5/6xHis with pCGN-
HA-GSK-3βΔ9 or pCGN-HA-GSK-3βY216F, using TransFec-
tin Lipid Reagent (Bio-RAD). After 5 h, HEK293T cells 
were treated for 16 h with 2 μM MG132 (Sigma-Aldrich). 
Cells were then lysed in a RIPA buffer (150 mM NaCl, 
25 mM Tris–HCl, pH 7.5, 1% Nonidet P-40, 1% sodium 
deoxycholate, 1% Triton-X100, 0.1% SDS, 1 mM phenyl-
methylsulfonyl fluoride, 1 mM NaF, 1 mM sodium pyroph-
osphate, 1 mM sodium orthovanadate, 1 g/ml leupeptin). 
Then, samples were kept for 30 min at 4 °C in a rotating 
wheel and centrifuged at 13,000 rpm for 10 min. Three 
microliters of the anti-V5 (Invitrogen) was added per lysate, 
and after incubation for 2 h at 4 °C in a rotating wheel, 
gamma-bind Sepharose-protein G was added (Amersham 
Biosciences), followed by incubation for 1 h at 4 °C. The 
complexes were harvested by centrifugation and washed 
three washes with RIPA buffer, resolved in SDS–polyacryla-
mide gels, and immunobloted. Mouse IgG TrueBlot (eBio-
sciences) was used as a peroxidase-conjugated secondary 
antibody (1:10,000 dilution) because it reduces interference 

by the 55-kDa heavy and 23-kDa light chains of the immu-
noprecipitation antibody.

Lambda Phosphatase Assay  HEK293T cells were co-trans-
fected with Nurr1WT-V5/6xHis and pCGN-HA-GSK-3βΔ9 or 
pCGN-HA-GSK-3βY216F using TransFectin Lipid Reagent 
(Bio-Rad) according to manufacturer recommendations. 
After 24 h of recovery from transfection, the cells were lysed 
in 200 μl lysis buffer (137 mM NaCl, 20 mM Tris–HCl, pH 
7.5, 1% Nonidet P40, 10% glycerol, 1 μg/ml leupeptin, 1 mM 
phenylmethylsulfonyl fluoride). Then, the samples were 
sonicated and precleared by centrifugation, and 50 μl of the 
sample was incubated with λ-protein phosphatase (Upstate, 
Millipore) for 4 h at 37 °C. Then, the samples were resolved 
by SDS-PAGE and immunoblotted.

Two‑Dimensional Electrophoresis  HEK293T cell co-trans-
fected with expression plasmids for Nurr1WT-V5/6xHis, 
Nurr1MUT2-V5/6xHis and pCGN-HA-GSK-3βΔ9 or pCGN-
HA-GSK-3βY216F, using TransFectin Lipid Reagent (Bio-
RAD) according to manufacturer recommendations. For 
experimental details, see Supplemental Material.

Analysis of mRNA Levels  Total RNA was extracted using 
TRIzol reagent according to the manufacturer’s instructions 
(Invitrogen). Reverse transcription and quantitative PCR 
were done as detailed elsewhere [44]. Primer sequences are 
shown in Supplemental Table 3. Data analysis was based 
on the ΔΔCT method with normalization of the raw data 
to housekeeping genes Actb and Gapdh (Applied Biosys-
tems, Thermo Fisher Scientific). All PCRs were performed 
in triplicate.

Luciferase Assays  Luciferase activities were determined 
using a luciferase assay system (Promega) as per the manu-
facturer’s instructions. As a reference plasmid to normalize 
transfection efficiency, a CMV-galactosidase plasmid (Pro-
mega) was cotransfected in all experiments and luciferase 
assay values were normalized to galactosidase activity.

Statistics  Results are expressed as mean ± SEM from at least 
three independent experiments. Data were analyzed by one-
way ANOVA followed by Newman–Keuls multiple com-
parison test (p ≤ 0.001), or with Student’s t test (p ≤ 0.05), 
using Prism version 5.03 software (GraphPad, San Diego, 
CA, USA).

Results

α‑SYN Aggregates Reduce the DAergic Phenotype of SH‑SY5Y 
Cells  In order to identify the mechanism involved in the 
dysregulation of the DAergic phenotype, we incubated the 
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DAergic cell line SH-SY5Y with preformed fibrils (PFFs) 
of human recombinant α-SYN (1 µg/ml, 10 days). Confocal 
microscopy demonstrated the formation of aggregates con-
taining α-SYN and Ser129-phopshorylated α-SYN (α-SYN-
pSer129) (Fig. 1A). PFFs induced a slight nonsignificant 
decrease in NURR1 transcript levels compared to the control 
untreated cells, indicating similar NURR1 gene expression, 
but at the same time, TH and RET transcripts were dimin-
ished (Fig. 1B). By contrast, not only TH and RET pro-
teins were decreased but also NURR1 (Fig. 1C and D). The 
fact that NURR1 gene expression was little or no affected 
by PFFs (see “Discussion”), together with the decrease in 
NURR1 protein levels, suggests that α-SYN PFFs must 
cause, at least in part, a reduction of NURR1 protein stabil-
ity and subsequent decrease in the expression of NURR1 
target genes, such as TH and RET.

We further analyzed the regulation of NURR1 in the Tet-
Off SH-SY5Y cell line, conditionally expressing α-SYN 
in the absence of doxycycline (DOX) [46]. DOX removal 
from the culture medium led to a robust expression of 
α-SYN after 8  days, and α-SYN and α-SYN-pSer129 

expression correlated with a decrease in NURR1, TH, 
and RET protein levels (Fig. 2A-C). Moreover, α-SYN 
overexpression resulted in a reduction of the NURR1 tar-
get genes TH and RET (Fig. 2B). To further determine 
the effect on gene expression, first we transfected these 
cells with a NBRE-luciferase reporter-construct, specifi-
cally activated by NURR1. Upon DOX removal, α-SYN 
overexpression correlated with reduced luciferase lev-
els (Fig. 2D, left bars), suggesting that NURR1 activ-
ity parallels NURR1 protein levels. Similar results were 
obtained when naïve SH-SY5Y cells were co-transfected 
with the NBRE-luciferase reporter and expression vectors 
for wild type or A53T-α-SYN (Fig. 2D, right bars). This 
effect was not observed upon transfection of the control 
vector. We further expressed in the Tet-off SH-SY5Y 
cells, a myc-tagged NURR1 cDNA under the control of 
a heterologous CMV promoter (Fig. 2E). NURR1 tran-
script levels arising from the construct were unaffected by 
α-SYN overexpression, yet TH and RET expression were 
decreased. These experiments further verify that α-SYN 
reduces NURR1 protein levels and the expression of its 
target genes.

Fig. 1   Pre-formed fibrils (PFF) of α-SYN disturb the DAergic phe-
notype. A Confocal immunofluorescence of SH-SY5Y cells submit-
ted to PFF (1  µg/ml PFF, 10  days). Note the presence of cytoplas-
mic α-SYN-pSer129 aggregates in the presence of PFFs. B qRT-PCR 
determination of transcript levels for NURR1, TH, and RET normal-
ized by the average of housekeeping genes ACTB and GAPDH. Val-
ues are mean ± S.E.M. (n = 3). Statistical analysis was performed 
with Student’s t test. *p < 0.05 vs. untreated cells. C Immunoblots 

of cells treated under the same conditions. Upper two panels, anti-α-
SYN-p-Ser129 and anti-total α-SYN antibodies. Lower four blots, anti-
NURR1, anti-TH, anti-RET, and-GADPH antibody used as a protein 
loading control. D Densitometric quantification of NURR1, TH, and 
RET protein levels relative to GAPDH is representative blots of C. 
Data are mean ± SEM (n = 3). Statistical analysis was performed with 
Student’s t test. *p < 0.05 vs. untreated cells
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GSK‑3 Is Needed to Downregulate NURR1  α-SYN over-
expression reduced the levels of GSK-3β phosphorylated 
at Ser9 (GSK-3β-pSer9) (Fig. 2A, B). This phosphoserine 
exerts an inhibitory effect on the kinase by blocking the 
catalytic site [47, 48]. Therefore, reduction in pSer9-GSK-3 
levels is indicative of increased kinase activity. To deter-
mine if increased GSK-3 activity might affect NURR1 
stability, we first used the easy-to-transfect human cell 
line HEK293T. Transcriptomic data indicate that these 
cells originated from the neural crest and express several 

neuron-specific genes [49, 50]. We ectopically expressed 
a V5-targed NURR1 together with constitutively active 
GSK-3β lacking the first nine amino-terminal residues that 
correspond to the pseudosubstate (GSK-3βΔ9). Lack of Ser9 
renders this kinase insensitive to downregulation by AKT-
mediated phosphorylation. As a negative control, we used 
a hypomorphic mutant containing a single point Tyr-to-Phe 
mutation in its activation loop (GSK-3βY216F) that renders 
this kinase almost inactive [51, 52]. As shown in (Fig. 3A), 
NURR1 levels were reduced with increasing amounts of the 

Fig. 2   Inducible expression of α-SYN impairs the DAergic pheno-
type. A Immunoblots of SH-SY5Y cells, expressing α-SYN under 
the control of the Tet-Off system. Cells were treated with vehicle or 
DOX (2 µg/ml, 5 days) in the presence of RPMI with serum. Then, 
cells were transferred to Opti-MEM Reduced Serum maintaining 
the DOX treatment for 8 days. B, C Densitometric quantification of 
GSK-3-pSer9 normalized by total GSK-3 and NURR1, TH, and RET 
protein levels normalized by GADPH, respectively. Values are the 
mean ± SEM (n = 3). Statistical analysis was performed with a Stu-
dent’s t test. *p < 0.05, **p > 0.01 vs. DOX-treated groups. D Left-
most bars, transcriptional activity of endogenous NURR1 measured 

by luciferase assay after transient transfection of an NBRE-luciferase 
reporter construct (with and without α-SYN overexpression). Right-
most bars, myc-NURR1 transcriptional activity after co-transfection 
of NBRE-luciferase, and either CMV-driven wild-type α-SYN or 
A53T-α-SYN. E Tet-Off SH-SY-5Y-α-SYN cells were transfected 
with a CMV-driven myc-NURR1 expression. The graph shows qRT-
PCR determination of transcript levels of NURR1, its targets TH and 
RET normalized by the average of housekeeping genes ACTB and 
GAPDH. Values are mean ± S.E.M. (n = 3). Statistical analysis was 
performed with Student’s t test. *p < 0.05
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GSK-3βΔ9, and were not altered in the presence of inactive 
GSK-3βY216F. Then, we silenced the expression of both α 
and β isoforms of this kinase by lentiviral knock-down for 
3 days in V5-NURR1 expressing HEK293T cells (Fig. 3B) 
as well as in naïve SH-SY5Y cells (Fig. 3C). As a control, 
we analyzed β-catenin levels, a well-established substrate of 
GSK-3, which is degraded upon GSK-3β-mediated phospho-
rylation. Just a ~ 50% decrease in GSK-3α and GSK-3β levels 
increased NURR1 levels and its targets RET and TH. We 
also silenced both isoforms in the Tet-Off SH-SY5Y-α-SYN 
cells (Fig. 3D-G). Despite α-SYN overexpression, GSK-3α 
and GSK-3β knock-down rescued NURR1 levels to baseline 

as well as TH and RET levels. The effect was most evident in 
the GSK-3β knocked-down cells, indicating a preponderant 
role for this isoform. These results show for the first time 
that GSK-3 is required for the downregulation of NURR1 
induced by α-SYN and are in line with observations based 
on GSK-3 inhibitors in the Parkinsonian MPTP and MPP+ 
[53, 54], or 6-OHDA [55–57] models. The mechanisms of 
action of these two toxins, altering mitochondrial activity 
and redox homeostasis, is at least partially different to the 
proteinopathy elicited by α-SYN aggregates, therefore sug-
gesting that these different pathomechanisms overlap on the 
GSK-3/NURR1 axis reported here for α-SYN.

Fig. 3   GSK-3 is instrumental in α-SYN-induced NURR1 downregu-
lation. A Reduction of NURR1 levels in the presence of of GSK-3β. 
HEK293T cells were co-transfected with the NURR1WT-V5 expres-
sion vector and the indicated amounts of the HA-GSK-3βY216F mutant 
and dominant-positive HA-GSK-3βΔ9 mutant, and then maintained 
in low-serum medium for 16 h. GFP expression was used as control 
for even transfection. Whole-cell lysates were immunoblotted against 
anti-V5 antibody (NURR1) or anti-HA antibody (GSK-3β). β-Catenin 
levels were immunoblotted as a control for GSK-3 activity and anti-
GAPDH antibody as control of protein load. B HEK293T cells were 
infected with an expression vector for V5-tagged NURR1 and the 
lentiviruses specific shCtrl, shGSK-3α, and shGSK-3β. Upper blots, 
V5-NURR1 and β-catenin protein levels. Lower blots, GSK-3α/β 
and GAPDH protein levels. C Naïve SH-SY5Y cells were infected 
with lentiviruses that carried a specific silencer for a control scram-
ble sequence (shCtrl), GSK-3α (shGSK-3α) or GSK-3β (shGSK-3β). 
After 24  h, cells were transferred to Opti-MEM Reduced Serum 

Medium, and grown for 3  days. Upper blot, NURR1 protein lev-
els. β-Catenin levels were used as positive control of GSK-3 activ-
ity. In the middle blots, GSK-3α/β protein levels as control shRNA 
treatment, and TH and RET protein levels as NURR1 targets. Lower 
blot, GAPDH protein levels showing similar protein load per lane. 
D Tet-Off SH-SY5Y cells were treated with vehicle or DOX (2 µg/
ml, 5 days) in RPMI with serum. Then, the cells were infected with 
shCtrl, shGSK-3α and shGSK-3β lentiviruses. After 24 h, cells were 
transferred to Opti-MEM Reduced Serum Medium for 8 days main-
taining the DOX treatment. Upper panels, tetracycline-induced 
α-SYN and its α-SYNpSer129. Middle panels, expression of endog-
enous NURR1, TH and RET and GAPDH. Lower panels, levels of 
GSK-3β-pSer9 and total levels of GSK-3α/β. E, F, G Quantitative 
determination of NURR1, RET, and TH levels, respectively, normal-
ized by GADPH levels. Values represent mean ± SEM (n = 3). A Stu-
dent’s t test was used to assess difference among groups. *p < 0.05, 
**p < 0.01, ***p < 0.001, ns, non-significant
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GSK‑3 Targets NURR1 for Degradation  We next examined 
the effect of GSK-3 on NURR1 turn-over. SH-SY5Y cells 
were infected with lentiviral vectors expressing shCTRL, 
shGSK-3α/shGSK-3β. After 3 days, cells were incubated 
with the protein synthesis inhibitor cycloheximide (CHX, 
100 µM) (Fig. 4A, B). As a control, we monitored the sta-
bility of β-catenin. In shCTRL cells, NURR1 had a half-
life of ~ 6 h. However, in the GSK-3-knocked-down cells 
NURR1 was almost completely stable during this time. As 
an additional approach, we performed similar experiments 
but inhibiting GSK-3 with the potent and selective inhibitor 
SB216763 (5 µM, pre-incubated for 2 h) (Fig. 4C, D). In 
vehicle-treated cells, NURR1 exhibited a half-life of ~ 6 h, 
as observed before, but in SB216763-treated cells, the lev-
els of NURR1 were hardly affected. Therefore, both genetic 
and chemical inhibition of GSK-3 results in stabilization of 
NURR1.

GSK‑3β Targets NURR1 for Phosphorylation and Degrada‑
tion Through the UPS  HEK293T cells were co-transfected 
with expression vectors for NURR1-V5 and HA-GSK-
3βΔ9, or HA-GSK-3βY216F as control. After 16 h, the cells 
were treated for 2 h and 4 h with the selective proteasome 

inhibitor MG132 (20 µM). As shown in Fig. 5A, UPS inhi-
bition protected NURR1 from GSK-3β-mediated degrada-
tion. In an ubiquitination assay, HEK293T cells were co-
transfected with expression vectors for NURR1-V5 along 
with HA-tagged ubiquitin and either HA-GSK-3βY216F, or 
HA-GSK-3βWT or HA-GSK-3βΔ9 (Fig. 5B, C). Overex-
pression of GSK-3βWT slightly ubiquitylated NURR1, and 
constitutively active GSK-3βΔ9 considerably enhanced ubiq-
uitination. It has been reported previously that NURR1 is 
degraded by the UPS [22, 58, 59], but our results show for 
the first time the direct participation of GSK-3β.

GSK-3 phosphorylates its substrates in two specific con-
sensus sequences, (Ser/Thr)-Pro or (Ser/Thr)-X3-(pSer/
pThr), where X is any residue [60]. Using the NetPhos 2.0 
program, we found that NURR1 contains at least five puta-
tive sequences with serines or threonines that conform to 
the consensus motif for GSK-3 phosphorylation. We named 
these sites, Core 1, 2, 3, 4, and 5 (Fig. 5D and Supplemental 
Fig. 1A). Then, we generated sequential deletion mutants 
fused to enhanced green fluorescence protein (EGFP) at the 
N-terminus and a V5 tag at the C-terminus (Fig. 5D) and 
analyzed their phosphorylation pattern (Fig. 5E). GSK-3βΔ9 

Fig. 4   GSK-3 reduces the half-life of NURR1. A SH-SY5Y were 
infected with lentiviral silencers shCtrl, shGSK-3α, and shGSK-3β in 
RPMI with serum. After 24  h, cells were transferred to Opti-MEM 
Reduced Serum Medium for 3  days. Finally, the cells were treated 
with 100  µM CHX for the indicated times. Upper blots, NURR1 
protein levels, and β-catenin protein levels used as positive control 
GSK-3 activity. Middle blots, GSK-3α/β protein levels, as control 
shRNA knock-down. GAPDH protein levels, as protein loading con-
trol. B Graph depicts the natural logarithm of the relative levels of the 
NURR1 protein as a function of CHX chase time in SH-SY5Y cells 

treated like in A. C Cells were maintained in Opti-MEM Reduced 
Serum Medium for 16  h and then treated with the GSK-3 inhibitor 
SB216763 (5  μM, 2  h) prior to inhibition of protein synthesis with 
CHX. D Graph depicts the natural logarithm of the relative levels of 
the NURR1 protein as a function of CHX chase time in SH-SY5Y 
cells treated like in C. For B and D, the protein half-life was deter-
mined in the linear range of the degradation curve. Statistical analysis 
was performed with one-way ANOVA followed by Newman–Keuls 
multiple comparison test. ***p < 0.001
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induced a slightly retarded EGFP-NURR1 band in the full 
length chimera and in the first deletion mutant (Δ1), com-
pared to control GSK-3βY216F. In addition, the protein lev-
els of these two constructs were decreased in the presence 

of GSK-3βΔ9. By contrast, the rest of the EGFP-NURR1 
mutants exhibited low or no obvious band shift and were 
resistant to degradation in the presence of GSK-3βΔ9, sug-
gesting that the sites targeted by GSK-3β on NURR1 are 

Fig. 5   GSK-3 induces NURR1 phosphorylation and degradation. 
A HEK293T cells were co-transfected with expression vectors for 
NURR1-V5 and hypomorphic HA-GSK-3βY216F or active HA-GSK-
3βΔ9. After 16  h, cells were subjected to the ubiquitin–proteasome 
inhibitor MG132 (20 µM, for 2 h and 4 h). Upper blot, anti-V5 anti-
body showing ectopically expressed NURR1-V5; middle panel, anti-
HA antibody showing the GSK-3β proteins. Note the smaller size 
of HA-GSK-3βΔ9 due to the deletion of the first nine N-terminal 
residues. Lower blot, GAPDH levels showing similar protein load 
per lane. B, C Ubiquitination assay. HEK293T cells were co-trans-
fected with the indicated plasmids and HA-tagged ubiquitin (HA-
Ub) expression vector. One fifth of whole-protein lysate was used 
as input to control for protein expression (B). The rest of the protein 
lysates were immunoprecipitated with anti-V5 antibody and immu-
noblotted with anti-HA (Ub) indicated in C. D Schematic illustra-

tion of NURR1-V5 chimeras used for mapping GSK-3-sensitive sites 
in NURR1. EGFP, enhance green fluorescent protein; A/B (AF1), 
DBD, LBD (AF2), V5, C-terminal tag used for detection in immu-
noblot. E HEK293T cells were co-transfected with EGFP-NURR1WT-
V5 and the chimeric deletion mutants, along with HA-GSK-3βY216F 
or HA-GSK-3βΔ9 expression vectors, and then maintained in low-
serum medium for 16  h. Whole-cell lysates were immunoblotted 
against anti-V5 antibody (EGFP-NURR1 chimeras) or anti-HA anti-
body (GSK-3β). Lamin B levels show similar protein load per lane. F 
Amino acid sequence of Core2 in wild-type NURR1 and the alanine 
substitutions mutated to generate NURR1MUT2-V5. G HEK293T cells 
were co-transfected with NURR1WT-V5 and NURR1MUT2-V5, along 
with HA-GSK-3βY216F or HA-GSK-3βΔ9 as indicated. Then, cells 
were maintained in low-serum medium for 16 h before immunoblot-
ting with the indicated antibodies
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preferentially located before or at Core 2 (Fig. 5E). As con-
trol, EGFP alone was insensitive to GSK-3β-induced band 
shift or degradation (data not shown). Additionally, we per-
formed point mutations of NURR1 at Core 2 by changing 
4 serines and 2 threonines to alanines (Fig. 5F). We found 
that Core 2 mutation rendered NURR1 insensitive to GSK-
3β-induced band shift and degradation (Fig. 5G). The amino 
acid sequence of Core 2, comprising residues 123 to 134 is 
highly conserved in vertebrates (Supplemental Fig. 1B-C).

To confirm that GSK-3β induces NURR1 phosphoryla-
tion, we performed a lambda-phosphatase assay (λPPase) in 
HEK293T cells co-transfected with expression vectors for 

NURR1-V5 and GSK-3βΔ9 or GSK-3βY216F (Fig. 6A). In the 
presence of GSK-3βΔ9, NURR1 showed a retarded band in 
SDS-PAGE. This gel shift was abrogated when the protein 
lysate was incubated with the phosphatase, therefore dem-
onstrating that the retarded band is due to GSK-3-mediated 
phosphorylation.

To more precisely characterize the relevance of Core 
2, HEK293T cells were transfected with NURR1WT or 
NURR1MUT2 and co-transfected with GSK-3βΔ9 or GSK-
3βY216F, and resolved by 2D gel electrophoresis. As shown 
in Fig. 6B, NURR1WT co-transfected with hypomorphic 
GSK-3βY216F, displayed several immunoreactive spots 

Fig. 6   GSK-3 induces the phosphorylation of NURR1. A Lambda 
phosphatase assay. Cells were co-transfected with expression vec-
tor for NURR1-V5 and either HA-GSK-3βY216F or HA-GSK-3βΔ9. 
Cell lysates were incubated with or without λ-phosphatase as indi-
cated. Empty arrowhead, retarded band that corresponds to phos-
phorylated NURR1; black arrowhead, non-phosphorylated NURR1. 
B Analysis of NURR1 phosphorylation by 2D-PAGE. HEK293T 
cells were co-transfected with NURR1WT-V5 and NURR1MUT2-V5, 
along with HA-GSK-3βY216F or HA-GSK-3βΔ9, and then main-
tained in low-serum medium for 16 h. 2D-PAGE immunoblots were 
revealed against anti-V5 antibody (NURR1). Black arrows indicate 
acidic spots that result from GSK-3 phosphorylation and are lost in 
NURR1MUT2-V5. C, half-life of NURR1MUT2-V5 is not affected 
by GSK-3β. HEK293T cells were co-transfected with NURR1-
V5, NURR1MUT2-V5 together with HA-GSK-3βY216F or HA-GSK-
3βΔ9, serum starved for 16 h, and finally incubated for the indicated 

time with 100  µM CHX. Upper blot, anti-V5 (NURR1WT-V5 or 
NURR1MUT2-V5) protein levels. Middle blot, HA-GSK-3β mutants. 
Lower blot, GAPDH levels showing similar protein loads per lane. D, 
the graph depicts the natural logarithm of the relative levels of the 
NURR1WT-V5 and NURR1MUT2-V5 protein as a function of CHX 
incubation time. The protein half-life was determined using the linear 
part of the degradation curve. Statistical analysis was performed with 
one-way ANOVA followed by Newman–Keuls multiple comparison 
test. ***p < 0.001. E Ubiquitilation of NURR1MUT2-V5 is drastically 
reduced despite the presence of active GSK-3β. HEK293T cells were 
co-transfected with the indicated plasmids or without HA-Ub vector 
(Ub) as control. One fifth of whole-protein lysate was used to con-
trol for protein expression as shown in the three upper panels (total 
Input). The rest of the protein lysates were immunoprecipitated with 
anti-V5 antibody and immunoblotted as anti-HA to detect ubiquit-
inated NURR1
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consistent with GSK-3β-independent posttranslational mod-
ifications of NURR1. When cells were co-transfected with 
active GSK-3βΔ9, we observed an increase in the intensity 
of acidic spots (black arrows), indicating GSK-3-mediated 
phosphorylation. However, in cells co-transfected with 
NURR1MUT2 the distribution of spots was similar in the 
presence of GSK-3βY216F or GSK-3βΔ9, and the acidic shift 
was not observed (black arrows). These results indicate 
that the residues of Core 2 are preferred targets of GSK-3β 
phosphorylation.

In additional experiments, we examined the half-life 
of NURR1MUT2. HEK293T cells were co-transfected with 
NURR1WT or NURR1MUT2 and GSK-3βΔ9, and exposed 
to CHX (100 µM) (Fig. 6C, D). In the presence of GSK-
3βΔ9, the half-life of NURR1WT was less than 120 min. 
However, NURR1MUT2 exhibited a half-life of more 
than 120 min that was not significantly shortened by 
the presence of GSK-3βΔ9. We also performed an ubiq-
uitination assay in HEK293T cells co-transfected with 
expression vectors for NURR1WT or NURR1MUT2 along 
with HA-Ubiquitin and GSK-3βY216F or GSK-3βΔ9. As 
shown in Fig. 6E, overexpression of GSK-3βΔ9 enhanced 
NURR1WT ubiquitination, while in NURR1MUT2 this was 
less apparent.

Finally, we validated the phosphorylation of Core 
2 in the DAergic cell line SH-SY5Y (Fig. 7A). These 
cells were infected with lentiviral vectors expressing 
NURR1WT or NURR1MUT2. In the presence of DOX, 

α-SYN levels were low in cells expressing either form 
of NURR1, and the levels of GSK-3β-pSer9 were high, 
indicating its inhibition. However, in the absence of 
DOX, α-SYN levels increased, and GSK-3 was dephos-
phorylated and active. The presence of α-SYN and its 
downstream target, active GSK-3, completely elimi-
nated NURR1WT protein and substantially reduced 
the levels of TH and RET. By contrast, the levels of 
NURR1MUT2 were not affected by the α-SYN/GSK-3 
challenge and the levels of TH and RET remained simi-
lar to those in the absence of α-SYN.

A highly characterized survival pathway in nerve 
cells is the PI3K/AKT. This pathway is activated by 
many growth factors and neurotrophins and leads to the 
inhibition of GSK-3. Therefore, we analyzed the inhibi-
tion of this pathway, by using the highly selective PI3K 
inhibitor LY294002. SH-SY5Y cells were submitted to 
a time-course of LY294002 (30 µM) alone or in combi-
nation with the GSK-3 inhibitor SB216763 (5 μM). As 
shown in Fig. 7B, C, LY294002 alone led to a decrease 
in AKT-pSer473 (inactivation) and GSK-3β-pSer9 (activa-
tion). Under these conditions, not only β-catenin but also 
NURR1 levels were gradually decreased. By contrast, 
cells co-treated with SB216763 were at least partially 
protected from the decrease in β-catenin and NURR1. 
Together, these observations confirm in a DAergic cell line 
the mechanistic connections between α-SYN, GSK-3β, 
phosphorylation, and degradation of NURR1.

Fig. 7   GSK-3β activation by conditional expression of α-SYN 
or by phosphatidylinositol-3 kinase (PI3K) inhibition leads to 
loss of NURR1 stability. A SH-SY5Y cells carrying the α-SYN 
Tet-Off expression system were treated with or without 2  µg/ml 
DOX for 5  days in the presence RPMI with serum. Then, the cells 
were infected with lentiviruses expressing to NURR1WT-V5 and 
NURR1MUT2-V5. After 24  h, cells were transferred to Opti-MEM 
Reduced Serum Medium maintaining the DOX treatment for 8 days. 
B SH-SY5Y cells were maintained in Opti-MEM Reduced Serum 
Media for 16  h and then pre-treated with SB216763 (5  μM, 2  h) 

prior to inhibition of the PI3K/AKT pathway with 30 µM LY294002. 
β-Catenin protein levels were used as positive control GSK-3 activ-
ity. AKT-pSer473 and GSK-3β-pSer9 levels were used as control 
LY294002 treatment. Finally, GAPDH protein levels show similar 
protein loaded per lane. C Densitometry quantification of NURR1 
protein levels normalized with GAPDH from representative blots of 
cells treated like in B. Each value is the mean ± S.E.M. (n = 3). Sta-
tistical analysis was performed with one-way ANOVA followed by 
Newman–Keuls multiple comparison test. ***p < 0.001
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Discussion

The dysfunction of the DAergic nigrostriatal tract in PD 
proceeds in two phases: first, loss of the DAergic function 
of neurons of the SN pars compacta and then death of these 
neurons. The two phases can be separated by exposure to 
toxins that induce a transient loss of the DAergic phenotype 
including amphetamine, MPTP, and α-SYN [17, 61–65]. 
The protection and functional recovery of these neurons is 
essential to endorse an early neuroprotective therapy, but 
such a strategy needs a fine knowledge of the molecules that 
participate in maintaining the DAergic phenotype during 
adulthood and the mechanisms that subvert their activity 
[66, 67].

Here, we focused our study on NURR1 because α-SYN 
inhibits expression of DAergic genes probably by altering 
NURR1 expression or activity [68–70]. Those studies and 
also ours assessed the role of aggregated α-SYN, but we 
cannot discard at this time that monomeric α-SYN might 
also participate in GSK-3 activation. In fact, ectopic over-
expression of α-SYN elicited a reduction in NURR1 expres-
sion as indicated by the luciferase reporter (Fig. 2D) that 
might be related to monomeric α-SYN, although we cannot 
determine if a fraction of exogenously expressed α-SYN was 
aggregated. Furthermore, in the Tet-off inducible model in 
SH-SY5Y cells used here [46], α-SYN produces Triton-sol-
uble and insoluble oligomers, which could be responsible 
for regulation of the GSK-3/NURR1 axis. Further studies 
are required under very carefully controlled conditions to 
finely determine the contribution of monomeric, oligomeric 
soluble and insoluble, and fibrillary forms of α-SYN to the 
regulation of GSK-3 and NURR1 protein levels.

Thus, two recent postmortem studies show that the levels 
RET receptor are reduced by about 80% in nigral neurons 
containing α-SYN inclusions, leading to impaired RET 
signaling [71] and probably explaining the limited benefit 
of GDNF/NRTN-therapeutics in humans [71] and rodent 
models [72]. This reduction is most likely linked to impaired 
NURR1 activity because conditional expression of mutant 
α-SYN in the midbrain DA neurons causes NURR1 degrada-
tion and progressive neurodegeneration [22].

α-SYN might inhibit NURR1 gene expression, promote 
NURR1 protein degradation, or both. The NURR1 cod-
ing gene contains an NF-kB site in its promoter, and it 
has been reported that α-SYN down-regulates NURR1 
through inhibition of NF-κB [73]. However, in our cel-
lular remodels, we have detected a very minor reduction 
in NURR1 mRNA levels. Our results are in line with 
other studies that report exacerbated NURR1 degrada-
tion by the UPS, and NURR1 stabilization via proteaso-
mal inhibition ameliorates degeneration of mDA neurons 
induced by α-synuclein [22, 74]. Considering that α-SYN 

is expressed in many tissues and cells, it is likely that dif-
ferent forms of NURR1 regulation operate under specific 
conditions.

Previous reports have found that GSK-3 phosphorylates 
α-SYN in a similar manner to TAU [33, 36]. More relevant 
to our study, α-SYN appears to activate GSK-3β by ill-
defined mechanisms that might be related to the formation a 
complex containing α-SYN/GSK-3β/TAU [27] or by down-
regulation of signaling pathways such as retinoic acid [24]. 
Thus, GSK-3β is robustly activated in MPTP models of Par-
kinsonism, in transgenic mice overexpressing α-SYN, and in 
the striatum of PD patients [28]. However, we show for the 
first time that activation of GSK-3β by aggregated α-SYN 
leads to phosphorylation and subsequent UPS degradation 
of NURR1, leading to loss of DAergic markers. Mechanisti-
cally, we identify a region between 123 and 134 amino acids, 
harboring proline-directed residues, as the main target of 
this kinase. Thus, we identify Core 2 as a phosphorylation-
dependent degradation domain, phosphodegron, which leads 
to its UPS degradation.

Human NURR1 contains 61 serines, 27 threonines, and 
20 tyrosines distributed along 598 amino acids, and most 
likely, it is submitted to posttranslational modifications by 
several protein kinases. NURR1 phosphorylation has been 
reported to occur by AKT at Ser347 leading to increased 
protein stability [59], and by RSK/MSK at the same resi-
due [75]. Nine of the putative phosphorylation residues 
are followed by a proline, and might be phosphorylated 
by proline-directed kinases such as MAP kinases. In fact, 
ERK2 phosphorylates NURR1 on multiple sites in in vitro 
kinase assays, including Ser126 and Thr132, which are located 
at Core 2. Luciferase reporter assays with a reporter plas-
mid containing 1 kb of the TH promoter further suggested 
that these phosphosites are required for ERK2 regulation in 
SH-SY5Y cells [76]. Contrary to ERK2, GSK-3 is a kinase 
that remains inactive in the presence of serum and requires 
growth factor deprivation such as GDNF-deficiency for 
its activation [77]. Therefore, it is conceivable that Core 2 
functions as a molecular switch in coordination with other 
signals that ultimately will lead to NURR1 activation or to 
proteasomal degradation. On the other hand, many GSK-3 
substrates need to be previously phosphorylated by another 
kinase in order to be recognized by GSK-3. Therefore, it 
is also possible that an initial phosphorylation, originated 
by ERK, might lead to transient NURR1 activation and, at 
the same time, the ERK-phosphorylated NURR1 would be 
primed for degradation at a later stage when cell signalling 
is reduced and GSK-3 becomes active. Such a mechanism 
would provide a control for over-activation of NURR1. 
However, under pathological conditions, where neurotrophin 
signaling is limiting, an imbalance in GSK-3 activity would 
favor NURR1 degradation over activation.
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Although the degradation of NURR1 by the UPS has 
been reported previously, our study is the first to connect 
mechanistically this fact with pathology. One study iden-
tified Ser347 as a site for phosphorylation by AKT that 
marks this transcription factor for proteasomal degrada-
tion. However, the relevance of AKT leading to the deg-
radation of NURR1 is not clear considering that AKT 
is a survival kinase that should protect NURR1. In fact, 
AKT phosphorylates GSK-3-α and β at Ser21 and Ser9, 
respectively, in their pseudosubstrate domain, leading to 
its inhibition. It is therefore likely that signals that acti-
vate AKT will stabilize NURR1 through the inhibition of 
GSK-3. Another study identified the first 31 N-terminal 
residues of NURR1 as a target of proteasomal degradation 
in several cell types [58]. This study was conducted under 
standard growth conditions and therefore did not provide 
a direct link with pathology. It is very likely that NURR1, 
as several other proteins, might have several motifs for 
UPS targeting. In fact, the Core 2 mutant still incorporates 
ubiquitin to some extent.

The finding that α-SYN aggregates reduce the dopamin-
ergic phenotype by GSK-3-mediated degradation of NURR1 
suggests that GSK-3 inhibitors might be a therapeutic option 
to preserve the nigrostriatal track in synucleinopathies such 
as Parkinson’s disease.
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