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Abstract 

Artificial intelligence (AI) has been shown to be beneficial in a wide range of bioinformatics applications. Horizontal Gene Transfer (HGT) is a driving 
f orce of e v olutionar y changes in prokar yotes. It is widely recognized that it contributes to the emergence of antimicrobial resistance (AMR), which 
poses a particularly serious threat to public health. Many computational approaches have been developed to study and detect HGT. However, 
the application of AI in this field has not been in v estigated. In this w ork, w e conducted a re vie w to pro vide inf ormation on the current trend 
of existing computational approaches for detecting HGT and to decipher the use of AI in this field. Here, w e sho w a gro wing interest in HGT 
detection, characteriz ed b y a surge in the number of computational approaches, including AI-based approaches, in recent years. We organize 
existing computational approaches into a hierarchical str uct ure of computational groups based on their computational methods and show how 

each computational group e v olv ed. We mak e recommendations and discuss the challenges of HGT detection in general and the adoption of AI 
in particular. Moreo v er, w e pro vide future directions f or the field of HGT detection. 

I

A  

o  

p  

a  

d  

t  

b  

t  

d  

D  

A  

a  

t  

h  

h  

i  

f  

h  

p
 

f  

r  

B  

n  

n  

i  

o  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o
p
j

ntroduction 

rtificial intelligence (AI) has revolutionized the world in vari-
us fields, including natural language processing (NLP), com-
uter vision, and bioinformatics. With the rapid growth of
vailable biological data, classical machine learning (ML) and
eep learning (DL) as part of AI have been widely used to ex-
ract knowledge from data in genomics, proteomics, and other
iological fields [ 1 , 2 ]. Many bioinformatics tasks, such as pro-
ein function prediction [ 3 ], genome engineering [ 4 ], antibiotic
iscovery [ 5 ], and phylogenetic inference [ 6 ], have employed
L with major and minor successes [ 7 ]. The recent success of
lphaFold2 [ 8 ] capable of predicting protein structures that
re on par with experimental measures has marked an impor-
ant milestone of AI in bioinformatics. Due to its capacity to
arness the massive amount of genomic data available, DL
as gained popularity in population genetic inference where
t can provide fast and accurate predictions [ 9 ]. An important
eature of successful DL applications is its ability to recognize
idden patterns in large volume of data that traditional ap-
roaches are unable to uncover. 
Horizontal Gene Transfer (HGT) is a major evolutionary

orce in bacteria and refers to the exchange of genetic mate-
ial between a “donor” and a “recipient” organism [ 10 , 11 ].
acteria evolve not only through vertical inheritance of ge-
etic material but also through HGT [ 10 ]. The transferred ge-
etic materials typically form syntenic blocks called genomic
slands (GIs) [ 12 ]. Genetic material can be mobilized between
rganisms primarily through three mechanisms: Transforma-
ion, conjugation, and transduction, with additional facilita-
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tors such as outer membrane vesicles (OMVs) [ 13 , 14 ], virus-
like particles [ 15 ], and phage-like particles [ 16 ]. The preva-
lence and high rate of HGT have been demonstrated by sev-
eral studies. Examination of 7781 isolated genomes derived
from the gut microbiomes of 48 individuals from 15 distinct
populations reveals that 90% of these genomes participate in
HGT [ 17 ] and the analysis of 827 isolate genomes of Enter-
obacteriaceae family from 14 livestock farms identified up to
2364 potential HGT events [ 18 ]. 

Among other things, HGT is of prime interest for its
contribution to the widespread dissemination of antibiotic
resistance genes (ARGs) [ 19 , 20 ] and pathogenic determi-
nants [ 21 ], which play a key role in the development of antimi-
crobial resistance (AMR) [ 22–25 ]. The emergence of AMR
poses a major threat to global health and its wider implica-
tions present us with a growing public health crisis [ 26–29 ].
Although most HGT events are initially mostly neutral, with
the transferred material then becoming domesticated [ 30 ],
their adaptation can also confer multiple functionalities, such
as secondary metabolism [ 31 ] or adaptation to an extreme en-
vironment [ 32 , 33 ]. Deciphering HGT is therefore important
to limit the future transfer of AMR and to address other is-
sues related to public health, biotechnology, and environmen-
tal sustainability [ 34 , 35 ]. 

Detection of HGT events is challenged by the mixing of dif-
ferent organisms and mechanisms at the genome level. Mul-
tiple organisms are involved in HGT, resulting in a mosaic
structure [ 36 ]. In addition to the transfer mechanism, selective
pressure, functional compatibility, and phylogenetic related-
uary 6, 2025. Accepted: February 4, 2025 
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ness contribute to the variation of HGT [ 37–40 ]. Moreover,
genetic material has the propensity for other evolutionary pro-
cesses such as single-nucleotide changes, recombination, du-
plications, and deletions [ 41 ]. A recent study also showed that
bacteria often carry multiple mobile genetic elements (MGEs)
of different types whose interactions affect the patterns of
HGT [ 42 ]. These driving factors result in an extreme varia-
tion and a limited understanding of HGT, which impedes the
discovery of all HGT events. 

Over the past decades, numerous computational ap-
proaches have been developed to detect HGT and the number
has been increasing as shown in Fig. 1 ; thanks to the surge of
available sequencing data. Existing computational approaches
have been diversified, focusing on particular facets of HGT,
but most of them are powered by statistical analysis combined
with scalable algorithms. Motivated by the progress made by
AI in other bioinformatics applications and more available se-
quenced genomes, we believe that AI, especially DL, holds the
power to recognize the hidden patterns of HGT as exemplified
by recent studies [ 43–45 ], and therefore we fathom the adop-
tion of AI in HGT detection. Several studies have already re-
viewed computational approaches for HGT detection [ 11 ,46–
55 ]. However, the reviews did not present the trend of ex-
isting computational approaches and specifically investigated
the use of AI in HGT detection. To this end, we conducted a
comprehensive review built on previous reviews and extended
them by collecting several computational approaches to HGT
detection since the early 2000s. We then organized the com-
putational approaches into four computational groups (AI-
based, sequence composition, comparative genomics, and hy-
brid) and provided the trend of each computational group
along with the adoption of AI. Finally, we discussed the chal-
lenges of HGT detection and potential limitations for adopt-
ing AI, as well as future directions of HGT detection. 

Materials and methods 

The papers were collected by referring to previous reviews
and the list of papers was extended by performing litera-
ture searches on Google Scholar and Scopus databases with
the following keywords: “Horizontal Gene Transfer Detec-
tion,” “Lateral Gene Transfer Detection,” and “Genomic Is-
land Detection. ” W e selected papers from 1 January 2000 to
31 December 2023 and only papers developing a computa-
tional approach were included in this work. The papers were
categorized into computational groups by listing the processes
involved in each approach (refer to Supplementary Table S1 )
and following the categorization concepts introduced by pre-
vious reviews [ 11 ,46–55 ]. 

Results 

The results are presented in three sections. First, we review
existing computational approaches for the detection of HGT
and illustrate the division of computational approaches into
four computational groups. To make it easier for the reader
to choose among all the tools, we select the most successful
ones for each computational group (according to the num-
ber of citations) and briefly explain their methods. Second,
we present the current trend of existing computational ap-
proaches. Lastly, we discuss the lack of reliable validation data

sets 
Computational approaches for HGT detection 

Understanding different mechanisms of HGT is important be- 
cause each mechanism can leave different signals on the se- 
quence [ 56 ]. Extensive literature studies on HGT have shed 

light on demystifying the nature of HGT by providing a list 
of typical factors involved in HGT and the consequences of 
HGT [ 40 ]. These findings have driven researchers to develop 

computational approaches tailored to factors associated with 

HGT, such as plasmids and ARGs. Although plasmids are a 
very important source of HGT and ARGs are a special class 
of genes closely related with HGT, we decided to exclude 
them for two reasons. First, the identification of plasmids it- 
self is insufficient to confirm HGT. While plasmids are well- 
known for facilitating HGT, they do not always carry and ac- 
tively transfer genes [ 57 ]. Second, the presence of ARGs alone 
does not confirm HGT and a more comprehensive analysis 
is needed [ 58 , 59 ]. Therefore, computational approaches that 
focus on classifying or annotating plasmids or ARGs are not 
included, e.g. MLPlasmids [ 60 ] and DeepARG [ 61 ]. This re- 
view focuses on computational approaches for the detection 

and localization of HGT events. 
Previous reviews have provided a wide array of compu- 

tational approaches which fall into two widely recognized 

groups, namely composition-based and comparative genomics 
approaches [ 46 ,48–53 ]. Composition-based approaches cap- 
italize on the alteration of the composition of a genome fol- 
lowing the HGT, whereas comparative genomics approaches 
are driven by the consequences of HGT, such as phyloge- 
netic incongruence and changes in synteny. Depending on 

the data processing strategy, computational approaches can 

also be categorized into window-based, windowless, bottom- 
up, and top-down approaches [ 50 , 53 , 62 ]. Window-based ap- 
proaches use sliding window techniques on the genomic se- 
quence to locate the alteration of composition, whereas win- 
dowless approaches apply statistical approaches, e.g . t-test,
to detect composition bias. Bottom-up approaches typically 
identify only a few genes as sufficiently unusual to be con- 
sidered foreign, leading to the prediction of many small frag- 
ments as part of GIs. To address the limitations of bottom-up 

methods, a top-down approach was introduced, which detects 
GIs by progressively dividing a genome into smaller regions 
through a recursive segmentation process [ 62 ]. 

Motivated by the preceding categorization concepts, we 
organized the computational approaches into a hierarchical 
structure of computational groups that encompasses previ- 
ously established groups, as summarized in Table 1 . This orga- 
nization resulted in four primary groups, each of which con- 
tains its respective subgroups. These four primary groups are 
as follows: 

(1) Artificial intelligence-based approaches leverage classi- 
cal ML and DL. 

(2) Sequence composition approaches aim at identifying 
composition bias within a sequence, which involves 
the characterization of components present in the se- 
quence. 

(3) Comparative genomics approaches involve comparing 
sequences of different organisms to understand simi- 
larities, differences, and evolutionary relationships. 

(4) Hybrid approaches consist of any approaches that ei- 
ther combine various approaches into a series of com- 
putations or aggregate the outcomes from multiple ap- 
proaches into the final result. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf005#supplementary-data
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Figure 1. The trend of computational approaches for detection of HGT between 2000 and 2023, showing the application of ML as well as DL in this field. 

Table 1. Description of the computational groups to identify HGT 

 

p  

n  

w  

g  

o  

c  

m  

o  

c
 

l  

w  

Figure 2. Proportion of different sequence data used in each 
computational group. Three sequence data are reported: metagenome, 
whole genome sequence (WGS), and WGSS. WGSS consists of 
non-assembled short reads of genomes. Metagenome refers to 
met agenomic dat a of non-assembled genomes of multiple organisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sequence data used by the approaches as primary in-
ut can vary. Existing computational approaches predomi-
antly require sequenced and assembled isolated genomes,
hether draft or complete genomes, but the advent of next-
eneration sequencing (NGS) technologies facilitates analysis
n NGS short reads without the need of assembly [ 63 ]; re-
ently, metagenomic data sets were used to study HGT in a
icrobial community [ 64 ]. Figure 2 depicts a visual account
f the proportion of different sequence data used across each
omputational group. 

Isolated genomes provide the global genomic context al-
owing for a comprehensive assessment of HGT events,
hereas NGS short reads offer the chance for rapid anal-
ysis to infer HGT events. Isolated genomes enable genomic
signature analysis to identify composition bias, alignment
to determine homologous regions between genomes, and
phylogenetic analysis for tracing evolutionary relationships
that may be indicative of HGT events. NGS short reads
are often used in mapping based approaches to infer HGT
events. Mapping based approaches aim at identifying struc-
tural variations based on alignment to reference genomes.
Metagenomic data provide insights into community-level
dynamics and allow for comprehensive analyses without
prior isolation. 

Artificial intelligence-based approaches 
Artificial intelligence-based (AI-based) approaches cover any
approaches that leverage either classical ML or DL to de-
tect HGT. Table 2 provides a list of five most cited AI-
based approaches that have the source code and the data
set available. The leading AI-based approaches use super-
vised learning for a classification task to detect HGT. Al-
though those methods are not aiming at explicitly detect-
ing HGT, they can sort out prophages as the evidence of
HGT. 

VirFinder [ 65 ] trains a logistic regression (LR) to classify
viral sequences from contigs of metagenomic data based on
k -mer frequencies. It can be further used to identify prophages
within large contigs of a genome. Phispy [ 66 ] uses a random
forest (RF) to classify prophages in bacterial genomes, as a
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Table 2. List of top five AI-based approaches for detecting HGT sorted 
by the number of citations according to Scopus (accessed on 14 March 
2024) 

Year Approach Methodology Target 

2017 VirFinder [ 65 ] ML, classification; LR Prophages 
2012 Phispy [ 66 ] ML, classification; RF Prophages 
2008 RVM [ 112 ] ML, classification; RVM GIs 
2021 Zhou et al. [ 43 ] DL, ML, classification, link 

prediction; GCN, LR, RF 
Genes 

2016 MSGIP [ 67 ] ML, clustering; Mean Shift 
Clustering 

GIs 

Only approaches that provided data sets and their web or source code are 
listed for potential reproducibility. Methodology broadly covers tasks and 
algorithms of each approach. 
Notes: genes: foreign genes; DL: Deep Learning; GCN: Graph Convolutional 
Neural Network; GIs: Genomic Islands; LR: Logistic Regression; ML: clas- 
sical machine learning; MLP: Multi Layer Perceptron; RF: Random Forest; 
RVM: Relevance Vector Machine; SVM: Support Vector Machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. List of top five sequence composition approaches for detecting 
HGT sorted by the number of citations according to Scopus (accessed on 
1 4 Marc h 2024) 

Year Approach Methodology Target 

2006 AlienHunter [ 73 ] Window-based; IVOM GIs 
2006 SIGI-HMM [ 74 ] Window-based; HMM GIs 
2018 MTGIpick [ 62 ] Window-based; t -test, 

MJSD, MSA 

GIs 

2017 Zisland-Explorer 
[ 77 ] 

Windowless; GC-Profile GIs 

2020 2SigFinder [ 75 ] Window-based; t-test, 
MJSD 

GIs 

Only approaches that provided data set and their web or source code are 
listed for potential reproducibility. Methodology broadly covers tasks and 
algorithms of each approach. 
Note: GIs: Genomic Islands; HMM: Hidden Markov Model; IVOM: Inter- 
polated Variable Order Motifs; MJSD: Markovian Jensen-Shannon Diver- 
gence; MSA: Multiscale Segmentation Algorithm. 

 

 

 

suspected vector of HGT, based on multiple features: protein
length, transcription strand direction, customized AT and GC
skew, the abundance of unique phage words, phage insertion
points and the similarity of phage proteins. 

Relevance vector machine (RVM) is one of the pioneers
ML approaches for HGT detection. It learns the character-
istics of GIs based on features such as interpolated variable
order motifs (IVOMs), GC content, gene density, size of GIs,
presence of insertion sites, integrase, phage, noncoding RNA,
and repeats. Zhou et al. [ 43 ] employ ML and DL approaches,
including LR, RF, and graph convolutional neural network
(GCN), to understand the effect of functional gene content,
phylogenetic distance, and co-occurrence on HGT. To test the
effect of these features, they construct a HGT network from
publicly available genome databases. While phylogenetic dis-
tance and co-occurence between organisms could be used to
predict HGT events, functional similarity turns out to be the
strongest determinant of HGT . Moreover , it is shown that AI-
based approaches can be used to extract HGT patterns from
large-scale HGT networks. MSGIP [ 67 ] utilizes mean shift
clustering algorithm to cluster genomic regions with similar
nucleotides composition. Clusters exhibiting distinct features
from the rest of the genome are considered GIs. By varying
windows between 10 and 200 kb, MSGIP can capture GIs of
various lengths. 

An up-and-coming approach worthy of consideration is
geNomad, a recent DL approach that classifies MGEs [ 68 ].
It combines two classifiers based on raw nucleotide se-
quences and their gene content, respectively, for identifying
sequences of plasmids and viruses and has been tested to de-
tect prophages with high precision. The classifier for raw nu-
cleotide sequences employs an encoder containing convolu-
tion neural networks (CNNs) and self-attention, whereas the
classifier for the gene content utilizes a decision tree with en-
semble learning. 

Sequence composition approaches 
Sequence composition approaches use the fact that the se-
quence composition varies across species as a result of differ-
ent environmental factors. Thus, the presence of a composi-
tional bias within a genome can be indicative of transfer from
an other organism. Compositional bias is assessed by segment-
ing a genome into multiple regions, which may consist of ei-
ther nucleotides or contiguous genes; any segments with com-
positional bias are labeled as GIs or foreign genes. A genome
can be segmented by applying a fixed-length sliding window 

or any windowless approach to find the breakpoints. Various 
compositional attributes—GC content, codon usage, or k -mer 
frequencies—are used to analyze compositional bias [ 69–72 ].
Table 3 lists five most cited approaches that provide source 
code and data sets. 

Alien Hunter [ 73 ] introduced a novel computational ap- 
proach, interpolated variable order motifs (IVOMs), to han- 
dle k-mers differently, where high-order k -mers are priori- 
tized more than low-order k -mers because the former are con- 
sidered to contain more information than the latter. SIGI- 
HMM [ 74 ] uses codon usage bias with Hidden Markov 
Model (HMM) to identify GIs. 

MTGIpick [ 62 ] and 2SigFinder [ 75 ] rely on Markovian 

Jensen–Shannon Divergence (MJSD) to determine the bound- 
aries of GIs [ 76 ]. It is a windowless approach that recursively 
divides a genome into smaller genomic regions based on the 
score of each nucleotide. MTGIpick and 2SigFinder combine 
small- and large-scale statistical testing to identify GIs. Zis- 
landExplorer [ 77 ] exploits GC divergence to separate poten- 
tial GIs from the core genome and assigns a score, based on 

codon usage bias, to the potential GIs to determine primary 
GIs candidates. 

In addition to statistical analysis, classical ML approaches 
have been used to identify genomic regions with composi- 
tional bias. For instance, Centroid [ 78 ] and Wn-SVM [ 79 ] use 
clustering and one-class SVM, respectively, to find GIs. How- 
ever, due to their use of ML, our classification methodology 
places them under the umbrella of AI-based approaches. 

Comparative genomics approaches 
Comparative genomics approaches detect HGT based on the 
sporadic phylogenetic distribution of transferred genomic re- 
gions [ 50 ,53 ]. Comparative genomics approaches essentially 
involve comparing genomes to study their relationships. De- 
pending on the goal of a study, comparative genomics ap- 
proaches offer a wide range of tasks, such as alignment,
alignment-free, phylogenetic, read mapping, and synteny anal- 
ysis. A list of comparative genomics approaches with available 
source code and data sets is provided in Table 4 . 

Alignment is carried out to determine homologous regions 
between genomes that may indicate functional, structural,
or evolutionary relationships [ 80 ]. Alignment tools, such as 
BLAST [ 81 ] for pairwise alignment and MAUVE [ 82 ] for mul- 
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Table 4. List of top five comparative genomics approaches for detecting 
HGT sorted by the number of citations according to Scopus (14 March 
2024) 

Year Approach Methodology Target 

2016 Phaster [ 119 ] Alignment; BLAST Prophages 
2006 Phage_Finder 

[ 120 ] 
Alignment; HMM, 
BLASTP, tRNA / tmRNA 

detection* 

Prophages 

2008 IslandPick [ 84 ] Alignment, implicit 
phylogenetic; CVTree, 
Mauve, BLAST 

GIs 

2021 MobileElement- 
Finder [ 83 ] 

Alignment; BLAST MGEs 

2018 RANGER-DTL 

2.0 [ 89 ] 
Explicit phylogenetic; MPR Genes 

Only approaches provided data set and their web or source code are listed 
for potential reproducibility. Methodology broadly covers tasks and algo- 
rithms of each approach. 
Notes: genes: foreign genes; DTL: Duplication, Transfer, and Loss; GIs: Ge- 
nomic Islands; HMM: Hidden Markov Model; MPR: Maximum Parsimony 
Reconciliation. 
*Detection tools used: tRNAscan-SE and Aragorn. 
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Table 5. List of top fiv e h ybrid approaches for detecting HGT sorted by 
the number of citations according to Scopus (accessed on 14 March 2024) 

Year Approach Methodology Target 

2017 IslandViewer4 
[ 101 ] 

Window-based, alignment, 
implicit phylogenetic; 
Mauve, BLAST, CVTree, 
HMM 

GIs 

2018 IslandPath- 
DIMOB 

[ 102 ] 

Window-based, alignment; 
HMM, BLAST 

GIs 

2015 PAIDB v2.0 [ 121 ] Window-based, alignment; 
SIGI-HMM, 
IslandPath-DIMOB 

GIs 

2022 VRprofile2 [ 104 ] Window-based, alignment, 
classification; SIGI-HMM, 
IslandPath-DIMOB, 
BLAST 

GIs, 
prophages 

2016 GIPsy [ 106 ] Window-based, alignment; 
SIGI-HMM, BLAST, 
HMM, tRNAscan-SE 

GIs 

Only approaches that provided data set and their web or source code are 
listed for potential reproducibility. Methodology broadly covers tasks and 
algorithms of each approach. 
Notes: GIs: Genomic Islands; HMM: Hidden Markov Model; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iple sequence alignment, are often used in comparative ge-
omics approaches. MobileElementFinder [ 83 ] uses BLAST
earch against a reference database of MGEs to find MGEs
n Salmonella enterica genomes. IslandPick finds GIs by using

AUVE on a database of reference genomes with negative
nd positive examples [ 84 ]. 

Alignment-free approaches emerged to overcome the lim-
tation of alignment approaches, which is genetic recom-
ination and shuffling [ 85 ]. The other advantage is that
hose methods are much faster than alignment approaches.
lignment-free approaches can be broadly classified into
ord count based and match length based [ 86 ]. Term
requency-Inverse Document Frequency (TF-IDF), a widely
sed method in NLP for text document analysis, was adopted
n an alignment-free approach to measure the relevance of a
enomic region to a genome based on word count [ 87 ]. 

Phylogeny based approaches are divided into two types: im-
licit, by building phylogenetic profiles from closely and dis-
antly related species, or explicit, by detecting inconsistencies
etween gene trees and species trees [ 49 ]. The lineage prob-
bility index (LPI) was introduced to measure the likelihood
f a gene coming from HGT based on the gene distribution
f closely and distantly related species [ 88 ]. Explicit phylo-
enetic analysis involves tree reconstruction. MetaCHIP [ 64 ]
ntegrates Ranger -D TL 2.0 [ 89 ], an efficient algorithm for
ree reconciliation, to refine the results from its alignment ap-
roach and to provide information on the direction of gene
ow. 
Synteny analysis measures the conservation of genomic re-

ions between genomes and typically works well to identify
GT between closely related species. Closely related species

hare most of their genomic regions; differences in the ge-
omic regions between them may indicate that HGT has oc-
urred. The synteny index (SI), a score to measure the evolu-
ionary distance between a pair of genomes, is used to detect
GT [ 90–92 ]. 
A related problem is the detection of HGT directly from

hole genome shotgun sequence (WGSS) data. Under the
ssumption that there is only one donor and one recipient
enome, most short reads of a recipient genome will align to
he reference of the recipient genome and the remaining short
reads will map to the donor genome. By combining those in-
formation about the mapping coverage and reads overlapping
recipient and donor genome, one can identify the HGT re-
gion [ 63 ,93 ]. 

Hybrid approaches 
Although sequence composition approaches can detect HGT,
they are prone to a high rate of false positive and false neg-
ative in their results [ 94 ]. It is necessary that the transferred
genomic region be distinct and long enough to show composi-
tional bias [ 91 ]. Special sequences in an organism [ 88 ], intra-
genomic variations [ 95 ], and amelioration [ 96 ] would reduce
the performance of sequence composition approaches. More-
over, sequence composition approaches alone cannot identify
the HGT donor because they are reference-free. 

Analogously, comparative genomics approaches also come
with drawbacks. These approaches are highly dependent on
the availability and quality of the reference genomes. Align-
ment assumes that similar sequences must be collinear, which
is not always true [ 86 ], and aligning multiple sequences
is time-consuming [ 97 ]. Furthermore, inaccuracies in align-
ment and alignment-free approaches may lead to different re-
sults [ 98 ]. Other evolutionary processes, such as recombina-
tion, gene duplication, and gene loss, may obfuscate phyloge-
netic analysis [ 56 , 99, 100 ]. 

Hybrid approaches combine computational approaches
from different groups to compensate for the drawbacks. Com-
bining approaches can be done serially, by cascading them in
a pipeline, or in parallel, by aggregating results from different
approaches. The performance of hybrid approaches relies on
individual approaches and decision rules for integrating pre-
dictions [ 53 ]. Table 5 lists five approaches with most citations
that provide source code and data sets. 

IslandViewer4 [ 101 ] combines IslandPath-DIMOB [ 102 ],
SIGI-HMM [ 74 ], and two comparative genomics approaches,
IslandPick [ 84 ] and Islander [ 103 ], into an integrated interface
for GIs detection. IslandPath-DIMOB predicts GIs based on
dinucleotide bias and the presence of a MGE using similarity
search against a database of known MGEs. VRprofile2 [ 104 ]
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combination of methods is often more suitable and desirable 
incorporates SIGI-HMM and IslandPath-DIMOB with other
computational methods in a parallel workflow to identify in-
tegrons, prophages, ICEs, gene-coding proteins, and known
virulence factors. 

SIGI-HMM and IslandPath-DIMOB are also integrated by
IslandCompare [ 105 ] in a computational workflow followed
by a sequence comparison to ensure the consistency of the
analysis. For a more comprehensive analysis, IslandCompare
provides contextual comparative genome visualization, in-
cluding functional annotation of antibiotic resistance deter-
minants. SIGI-HMM is also part of GIPsy [ 106 ] pipeline to
identify GIs. GIPsy [ 106 ] detects GIs based on know GI fea-
tures such as composition bias using SIGI-HMM, presence of
transposase genes, flanking transfer RNA (tRNA) genes, and
absence in other organisms of the same genus or closely re-
lated species. It can also detect GIs with specific functionali-
ties by identifying factors for virulence, metabolism, antibiotic
resistance, or symbiosis. 

ShadowCaster [ 107 ] is a clear example of a hybrid ap-
proach. It sequentially combines an AI-based approach and a
comparative genomic approach. It uses a one-class SVM clas-
sifier to determine genes with biases in codon usage and tetra-
nucleotide frequencies, and then performs an alignment to es-
timate a Bayesian probability, called the phylogenetic shadow,
based on the gene distribution. 

Current trend of computational approaches 

The trend presented in Fig. 3 shows that the number of com-
putational approaches increases at a rate compatible with an
exponential distribution ( R 

2 = 0.998, refer to Supplementary 
Fig. S1 ). We also provided the count of each computational
group per year (refer to Supplementary Table S2 ) and visual-
ized them with a non-cumulative stacked bar chart (refer to
Supplementary Fig. S2 ). 

The growth in comparative genomics approaches outpaces
the other computational groups. Between 2010 and 2023, the
number of comparative genomic approaches has increased by
over 200%, while the number of sequence composition ap-
proaches has increased by ∼67%, with a sign of plateauing
between 2016 and 2023. In 2010, the number of sequence
composition approaches ranked second just below compara-
tive genomics, but it was outnumbered by the number of hy-
brid and AI-based approaches in 2022. The greatest increase
in hybrid approaches occurred in 2022 with five additional
approaches. Meanwhile, AI-based approaches, dominated by
classical ML algorithms, experienced a major increase in 2021
with four additional approaches. To date, comparative ge-
nomics approaches hold the biggest portion of available com-
putational approaches to HGT detection followed by hybrid,
AI-based, and sequence composition approaches. 

Validation data sets 

Many computational approaches are available, but compar-
ing them in a proper benchmark has been challenging due to
the lack of reliable validation data sets [ 44 , 50 , 84 ]. Almost
every computational approach introduces its own validation
data set, making the approaches difficult to compare with each
other. Three categories of data sets can be considered: litera-
ture, curated, and simulated data sets. 

A literature data set is a collection of HGT events dis-
covered in published literature, for example, 51 horizontally
transferred genes related to heavy metal resistance were found
in the analysis of the complete genome of Rhodanobacter den- 
itrificans 2APBS1 [ 108 ], and literature studies identified six 

prophage gene clusters and five annotated pathogenicity is- 
lands in Pseudomonas aeruginosa LESB58 genome [ 109 ]. A 

curated data set is constructed by comparative analysis on 

genomes in reference databases, such as GenBank [ 110 ] and 

RefSeq [ 111 ], with the assumption that genes both present in 

closely and distantly related species are considered horizon- 
tally transferred [ 73 , 84 ]. Vernikos et al. created a data set for 
ML approaches from 37 strains of 3 genera with 331 GIs and 

337 non-GIs [ 112 ]. Langille et al. constructed a data set from 

117 strains of 22 genera with 771 GIs and 3700 non-GIs [ 84 ].
These GIs contained a total of 11 404 annotated genes with 

an average of 14.8 genes per GI and 97.5 genes per strain. Fi- 
nally, a simulated data set is crafted by artificially inserting for- 
eign genes into genomes under study where the inserted genes 
have no orthology with the recipient genome [ 76 , 79 , 107 ,
113–116 ]. Sanchez et al. created three simulated data sets by 
randomly transferring ten genes from the donor species that 
had no orthology with the recipient genome [ 107 ]. Jani et al.
simulated HGT by selecting one organism as a recipient and 2 

organisms as donors, then inserting 12 segments of size 30, 50,
and 80 kbp from each donor into the recipient genomes [ 116 ].

Baneerje et al. collected available validation data sets, in- 
cluding curated and literature data sets, to train and evalu- 
ate their AI-based approach HGT detection [ 45 ]. The pro- 
posed AI-based approach compared to five other HGT de- 
tection approaches, namely IslandViewer4 [ 101 ], IslandPath- 
DIMOB [ 102 ], SIGI-HMM [ 74 ], Islander [ 103 ], and Alien- 
Hunter [ 73 ]. Zhou et al. conducted a large-scale analysis of 
highly conserved HGT events between distantly related organ- 
isms, resulting in a network of 147 889 HGT events among 
6566 genomes. The resulting network is sparse, suggesting the 
role of selective pressure on conserved HGT and that only cer- 
tain genetic material can be transferred horizontally between 

two given organisms [ 43 ]. 

Discussion 

In this work, we show that there has been a remarkable 
growth in the number of computational approaches to HGT 

detection. There are a variety of computational approaches 
with different computational methods, which can be catego- 
rized into the computational groups mentioned above. Group- 
ing computational approaches is not an easy task, but it helps 
researchers and young scientists navigate the sea of informa- 
tion in HGT detection. With the exception of the hybrid ap- 
proaches, the proposed groups are self-contained. In the hy- 
brid group, one could argue that some of them could be placed 

in the other groups, but as long as an approach incorporates 
multiple approaches, it belongs to the hybrid approaches. 

AI-based approaches have gained attention for their poten- 
tial to reveal the patterns of HGT, although they are now lim- 
ited to sequence classification. The recent progress of AI in 

modeling complex evolutionary processes shows its potential 
for HGT detection [ 9 ]. Sequence composition approaches may 
provide rapid analysis because they are reference-free but they 
alone are prone to errors and unable to capture the intricacy 
of HGT. Therefore, sequence composition approaches are bet- 
ter coupled with other approaches as hybrid approaches. The 
increase in hybrid approaches, especially in the last two years,
is in accordance with a previous review [ 53 ] that stated that a 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf005#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf005#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf005#supplementary-data
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Figure 3. The trend of computational approaches between 2000 and 2023. In general, the number of computational approaches shows an exponential 
increasing trend between 2000 and 2023 with comparative genomics outpacing the growth rate of other computational groups. AI-based and hybrid 
approaches show a progressive increase over the years outnumbering sequence composition approaches. 
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or HGT detection. As a recent example, De et al. combined
ifferent approaches into an integrative approach, DICEP, to
dentify GIs [ 117 ]. In conjunction with AI-based approaches,
ybrid approaches could provide a comprehensive and robust
eans of detecting HGT by leveraging the strength of different

omputational groups. Nevertheless, comparative genomics
pproaches are still more prevalent owing to the proliferation
f the registered genomes in reference databases. Despite the
rawbacks, they can provide a more comprehensive analysis

nvolving multiple genomes. 
With the exponential growth in computational approaches

nd the proliferation of sequencing data, many impor-
ant questions related to HGT can be addressed. However,
ost available computational approaches focus on detect-

ng HGT in WGS and only accept single genomes for anal-
sis. Computational approaches capable of analyzing multi-
le genomes and genomes sequenced using different technolo-
ies simultaneously are needed as the amount of available
equenced genomes continues to accumulate exponentially
 53 ]. 

Despite the potential of AI in this field, its widespread adop-
ion remains constrained, presenting both opportunities and
hallenges that warrant discussion. A critical barrier to the
roader use of AI in bioinformatics, including HGT detection,
s the lack of training and validation data sets. To the best of
ur knowledge, no standardized training data sets exist for AI
mplementation in HGT detection. The reliability of the avail-
ble validation data sets has not been verified by convincing
iological evidence [ 50 ]; moreover, the validation data sets are
ften limited to a few genomes, which do not cover as much
icrobial diversity [ 53 ]. Accurate evaluation and validation of

omputational approaches are based heavily on high-quality
ata sets. Nevertheless, there is a large collection of genomes
curated by Banerjee et al. [ 45 ] for training an AI-based ap-
proach that is worth considering. 

To address these challenges and advance the field, con-
certed efforts are imperative. Collaborative initiatives within
the scientific community are needed to develop and curate
comprehensive benchmark data sets that accurately reflect
the complexity of HGT events. More precisely, Brito pointed
out potential pitfalls that may have irremediably affected the
understanding of a complete or perfect picture of HGT in
natural communities [ 11 ]. This collaborative approach will
facilitate the development of AI-based approaches, thereby
promoting innovative computational approaches for HGT
detection. 

While this review provides useful findings, there are some
limitations. First, we selected approaches that directly answer
the question of whether or where HGT has occurred which
may leave out approaches related to HGT detection, for in-
stance, approaches that identify factors associated with HGT.
These factors may indicate HGT but further analysis is re-
quired for confirmation, except the presence of prophages and
MGEs as evidence of HGT. Due to the focus of prophages
and GIs, not all HGT events are detected by the presented ap-
proaches, e.g. HGT events via plasmids are missed. Second,
there might be arguments over the correlation between the
presence of MGEs and HGT. Some studies consider MGEs
as the mediator of HGT [ 118 ], whereas some other studies
see MGEs as parts of GIs [ 12 ]. In this review, we decided to
consider MGEs as parts of GIs meaning if MGEs are present
in a genome, then HGT has most likely occurred. Third, we
only discussed 5 examples per computational group based on
the number of citations. This might introduce bias to older
approaches. However, we only selected those that are well-
maintained and also noticed that the older approaches listed
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in this review are still used in newer approaches, for instance,
IslandPath-DIMOB [ 102 ] and SIGI-HMM [ 74 ] are used in a
newer approach developed in 2022 [ 105 ]. More approaches
are listed in the Supplementary Table S1 . 

Conclusion 

In the study, we reviewed over 100 computational approaches
to HGT detection. We organized these approaches into a hier-
archical structure with four main groups (AI-based, sequence
composition, comparative genomics, and hybrid) and showed
how the number of computational approaches has increased
since the early 2000s. Of the many computational approaches
available, only a handful withstand the test of time. The en-
during relevance of SIGI-HMM [ 74 ], published in 2006, and
MJSD [ 76 ], first introduced in 2009, is evidenced by their
continued use in recent approaches, which may explain the
stagnation experienced by sequence composition approaches.
Moving forward, integrated interfaces for detecting GIs incor-
porating different approaches and features like visualization,
for example, IslandViewer4 [ 101 ], are preferable for compre-
hensive results and easier analysis. We also discuss the adop-
tion of AI in HGT detection and how the scientific community
can remove the barrier to exploring AI. While the significant
growth of computational approaches for HGT detection high-
lights remarkable progress, the limited amount of validation
data sets impedes the adoption of AI, and under-utilization of
DL methods that directly tackle HGT detection problems un-
derscores the need for collaborative efforts, innovation, and
resource development to overcome these barriers. Embracing
AI and leveraging its capabilities in conjunction with compre-
hensive data sets could unlock opportunities to advance our
understanding of HGT dynamics. 
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