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Introduction
Transcript levels are tightly regulated by many and coordinated molecular machinery 
to obtain the proper balance between RNA production and degradation. In the past, 
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focus of the research has been on transcriptional regulation and on the resulting reg-
ulatory network [7, 16]. By contrast, experimental findings have shown that fine and 
specific regulation of degradation is needed to a proper orchestration of cell response 
to internal/external stimuli [9, 10, 19]. It is now widely recognized that transcript 
degradation is not a simple ‘disposal system’ but it is an essential post-transcriptional 
regulatory layer acting in all organisms and playing an important role in determining 
the proper levels of gene products [1, 9]. Regulation of transcripts’ stability (a.k.a. 
half-lives), often mediated by specific proteins and non-coding RNAs, is emerging as 
a key regulator of gene expression, impacting development, cell fate and much more 
[1].

Since stability control is both transcript-specific and process-specific [6], to under-
stand the complexity of gene regulatory networks, it is necessary to complement usual 
time-course experiments, with decay rates measurements in the same condition [5, 7]. 
However, the simultaneous measurement of both half-lives and time-courses can be 
very expensive and RNA stability measurement protocol may significantly affect cellular 
physiology [12, 18]. Therefore, an alternative computational approach that make use of 
time-courses only, can be very useful to provide further insight into the dynamics of the 
biological process under study.

Here we developed an in silico methodology called StaRTrEK (STAbility Rates 
ThRough Expression Kinetics), able to reliably estimate half-lives from short time 
series  without transcriptional inhibition, i.e., from at least 5–6 time points. The latter 
feature of the algorithm is very important in time-course experiments, since in most 
cases only few samples are experimentally measured over time. By contrast, for example, 
in physiological modeling [17] the measurements’ sampling time can be very high since 
the number of samples do not affect significantly experimental costs.

StaRTrEK relies on a computational model of post-transcriptional regulation based 
on first order kinetics and a least square optimization with l1-norm regularization 
approach for robust parameters’ estimation. Notwithstanding its simplicity, the pro-
posed algorithm is able to explain the observed differences in RNA levels’ dynamics as a 
consequence of different decay rates in the presence of a common—up to a scaling fac-
tor—promoter activity. The ability of the proposed algorithm to recover half-lives from 
short time series is based on its simplicity, i.e., on the small number of model parameters 
to be estimated (just three), as opposed to more sophisticated but complicated mod-
els requiring long time series for reliable estimates of many parameters [4]. Precisely, 
the model assumes that, when a pair of genes have a correlated RNA production rate 
but different shape of the gene expression time profile, the latter can be ascribed to dif-
ferences in their stability rate and not to different promoter activities. This key point is 
illustrated by Fig. 1.

To prove the validity of the proposed methodology, we preliminary tested the algo-
rithm performances on several types of artificial data, varying the number of samples, 
as well the type and amplitude of measurement noise. Most importantly, we tested the 
methodology on real experimental data by comparing StaRTrEK predictions versus two 
recent public datasets composed of simultaneous measurements of a short genome-
wide gene expression time-courses (6 samples) and the corresponding transcripts’ half-
lives. We found a highly significant agreement between estimated and measured stability 
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rates. Finally, the algorithm has been also tested on experimental measures of half-lives 
and long gene expression time-series (48 time points), providing an excellent significant 
agreement between StaRTrEK predictions and measured values.

In conclusion, we believe that our algorithm can be used as a fast valuable compu-
tational complement to time-course experimental studies by adding a relevant kinetic 
property with a strong biological interpretation.

Method
The balance between transcription and degradation resulting in an appropriate RNA 
level can be effectively represented using first-order kinetics [12, 13]. Given a set of m 
gene expression time profiles, the rate of change of RNA concentration for two genes, 
say gene i and gene j, can be described by:

where xi(t) and xj(t) are the measured RNA time profiles of the genes i and j, Pi(t) > 0 
and Pj(t) > 0 are their corresponding promoters’ activities, and ki > 0 and kj > 0 are 
the specific transcript degradation rates for gene i and j, respectively. Note that, in usual 
gene expression experiments, promoter activity P(t) is not measured and therefore equa-
tions (1) cannot be used directly for degradations rates k estimate.

(1)















dxi(t)

dt
= Pi(t)− kixi(t),

dxj(t)

dt
= Pj(t)− kjxj(t),

Fig. 1  Illustration of the mathematical model underlying StaRTrEK. Gene pairs used to estimated half-lives 
are assumed to have a common (up to a scaling factor) promoter activity and different half-life values that 
can explain the different shape of the gene expression time profile
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Among all m(m− 1)/2 possible pairs described by equation (1), StaRTrEK algorithm 
selects those having specific features that makes them ideal candidates for reliable estima-
tion of decay rates ki and kj without the use of P(t). In fact, since such promoter activities are 
not measured, we want to select, among all available gene pairs, those having the same (up 
to a scaling factor) promoter activity as illustrated by Fig. 1.

This amounts to saying that we are searching for gene pairs (i, j)  having the following 
property:

where u(t) is the unknown common promoter activity function, and γi > 0 , γj > 0 are 
unknown positive scaling factors. Note that, by means of this procedure, we can obtain 
a single equation where promoter activities are not used. In fact, substituting equations 
(2) into (1), we have:

Then, obtaining u(t) from the first equation and by substituting it into the second equa-
tion of system (3), we finally obtain:

It is worth noting that the only unknown parameters to be estimated in (4) from experi-
mental data are the three values contained in vector θR:

where, notably, the unknown term u(t) is absent. Again, it is important to realize that 
only three parameters have to be estimated from each gene expression time series.

Equation (4) cannot be directly used for a reliable parameters estimation for many rea-
sons. Firstly, equation (4) contains time derivatives, and their computation from noisy data 
is notoriously unreliable. Secondly, the functions in equation (4) are continuous in t, whilst 
data measurements are available only at (often few) discrete time points. Then, equation (4) 
has been discretized. To reduce noise, we preliminary performed a trapezoidal integration 
of expression (4), obtaining the following discrete-time equation for each of the n time sam-
ples δ:

where

(2)
Pi(t) = γiu(t) > 0,

Pj(t) = γju(t) > 0,

(3)















dxi(t)

dt
= γiu(t)− kixi(t),

dxj(t)

dt
= γju(t)− kjxj(t).

(4)
dxj(t)

dt
=

γj

γi

dxi(t)

dt
+

γj

γi
kixi(t)− kjxj(t).

θTR =

[

γj

γi
,
γj

γi
ki, kj

]

= [θ1,R θ2,R θ3,R].

(5)Dδ
j =

γj

γi
Dδ
i +

γj

γi
kiI

δ
i − kjI

δ
j , δ = 1, . . . , n,



Page 5 of 15Conte et al. BMC Bioinformatics          (2022) 23:190 	

By considering equation  (5)—that we called backward (or reverse) equation—for each 
time sample, we obtained a set of linear equations that can be compactly written in 
matricial form:

It is worth noting that the time samples may not be necessary taken at equally spaced 
time intervals, which is actually often the case in biological time-courses experiments. 
Moreover, by defining the following matrices

and

we can rewrite equations (5) as follows:

Analogously, by deriving u(t) from the second equation of (3) and by substituting it into 
the first equation, we finally arrived to the following:

where the only unknowns are the three parameters vector θF:

As for the backward case, we performed an integration of equation (7) and obtained for 
each time sample δ the following expression, that we called forward (or direct) equation:

By considering the forward equation for each time sample, we obtained the matricial 
form:

Dδ
i = xi(tδ+1)− xi(tδ),

Dδ
j = xj(tδ+1)− xj(tδ),

Iδi =

∫ tδ+1

tδ

xi(t)dt ≃

[

xi(tδ+1)+ xi(tδ)

2

]

(tδ+1 − tδ),

Iδj =

∫ tδ+1

tδ

xj(t)dt ≃

[

xj(tδ+1)+ xj(tδ)

2

]

(tδ+1 − tδ).

(D1
j , . . . ,D

n
j ) =

�

γj

γi
,
γj

γi
ki, kj

�





D1
i . . . Dδ

i . . . Dn
i

I1i . . . Iδi . . . Ini
−I1j . . . − Iδj . . . − Inj



.

AT
R =





D1
i . . . Dδ

i . . . Dn
i

I1i . . . Iδi . . . Ini
−I1j . . . − Iδj . . . − Inj





BT
R = (D1

j , . . . ,D
n
j ),

(6)ARθR = BR,

(7)
dxi(t)

dt
=

γi

γj

dxj(t)

dt
+

γi

γj
kjxj(t)− kixi(t),

θTF =

[

γi

γj
,
γi

γj
kj , ki

]

= [θ1,F θ2,F θ3,F ].

(8)Dδ
i =

γi

γj
Dδ
j +

γi

γj
kjI

δ
j − kiI

δ
i , δ = 1, . . . , n.
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Moreover, defining

and

we can write equations (8) as

Summarizing, for each pairs of genes i and j, we have to solve the backward and the for-
ward equations

i.e. we have to find the unknown parameters θR and θF from the given data matrices AR 
and AF . Notwithstanding the similarities between equation (5) and (8), solutions may be 
different. In fact, biological data are heavily affected by noise. Thus, the performance of 
the optimization algorithm used to solve equation (6) or (9), may be quite different.

Moreover, equations (6) and (9), can be written as:

where y = BR , A = AR and θ = θR for the backward equation case or y = BF , A = AF 
and θ = θF for the forward equation case. Since there are more time samples then 
parameters (i.e., n > 3 ) and matrix A is full row rank, we have to choose the solution θ by 
minimizing an appropriate cost function. It is known that biological data are affected by 
noise and that the number of available time samples is usually not much larger the num-
ber of parameters to be estimated (three, in our case). Therefore, a typical least squares 
solution may lead to over-fit, i.e. the situation in which a small mean square error (MSE) 
may not guarantee quality of estimations. Consequently, we selected an appropriate cost 
function by following the approach proposed by Kim and co-workers [11], that consid-
ered a regularized re-formulation of a standard least squares estimation by defining the 
following optimization problem:

where α is a positive scalar coefficient, θ is a positive parameter vector θ ∈ R
3 , y ∈ R

n 
and A ∈ R

n×3 , with a number of available samples n > 3 . Note that ||ξ ||2 and ||ξ ||1 
denote the l2 ( (

∑

i ξ
2
i )

1/2 ) and, respectively, the l1 ( 
∑

i |ξi| ) norms of the vector ξ.

(D1
i , . . . ,D

n
i ) =

�

γi

γj
,
γi

γj
kj , ki

�





D1
j . . . Dδ

j . . . Dn
j

I1j . . . Iδj . . . Inj
−I1i . . . − Iδi . . . − Ini



.

AT
F =





D1
j . . . Dδ

j . . . Dn
j

I1j . . . Iδj . . . Inj
−I1i . . . − Iδi . . . − Ini





BT
F = (D1

i , . . . ,D
n
i ),

(9)AFθF = BF .

{

ARθR = BR, backward equation,
AFθF = BF , forward equation,

(10)y = Aθ ,

(11)argmin ||Aθ − y||22 + α||θ ||1,
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Problem (11) is called l1-regularized least squares problems (LSPs) and, besides pre-
venting over-fitting, it is also used for signal recovery in the presence of noise. Moreover, 
we must ensure non-negativity of the parameter vector θ for each pair of gene expression 
time-courses, so we finally obtained:

By solving the two optimization problems  (12), derived from equations (6), (9) for a 
given gene pair (i,  j), we obtained two half-life estimates ( hiR, hjF ), related to the solu-
tions θR and θF (backward and forward) as follows:

It is worth noting that the total number of optimization problems to be solved is 
m(m− 1) (two for any pairs among the m(m− 1)/2 combinations of genes) but they can 
be computed independently of one another, i.e., in parallel, thus saving computing time.

Let us now collect the total m(m− 1) estimates of the m unknown half-lifes and the 
related fit errors ( q = ||Aθ − y||22 ) into the following square matrices of Rm×m:

Note that we placed the half-life estimates of the type (13) and (14) into the matrix H 
at symmetrical entries w.r.t. the principal diagonal, that is on row i—column j—and, 
respectively, on row j—column i, while the related fit errors into the matrix Q follow-
ing the same placement criterion. Row i of matrix H contains the m− 1 estimates that 
result from all gene pairs (i, j) with i  = j and the corresponding errors are contained in 
the same row of matrix Q. The next step is therefore the appropriate selection of the best 
estimates (i.e., the finding of an error threshold) and their integration (averaging) in a 
single value.

To summarize the algorithm steps, we can identify four phases for the application of 
StaRTrEK: pre-processing, optimization, filtering and averaging. The pre-processing phase 
requires gene expression time profiles normalization (zero mean, unit standard devia-
tion), which may be followed by a sampling regularization procedure. In fact, a non uni-
form time sampling may lead to an ill-conditioned data matrix A in the presence of a large 

(12)
argmin ||Aθ − y||22 + α

∑3
i=1 θi,

θ

s.t. θi ≥ 0, i = 1, 2, 3.

(13)hi,R = ln 2/ki = ln 2 ·
θ1,R

θ2,R
,

(14)hj,F = ln 2/kj = ln 2 ·
θ1,F

θ2,F
.

(15)

H =





























0 h1,21,R h1,31,R . . . h1,m1,R

h1,22,F 0 h2,32,R . . . h2,m2,R

h1,33,F h2,33,F 0 . . . h3,m3,R

. . . . . . . . . . . . . . .

h1,mm,F h2,mm,F . . . hm−1,m
m,F 0





























, Q =





























0 q1,21,R q1,31,R . . . q1,m1,R

q1,22,F 0 q2,32,R . . . q2,m2,R

q1,33,F q2,33,F 0 . . . q3,m3,R

. . . . . . . . . . . . . . .

q1,mm,F q2,mm,F . . . qm−1,m
m,F 0





























.
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variability of the integral values Iδi  . To overcome this problem, in case of non-uniform 
sampling and before using the trapezoidal rule to compute integrals, we suggest to divide 
time-series into the smallest number of trapezoids with comparable areas. In fact, by doing 
so, the data entries in matrix A will have similar magnitude. The choice of the regulariza-
tion parameter α in (12) has been done using the so-called “L-curve” method [8]. Once the 
optimal α parameter has been selected in the previous step, the optimization phase can 
take place and consists in the computation of the parameter vector θ by solving (12) for 
each of the m(m− 1) optimization problems (backward and forward problems related to 
the m(m− 1)/2 possible gene pairs) and, consequently, in the derivation of corresponding 
error q. The output of the optimization step is therefore the matrix pair H and Q.

The filtering phase consists of removing from matrix H those entries corresponding to 
large MSEs value by selecting a maximal error threshold qmax . The choice of qmax must 
take into account both the need for a small error and that of a large enough value to 
have a sufficiently large pool of estimations for reliable half-life averaging (last step of the 
algorithm). To find an objective way to select the qmax value, we computed the p value of 
a Kolmogorov-Smirnov test between the actual distribution of estimated half-lives and 
those obtained after a random permutation (shuffling) of time samples for each gene. 
More precisely, for each pair of time-series, we randomly shuffling one of them, thus 
mimicking the situation in which one of the two time series is purely random. p Values 
were corrected for multiple testing by computing a false discovery rate (FDR) using the 
Benjamini-Hochberg procedure [20] and a threshold was set at FDR < 0.05 . The qmax 
value was selected as the smallest percentile of the MSE distribution able to guarantee, 
at least, that the 90% of estimated half-lives is such that FDR < 0.05 . This choice for qmax 
allows to maximize the total number of genes with a reliable half-life evaluation, while 
minimizing the estimation error magnitude.

Summing up, the StaRTrEK algorithm pipeline is the following: 

1	 Pre-processing

•	 Z-score normalization of time profiles;
•	 non-uniform sampling regularization (if needed);

2	 Optimization

•	 selection of the regularization parameter α using the L-curve method;
•	 computation of the parameter vector θ by solving (12) for each gene pair and the 

corresponding error q
•	 construction of matrices H and Q;

3	 Filtering

•	 computation of matrices Hrnd and Qrnd using randomized data;
•	 selection of the error threshold qmax according to the Kolmogorov-Smirnov test;
•	 removal of half-life estimations in the matrix H with a corresponding estimation 

error (MSE) larger than the previously selected threshold qmax;
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4	 Averaging
•	 computation of the median of the half-life estimations for each row (gene) of the 

matrix H resulting from the previous step.

Results and Discussion
Performance evaluation on artificial data

In this section, we provide an in silico validation of the algorithm by generating simu-
lated data to provide a preliminary assessment of its ability to recover true values on a 
variety of plausible situations, i.e., by considering its performance sensitivity to changes 
in (i) the number of available time samples, (ii) the amount of noise affecting the meas-
urements and (iii) the number of genes involved into the estimation procedure. Artificial 
data were generated according to the following dynamic equation describing the rate of 
change of a given gene expression x:

where u(t) is the transcription rate, γ is a positive scaling factor, k = ln(2)/hl is the deg-
radation rate and hl is the gene half-life. To provide biological plausibility to the sim-
ulated data, we estimated the values and range of the various parameters used, from 
experimental data of measurements of transcripts abundance over a time-course and 
their turnover [14]. Specifically, we generated artificial time-course gene expression pro-
files across a simulation time interval of [0, 150] min, assuming a smooth time-varying 
promoter activity function u(t) having a sinusoidal shape, fixing γ = 1 and x(0) = 0 , and 
sampling half-lives from a realistic interval from 10 to 100 min [2, 14, 15] (Supplemen-
tary Data). In addition, we assumed that the signal was corrupted by a general measure-
ment noise according to the following equation:

where v(t) is the noise term. For any time t, v(t) was drawn from a normal distribu-
tion with zero mean and standard deviation depending on x(t). Precisely, the standard 
deviation was taken as a percentage of the current state, i.e., s.d.(v(t)) = C ∗ x(t) with 
C ∈ [0, 1].

The performance indices we considered were the Pearson correlation ρ between the 
measured and estimated half-lives (a), the corresponding p value (b), and the number of 
genes (percentage) having a FDR < 0.05 (c).

In order to test the algorithm performances based on the data availabilities, we 
applied the StaRTrEK estimation procedure to different artificial data scenarios in 
which we varied the number of the available time samples, or the amplitude of the 
measurement noise, or the number of half-lives to be estimated. Tables  1, 2 and 3 
report the numerical results of the simulations described above. In particular, Table 1 
reports the performance indices (a)–(c) obtained by decreasing the number of the 
available time samples n from 12 to 6, while keeping fixed the number of half-lives 
to be estimated ( m = 1000 ) and the noise size ( C = 0.2 ); Table 2 reports the perfor-
mance indices (a)–(c) obtained by increasing the noise size C from 0.1 to 0.5, while 
keeping fixed the number of time samples ( n = 6 ) and the number of half-lives to 

(16)
dx(t)

dt
= γu(t)− kx(t),

(17)z(t) = x(t)+ v(t),
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be estimated ( m = 1000 ); Table 3 reports the performance indices (a)-(c) obtained by 
decreasing the number of half-lives to be estimated m from 1000 to 200, while keep-
ing fixed the number of time samples ( n = 6 ) and the noise size ( C = 0.2).

As a general comment we note that the StaRTrEK algorithm reached very high per-
formances in the simulated scenarios. Indeed, except for the case C = 0.5 in Table 2, 
we obtained very high correlations in the range 0.7–0.9, and p values always much 
smaller than the statistical significance threshold (i.e., 0.05). It is worth noting that 
the proposed algorithm works extremely well also on short time-series (i.e., n = 6 ), 
which is the most important advantage of the algorithm. Moreover, an increasing in 

Table 1  Performance indices on artificial data of half-lives and expression time-courses with 
different numbers of time samples (n)

Number of gene expression profiles ( m = 1000 ) and noise amplitude ( C = 0.2 ) are kept fixed. Legend—αopt : optimal 
value of the regularization parameter; qmax : error threshold expressed as percentile of the MSE distribution; ρ : Pearson 
correlation coefficient; pval: p value; FDR: false discovery rate. For each instance of the noise distribution considered, we 
found a negligible variability of the quality indices, therefore variance is not reported in the table

 αopt  qmax  ρ  pval  FDR < 0.05

 n = 12 10 3 0.89 < 10
−309 92.5%

 n = 10 10 3 0.89 < 10
−309 94.4%

 n = 8 10 4 0.89 < 10
−309 94.2%

 n = 6 10 2 0.86 1.3 · 10−277 95.2%

Table 2  Performance indices on artificial data of half-lives and expression time-courses with 
different noise amplitudes (C)

Numbers of gene expression profiles ( m = 1000 ) and of time samples ( n = 6 ) are kept fixed. Legend—αopt : optimal value 
of the regularization parameter; qmax : error threshold expressed as percentile of the MSE distribution; ρ : Pearson correlation 
coefficient; pval: p value; FDR: false discovery rate. For each instance of the noise distribution considered, we found a 
negligible variability of the quality indices, therefore variance is not reported in the table

 αopt  qmax  ρ  pval  FDR < 0.05

 C = 0.1 10 1 0.90 < 10
−309 99.6%

 C = 0.2 10 2 0.86 1.3 · 10−277 95.2%

 C = 0.3 10 2 0.86 2.3 · 10−269 91.1%

 C = 0.4 10 4 0.68 8.9 · 10−123 90.8%

 C = 0.5 10 10 0.11 3.9 · 10−4 90.8%

Table 3  Performance indices on artificial data of half-lives and expression time-courses with 
different numbers of half-lives to be estimated (m)

Number of time samples ( n = 6 ) and noise amplitude ( C = 0.2 ) are kept fixed. Legend—αopt : optimal value of the 
regularization parameter; qmax : error threshold expressed as percentile of the MSE distribution; ρ : Pearson correlation 
coefficient; pval: p value; FDR: false discovery rate. For each instance of the noise distribution considered, we found a 
negligible variability of the quality indices, therefore variance is not reported in the table

 αopt  qmax  ρ  pval  FDR < 0.05

 m = 1000 10 2 0.86 1.3 · 10−277 95.2%

 m = 800 10 3 0.82 3.0 · 10−180 93.4%

 m = 500 10 3 0.78 2.0 · 10−94 91.0%

 m = 200 10 6 0.78 3.5 · 10−38 90.0%
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the noise size leads to a reduction in correlation (up to 0.11 for C = 0.5 ), whereas the 
reduction of the half-lives to be estimated slightly affects the algorithm performances.

Performance evaluation on experimental data

In this section, we present the results of the algorithm by considering three experimen-
tal datasets where both time-course and half-lives on a genome-wide scale has been 
measured (Supplementary Data). In particular, to show the performance of the proposed 
algorithm when dealing with a small number of samples, we focused on genome-wide 
yeast transcript half-lives and expression time-course data obtained in response to oxi-
dative and DNA damage stress both collected by Shalem and co-workers [14], consisting 
of six time points for each gene and condition. Then, to show the performances over 
a long time-course (48 time points), we considered experimental data provided by [2, 
15] taken during malaria intraerythrocytic developmental cycle (IDC). As performance 
indices we considered the Pearson correlation ( ρ ) between the measured and estimated 
half-lives, the corresponding p-value, and the number of genes (as percentage) having a 
FDR < 0.05 . For each dataset, we have also reported the selected values for the α param-
eter and qmax threshold.

DNA damage dataset in yeast

This dataset includes genome-wide yeast transcript half-lives and expression time-
course (6 time points at 0, 30, 60, 100, 140, 180 min) following exposure to methyl meth-
anesulfonate (MMS), which induces DNA damage [14]. The majority of the responding 
genes showed a long enduring response with no relaxation. We selected genes with a 
fold ratio > 2 and obtained 803 genes (Supplementary Data). The pre-processing step 
consisted only in the Z-score normalization since time sampling was almost uniform 
(30 or 40 min). The optimization step was performed using the optimal regularization 
parameter α = 7 , whereas, for the filtering phase, we selected the qmax value correspond-
ing to the 3th percentile of the MSE distribution (Fig. 2A, left panel). The half-lives values 
resulting from StaRTrEK algorithm were in excellent agreement with the experimental 
measurements, reaching a Pearson correlation value of 0.68 and a p value = 1.5 · 10−90 
(Table 4 and Fig. 2A, right panel).

Oxidative stress dataset in yeast

This dataset includes genome-wide yeast transcript half-lives and expression time-
course (6 time points at 0, 30, 60, 100, 140, 180 min) data following exposure to hydro-
gen peroxide ( H2O2 ), which induces an oxidative stress [14]. The response kinetics is 
quite different from the DNA damage experiments since the majority of the respond-
ing genes showing a fast transient response. We selected genes with a fold ratio > 1.3 
and obtained 851 genes (Supplementary Data). As before, the pre-processing step con-
sisted only in the Z-score normalization since time sampling was almost uniform (30 or 
40 min). For this dataset, we selected the optimal regularization parameter α = 7 and 
the qmax value corresponding to the 31th percentile of the MSE distribution (Fig. 2B, left 
panel), obtaining a Pearson correlation value of 0.54 and a p value = 1.2 · 10−54 (Table 4 
and Fig. 2, left panel).



Page 12 of 15Conte et al. BMC Bioinformatics          (2022) 23:190 

Malaria IDC dataset

This dataset includes genome-wide transcript half-lives and expression time-course (48 
time points, one sample per hour) obtained during the malaria IDC [2, 15]. We selected 
the top 1000 genes in terms of the periodicity score defined in [2] (Supplementary Data). 
According to the algorithm pipeline, we initially performed only a Z-score normalization 

Fig. 2  StaRTrEK algorithm validation using experimental data. StaRTrEK results obtained for yeast DNA 
damage (A), yeast oxidative stress (B), and malaria IDC (C) datasets. For each dataset, left panel shows the 
criterion for the selection of the error threshold qmax , whereas the right panel shows the scatterplot of RNA 
half-lives estimated by the StaRTrEK algorithm versus experimentally measured values
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since the sampling times were uniform (1 h). The optimization step was performed using 
the optimal regularization parameter α = 15 , while, for the filtering phase, we selected 
the qmax value corresponding to the 9th percentile of the MSE distribution (Table 4 and 
Fig.  2C, left panel). Notably, the agreement between StaRTrEK estimations and the 
experimental measurements is excellent as witnessed by a Pearson correlation of about 
0.6 and a p value euqal to 4.5 · 10−56 (Table 4 and Fig. 2C, right panel). It is worth not-
ing that, although we have more points available than the previous cases, the correla-
tion value and its significance does not improve. To explain this point, we note that the 
impact of half-life on the gene expression profile of a given RNA (as explained in detail 
in the review [13]) is apparent only when there are changes in the time-course; in fact, 
it is impossible to recover the half-life from a constant profile (i.e. at equilibrium) since 
such value is uniquely defined by the ratio of the half-life and the (constant) promoter 
activity. Therefore, even if more time points are available, only a small subset of them 
can effectively impact on the half-life estimation. Precisely, only those on the steep uphill 
and downhill faces of the gene expression time-profile determine the RNA half-life.

Concluding remarks

The availability of genome-wide gene expression profiles have revolutionized life sciences 
at the molecular level. The analysis of the transcriptome goes far beyond DNA sequenc-
ing, since allows to put genes into action in the highly coordinated cell regulatory network. 
Recently, the discovery of a specific and extensive post-transcriptional regulation of gene 
expression level, has attracted many researchers to the study of transcripts kinetic, i.e., the 
behavior over time of a cell response. In fact, the transcript half-life value determines the 
shape of the time profile during changes, i.e., during transient responses like a switch-on 
/ switch-off transition. In other words, RNA half-life is a very important measure of cell 
response to an internal or external changing environment. Usually, genome-wide gene 
expression time profiles experiments are composed of few samples, since the interest of the 
researcher is focused on the early, middle and late response, so that about 5 or 6 time points 
are usually collected, considering also the high costs of a genome-wide measurement. Tran-
scripts half-lives can be obtained by a variety of methodologies like transcriptional inhi-
bition or metabolic labeling, but the costs are high and the measurement procedure may 
impact the physiology of the cell under study, thus leading to possible artifactual results. 
Here, we showed how to recover half-lives directly from gene expression time courses 
using a computational model of RNA dynamics. The model here proposed is very simple 
but effective, it required only three parameters to be estimated and, in fact, we showed a 
significant agreement between estimated and measured half-lives using two experimental 

Table 4  Summary of performance indices on experimental data. Legend—αopt : optimal value of 
the regularization parameter; qmax : error threshold expressed as percentile of the MSE distribution; ρ : 
Pearson correlation coefficient; pval: p value; FDR: false discovery rate

 αopt  qmax  ρ  pval  FDR < 0.05

nDNA damage 7 3 0.68 1.5 · 10−90 98%

 Oxidative stress 14 31 0.54 1.2 · 10−54 92%

 Malaria IDC 15 9 0.59 4.5 · 10−56 91%



Page 14 of 15Conte et al. BMC Bioinformatics          (2022) 23:190 

datasets collecting 6 time samples. We believe that our algorithm can be used as a fast valu-
able computational complement to time-course experimental studies by adding a relevant 
kinetic property with a strong biological interpretation.

Finally, we note that our method tends to underestimate half-life values. This observation 
actually needs an explanation or, at least, to suggest one. We did not observe this underes-
timation using artificial data, so we guess that it may have a biological reason rather than 
computational. To this aim, we note that the measured half-lives are obtained after tran-
scriptional inhibition, whilst our algorithm makes use of the gene expression dataset where 
both transcription and degradation are present. It is well known that transcriptional inhibi-
tion has a large impact on the RNA half-life values since RNA half-life regulation is blocked 
and the experimental environment is far from a physiological status. By contrast, our com-
putational analysis is based on more physiological data that refer to the specific biological 
process under study and, as such, it should be more reliable. Obviously, this claim needs 
experimental validation, but it is certainly reasonable. Finally, this observation also suggests 
the intriguing possibility that transcriptional inhibition impacts RNA half-lives by increas-
ing their values.
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