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Abstract
Background Anamorelin HCl (ANAM) is a novel, orally
active, ghrelin receptor agonist in clinical development for
the treatment of cancer cachexia. We report in vitro and
in vivo studies evaluating the preclinical pharmacologic pro-
file of ANAM.
Methods Fluorescent imaging plate reader and binding assays
in HEK293 and baby hamster kidney cells determined the
agonist and antagonist activity of ANAM, and its affinity for
the ghrelin receptor. Rat pituitary cells were incubated with
ANAM to evaluate its effect on growth hormone (GH) re-
lease. In vivo, rats were treated with ANAM 3, 10, or
30 mg/kg, or control orally, once daily for 6 days to evaluate
the effect on food intake (FI) and bodyweight (BW), and once
to assess GH response. In pigs, single (3.5 mg/kg) or contin-
uous (1mg/kg/day) ANAMdoses were administered to assess
GH and insulin-like growth factor (IGF-1) response.
Results ANAM showed significant agonist and binding ac-
tivity on the ghrelin receptor, and stimulated GH release
in vitro. In rats, ANAM significantly and dose-dependently
increased FI and BWat all dose levels compared with control,
and significantly increased GH levels at 10 or 30mg/kg doses.

Increases in GH and IGF-1 levels were observed following
ANAM administration in pigs.
Conclusion ANAM is a potent and highly specific ghrelin
receptor agonist with significant appetite-enhancing activity,
leading to increases in FI and BW, and a stimulatory effect on
GH secretion. These results support the continued investiga-
tion of ANAM as a potential treatment of cancer anorexia-
cachexia syndrome.
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1 Introduction

Cancer anorexia-cachexia syndrome (CACS) was recently
defined by an international expert consensus group as “a
multifactorial syndrome characterized by an ongoing loss of
skeletal mass (with or without loss of fat mass) that cannot be
fully reversed by conventional nutritional support and leads to
progressive functional impairment” [1]. CACS has severe
consequences, such as reduction of treatment tolerance, re-
duction of response to therapy, and shortened survival, and
can adversely affect a person’s quality of life [1–6]. The
pathogenesis of CACS is complex and not completely under-
stood, but altered metabolism, and reduced food intake con-
tribute to loss of muscle mass and decrease in body weight
[7–9].

Ghrelin is an octanoylated 28-amino acid peptide gastric
hormone with widespread peripheral expression and is the
endogenous ligand for the ghrelin receptor (formally known
as the growth hormone [GH] secretagogue type 1α receptor)
[10]. The effects of ghrelin on signaling nutrient availability to
the central nervous system, upregulating food intake, lowering
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energy expenditure, and stimulating GH release are relevant in
the management of diseases such as CACS. In patients with
CACS, elevated levels of ghrelin are often observed [11, 12]
perhaps as a physiological response to the decrease of body
weight and food intake.

The administration of ghrelin in animal studies has resulted
in an improvement in food intake, body weight, and lean body
mass (LBM) retention [13, 14]. Several clinical trials in hu-
man cancer patients have shown that ghrelin was well toler-
ated and increased food intake [15, 16] and appetite scores
[17]. However, due to its short half-life (approximately
30 min) and intravenous administration, the clinical effective-
ness of ghrelin remains limited.

Anamorelin HCl (ONO-7643; ANAM) is a potent and
selective novel ghrelin receptor agonist that mimics the N-
terminal active core of ghrelin [18] (Fig. 1). ANAM has the
advantage of being orally active and having a longer half-life
(approximately 7 h) than ghrelin [19, 20]. Similar to ghrelin,
ANAM stimulates neuroendocrine responses and can induce
rapid positive effects on appetite and metabolism, which can
lead to an increase in body weight and LBM [21, 22]. The
compound is currently undergoing evaluation as a potential
agent for the treatment of CACS in Phase III clinical trials in
non-small cell lung cancer (NSCLC) [23].

The aim of the present manuscript is to describe the pre-
clinical profile of ANAM, both in vitro and in vivo, by
evaluating its agonist effects on the ghrelin receptor and its
activities on food intake, body weight gain, and GH and
insulin-like growth factor 1 (IGF-1) secretion.

2 Materials and methods

2.1 Cell lines and reagents

HEK293 and baby hamster kidney (BHK) cell lines were
obtained from ATCC. HDB then engineered the cell lines to
express human ghrelin receptor, and the cell line was main-
tained under standard conditions and authenticated with func-
tional calcium influx and immunoprecipitation-1 assays every
2 weeks.

For the in vitro assays, ghrelin (Sigma) and ANAM
(Helsinn) were diluted with 100 % dimethyl sulfoxide

(DMSO) to make 30 mM stock. On the test day, serial dilu-
tions had been prepared starting from the stock solution, and
test solutions were obtained by diluting the stock solutions 1/
200 in assay buffer (DMSO final concentration 0.5 %).

For the in vivo rat and pig studies, ANAM (Helsinn) was
stored frozen at −20 °C under protection from light until use,
when it was dissolved and serially diluted in distilled water to
concentrations of 6, 2, and 0.6 mg/mL for administration.
These working solutions were stored protected from light at
5 °C and used within 6 days.

2.2 Animals

To isolate the rat pituitary cells, Sprague-Dawley male albino
rats (250 g±25 g) were purchased from Møllegaard, Lille
Skensved, Denmark. Rats were housed in group cages at
19–24 °C with a 12-h light cycle.

For the in vivo experiments, 7-week-old male Crl:CD (SD)
rats (Charles River Japan, Inc.) were housed individually
under controlled temperature (24±2 °C), humidity (55±
15 %), outside air ventilation (15±5 cycles/h), and light/dark
cycle (12 h). Animals were acclimatized for at least 1 week
before use in experiments. Animals were provided solid feed
(CRF-1, Oriental Bioservices Co. Ltd.) and tap water ad
libitum.

Female slaughter pigs (Danish Landrace) with an initial
weight of 40–45 kg at first dosing were acclimatized 1 week
before blood sampling (vena jugularis and arteria carotis) and
dosing (intragastric) catheters were inserted under general
anesthesia (propofol/isoflurane). The animals were then given
at least 5 days to recover before the commencement of the
study period. Experiments were performed in compliance
with the “Guidance for Animal Experiments” established by
Research Headquarters, ONO Pharmaceutical Co., Ltd.

2.3 In vitro fluorescent imaging plate reader and binding
assays

HEK293 cells stably expressing recombinant human ghrelin
receptor (HEK293/GRLN) were used in the fluorescent im-
aging plate reader (FLIPR) assay. One day before the test,
cells were seeded at a density of 1.5×104/well in a Matrigel®
coated 384-well plate with 30 μL of complete Dulbecco’s
Modified Eagle’s Medium, and incubated at 37 °C in 5 %
CO2 for 22–26 h. On the test day, 4× loading dye was added
into each well (10 μL per well for 384-well plates). Assay
plates were incubated at 37 °C in the dark for 30 min. The dye
content was then removed by centrifugation at 300 rpm for
30 s, and 30 μL Hanks’ Balanced Salt Solution/Hepes with
1 mM probenecid was added with Platemate Matrix (low-
speed setting; Thermo). The plate was then placed in FLIPR
Tetra (Molecular Device) and 10 μL 4× working concentra-
tions of test compounds were added by FLIPR (agonist
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mode). Fluorescence signal was detected with FLIPR at room
temperature according to standard settings for 10 min before
cells were exposed to 10 μL 5× working concentrations of
agonists (compound added by FLIPR). The fluorescence sig-
nal was detected in the subsequent 3 min (antagonist mode).

BHK cells stably expressing human ghrelin receptor were
used for binding assay membrane preparations. Cells were
cultured under continuous antibiotics selection. Cells were
collected when confluence reached 90 %. Gentle cell dissoci-
ate buffer (PBS/EDTA) was used to dissociate cells. Upon
dissociation, the cells were homogenized (8,000 rpm for 30 s,
three times) in assay buffer. The homogenates were centri-
fuged at 4,000g at 4 °C for 15 min. The pellets were discarded
and the supernatant was centrifuged at 40,000g at 40 °C for
30 min. The pellet was re-suspended and protein concentra-
tions were measured by BCA kit (Thermo).

For the binding assay, the membrane protein was diluted in
assay buffer to yield 20 μg/well in 120 μL. The binding assay
was set up in a 96-well plate as the following: 120 μL mem-
brane preparations, 15 μL [125I] ghrelin (final concentration
1 nM) and 15 μL compound (10×) diluted in the assay buffer.
The reaction mixture was incubated at room temperature for
30 min before terminating by quick filtration onto a glass
fibre/B (GF/B) filtration plate presoaked in 0.3 %
polyethylenimine (PEI) using cell harvester (PerkinElmer).
The filter was washed three times and dried at 37 °C over-
night. The radioactivity bound to filter membrane was mea-
sured with MicroBeta® TriLux (Perkin Elmer).

For the competition assay, ANAM concentrations (1 pM–
10 μM) were added to the membranes together with 35S-MK-
677. Nonspecific binding was determined by adding 10 μM
nonlabeled MK-677. The mixture was incubated at 30 °C for
60 min, followed by application of the samples to GF/B filters
(Whatman), which had been pretreated with 0.5 % PEI for
60 min. The filters were subsequently washed in 0.9 % NaCl
and counted using an OptiPhase counter (Wallac).

2.4 Rat pituitary cell isolation and GH assay

To isolate the rat pituitary cells, the pituitaries were dissected
f r om Sp r agu e -Daw l ey ma l e a l b i n o r a t s . Th e
neurointermediate lobes were removed and the remaining
tissue was immediately placed in ice-cold isolation buffer.
The tissue was cut into small pieces and transferred to isola-
tion buffer supplemented with trypsin and DNase and incu-
bated at 70 rpm for 35 min at 37 °C. The tissue was then
aspirated into single cells and the cells were filtered through a
nylon filter (160 μm) to remove undigested tissue. The cell
suspension was washed with isolation buffer supplemented
with trypsin inhibitor and then re-suspended in culture medi-
um. The cells were seeded 4×104 cells/well and cultured for
3 days at 37 °C. Following the culture period, the cells were
washed with stimulation buffer and pre-incubated for 1 h. The

buffer was then exchanged and the cells were incubated for
15 min with concentrations of ANAM ranging from 0.01 nM
to 10 μM. The medium was then decanted and analyzed for
GH content in a recombinant (r)GH ELISA test system (Novo
Nordisk).

2.5 Assessment of food intake and body weight

Four groups of seven rats were selected from a pool of 40 rats
according to body weight, food intake, and general condition
during a 6-day period before grouping, and received ANAM
at 3, 10, or 30 mg/kg, or vehicle control. In order to keep
groups homogeneous, individual animals were first arranged
in order of food intake over the previous 3-day period and
assigned to groups using a stratified selection method. A
random number was generated for each group and the four
groups were established in ascending order of random num-
ber. Body weight and leftover feed for the calculation of food
intake were measured on Day −6, Day −3, and Day 0. Left-
over feed was calculated as the total weight of the feed and
feed container. ANAM and vehicle control were administered
orally once daily at a dose of 5 mL/kg for 6 days starting from
Day 1 using a flexible tube for rats (RZ-2; CLEA Japan, Inc.)
attached to a syringe. The dosing volume was calculated for
each animal based on body weight on the day of dosing. Body
weights and leftover feed for the calculation of food intake
were measured daily until Day 7. Food intake on each day
from Day 2 to Day 7 was calculated as the difference between
the amount of leftover feed on the previous day and that on the
day of dosing. Food intake on Day 1 was calculated by
dividing by 4 the difference in leftover feed on Day −3 and
Day 1 to obtain the food intake at baseline. Cumulative
change in food intake, weight gain, and time course of food
intake and body weight were evaluated. The cumulative
change in food intake was calculated as the sum of the differ-
ence in food intake after dosing compared to baseline from
Day 2 to Day 7. The difference in body weight between Day 7
and Day 1 was calculated as the weight gain in grams.

2.6 Assessment of GH and IGF-1 in vivo

For the assessment of food intake and body weight, rats were
divided into four groups: ANAM 3 mg/kg (n=7), 10 mg/kg
(n=7), or 30 mg/kg (n=7), or vehicle control (n=8), and
100 μL blood samples were collected before and 0.25, 0.5,
1, 2, 3, 4, 5, and 6 h after single dosing. Rats were anesthetized
with sodium pentobarbital 64.8 mg/kg. A catheter filled with
heparinized saline solution was inserted in the left femoral
artery for blood collection and fitted with an extension tube,
1-mL sampling syringe, and a three-way cock to allow excess
blood to return. Plasma levels of GH were measured immu-
nochemically using a Rat Growth Hormone EIA kit (A05104,
SPI-bio) and microplate reader (SpectraMax™ 250,
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Molecular Devices). Measurements were performed in dupli-
cate. Area under the GH concentration curve from 0 to 6 h
(AUC0–6h) postdose and the time course of GH plasma con-
centrations were evaluated.

In pigs (n=6 per group), anamorelin was dosed directly
into the gastric lumen via the dosing catheter. Blood samples
were collected for the stimulation profile of GH at 30 and
15 min before, and 0, 5, 15, 30, 45, 60, and 120 min following
dosing. Animals received either a single dose (3.5 mg/kg), or
once-daily administration (1 mg/kg) for 7 days and stimula-
tion profiles were taken after the first and seventh dose of
ANAM. To assess IGF-1 levels, pigs received either placebo
or ANAM for 7 days (1 mg/kg/day), and the following 7 days
the two treatments were crossed over. A single blood sample
was taken once a day immediately before dosing.

2.7 Statistical analysis

Data analyses were performed using SAS software, version
9.1.3 Service Pack 4 (SAS Institute, Japan), EXSAS, version
7.5.2 (Arm Systex, Co., Ltd) and Graphpad®. Data are
expressed as mean±standard error (SE). The half maximal
effective concentration (EC50) and binding affinity (Ki) mea-
sures for ghrelin and ANAM were calculated by sigmoidal
regression analysis. The cumulative changes in food intake
and weight gain in ANAM-treated groups were compared to
those in the control group by the Williams test. GH AUC0–6h

was calculated using the trapezoidal method, and theWilliams
test was used to compare differences between ANAM-treated
and control groups. All tests were one-sided and differences
were considered significant for P<0.05.

3 Results

3.1 In vitro studies

In the FLIPR assay, ghrelin and ANAM showed significant
agonist activity on the ghrelin receptor (Fig. 2a), with EC50

values of 0.67 nM (95 % confidence interval [CI] 0.60–0.76)
and 0.74 nM (95%CI 0.50–1.12), respectively. No significant
antagonist activity was observed with ANAM at concentra-
tions of up to 1,000 nM. In the binding experiments, ghrelin
and ANAM bound to the ghrelin receptor (Fig. 2b) with a
binding affinity constant (Ki) of 0.58 nM (95 % CI 0.51–0.66)
and 0.70 nM (95 % CI 0.55–0.96), respectively.

In the competition assay with radiolabeled ibutamoren
(35S-MK-677; another ghrelin receptor agonist) ANAM was
also found to bind with high affinity to the ghrelin receptor
(IC50=0.69 nM). In rat pituitary cells incubated with ANAM,
there was a dose-dependent stimulatory effect on GH release
(Fig. 2c) and the potency (EC50) was 1.5 nM.

ANAM was screened for activity against a set of over 100
receptors, ion channels, transporters, and enzymes. ANAM
demonstrated binding to the tachykinin neurokinin 2 (NK2)
site (IC50=0.021 μM); however, a subsequent NK2 functional
assay demonstrated no functional activity. At the screening
concentration of 10 μM, ANAM demonstrated weak binding
to the calcium channel L-type receptors (benzothiazepine and
phenylalkylamine), the serotonin transporter, and the sodium
channel (data on file).
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3.2 In vivo effects on food intake and body weight

In rats, ANAMat an oral dose of 3, 10, or 30mg/kg once daily
significantly increased both food intake and body weight from
Day 2 to Day 7 of treatment compared with the vehicle control
(Fig. 3a). The cumulative change in food intake and weight
gain increased dose-dependently, and these changes were

significant at all dose levels (P<0.05) compared to the control
(Fig. 3b).

3.3 In vivo effects on GH and IGF-1 secretion

Administration of ANAM at a single oral dose of 3, 10, or
30 mg/kg induced a dose-dependent increase in plasma GH
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levels and GH AUC0-6h in rats (Fig. 4). The mean plasma GH
concentration ranged from 10.0 to 143.0 ng/mL in the 3 mg/kg
dose group, 11.3–197.6 ng/mL in the 10 mg/kg group, and
38.7–251.3 ng/mL in the 30 mg/kg group. The maximum

plasma GH concentration for the ANAM groups was reached
at 0.5–2 h postdose. In contrast, the mean plasma concentration
of GH in the control group remained more constant and ranged
from 13.5–61.0 ng/mL. Thus, ANAM stimulated a maximum
increase in GH concentration ranging from 2.3-fold for the
3 mg/kg dose to 4.1-fold for the 30 mg/kg dose. At the doses
of 10 and 30 mg/kg, GH AUC0–6h was significantly (P<0.05)
higher than the control vehicle-treated animals (Fig. 4).

In pigs, following the administration of a single oral dose of
ANAM 3.5 mg/kg there was a significant rise in GH levels
(Cmax P<0.0001) (Fig. 5a). Similar GH stimulatory activity
was also observed in dogs [data on file]. Repeated administra-
tion of ANAM at 1 mg/kg/day for 7 days in pigs showed an
acute GH release on both the first and seventh dose; however,
the response was considerably reduced by the seventh dose
(Fig. 5b). Furthermore, treatment with either control or ANAM
(1 mg/kg/day) for 7 days, after which treatments were crossed
over and continued for another 7 days, showed that mean IGF-1
concentrations were significantly elevated by 21 % (P<0.001)
with ANAM treatment compared with the control (Fig. 6).

4 Discussion

The in vitro data, utilizing various assays, consistently showed
that ANAM is a potent synthetic ghrelin agonist with an
affinity at the nanomolar level for the ghrelin receptor. Fur-
thermore, these findings demonstrate that the agonist effects
of ANAM are not associated with antagonism. In the screen-
ing for ANAM activity, 10 μMANAM showed weak binding
to the calcium channel L-type receptors, the serotonin trans-
porter, and the sodium channel. Therefore, the compound
exhibited a high selectivity versus ghrelin receptors, and given
the high concentrations (nM) of ANAM required to elicit
binding, none of these effects are likely to be of any clinical
significance except in a massive overdose setting.

In vivo results showed that ANAM had significant
appetite-enhancing activity, with multiple-dose administration
in rats resulting in an increase in food intake and body weight
after a short 6-day treatment. The appetite-enhancing effects
were apparent as early as on Day 2 of treatment in the 10 and
30 mg/kg dose groups, suggesting that effects on appetite
were elicited after the initial dose. The cumulative change in
food intake and weight gain occurred in a dose-dependent
manner. Similar findings were previously reported in another
preclinical study that investigated the effects of ghrelin and
ANAM in a lung cancer mouse xenograft model [24]. Al-
though daily food consumption remained unchanged in this
model, the investigators reported a significant increase in
mean body weight in animals administered with ANAM at a
dose of 10 or 30 mg/kg, compared to control. Significant
increases in body weight relative to placebo have also been
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reported in healthy volunteers [21, 25] and patients with
CACS [22, 26] after a short course of ANAM treatment.
Additionally, in patients with CACS, food intake was in-
creased compared to placebo after a 3-day course of ANAM,
although this increase was not statistically significant [22].

The appetite-enhancing effects of ANAM are consistent
with data from other ghrelin receptor agonists in development,
including capromorelin and MK-677. In a Phase II explorato-
ry study investigating the effects of capromorelin in older
(≥65 years) subjects with mild functional limitation,
capromorelin was found to increase body weight, LBM, tan-
dem walk speed, and stair climbing power, although the study
was terminated early according to predetermined treatment
effect criteria [27]. MK-677 was also found to increase body
weight in healthy subjects aged ≥60 years in a Phase I/II trial
[28].

In the study exposing rat pituitary cells to ANAM, GH
release was induced. In vivo, single-dose administration of
ANAM produced a dose-dependent increase in GH AUC0–6h

in rats, indicating that at the same doses as its appetite-
enhancing effects, ANAM has a stimulatory effect on GH
secretion. Increases in plasma GH concentrations from 2.3-
to 4.1-fold higher than control were observed following
ANAM treatment, reflecting the findings of an earlier preclin-
ical study [24]. Furthermore, ANAM administered at a single
dose was found to induce GH release in pigs. However,
repeated administration of ANAM in pigs led to a reduced
GH response and an increase in IGF-1 levels. This effect may
be explained by the negative feedback exerted by IGF-1 on
GH secretion. IGF-1 can influence GH-releasing hormone
(GHRH) and somatostatin production in the hypothalamus,
and also influence GHRH action in the pituitary, while GH
can inhibit its own secretion in the hypothalamus [29, 30].

Several clinical trials have found an increase in GH secre-
tion following ANAM treatment in humans [22, 25]. One of
these studies also demonstrated that repeated administration of
ANAM led to a decrease in GH response and increase in IGF-
1 levels when the Day 1 and corresponding Day 5/6 parame-
ters were compared [25]. These findings support the presence
of somatotrophic control of GH levels in both animals and
humans, and show that the GH axis cannot be hyperstimulated
by ANAM.

As with ANAM, treatments with other ghrelin receptor
agonists have also led to increases in GH/IGF-1 secretion. In
the Phase II study of capromorelin in elderly patients,
capromorelin prompted a rise in peak nocturnal GH levels
and a sustained, dose-related rise in IGF-1 concentrations
[27]. MK-677 has also been shown to significantly increase
GH and IGF-1 levels in healthy subjects [28]. Neither
capromorelin nor MK-677 has been studied in the context of
CACS. Macimorelin is another ghrelin receptor agonist that is
currently in development for the treatment of CACS. In a
Phase I clinical study in healthy male volunteers, macimorelin
induced a potent release of GH with concentrations peaking
about 1 h following administration [31]. A randomized pilot
clinical trial is in progress to study the efficacy and safety of
macimorelin in patients with CACS [32].

Both GH and IGF-1 treatments have been found to increase
LBM [33, 34], but increasing GH levels in the context of
ANAM treatment in cancer patients raises concerns over the
potential for stimulating tumor growth. In the Northrup et al.
study, however, the significant increase in GH produced in
response to ANAM (~2.5-fold increase) and even greater rise
in GH levels produced in response to ghrelin (~50-fold in-
crease) following repeated daily dosing for 28 days were not
associated with promotion of tumor growth in a murine model
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[24]. Notably, the A549 NSCLC adenocarcinoma tumor cell
line used in that study has been shown to possess a high
degree of expression of the IGF-1 receptor [35]. Other studies
evaluating GH-based therapies in tumor-bearing animal
models [14, 36–39] and in formal carcinogenicity studies in
tumor-free rats and mice [40] support the findings that ghrelin
and ANAM do not stimulate tumor growth. Furthermore, in a
Phase II clinical study in NSCLC patients, no statistically
significant effect on long-term overall survival was noted after
12-weeks of treatment with 50 mg or 100 mg anamorelin
compared with placebo [26].

ANAM is currently being evaluated in two Phase III clin-
ical trials in patients with advanced NSCLC and CACS
(NCT01387269, NCT01387282), and a 12-week double-
blind safety extension study (NCT01395914). Efficacy and
safety findings from these studies are expected to become
available shortly.

In conclusion, the results presented suggest that the potent
affinity of ANAM for the ghrelin receptor is associated with
dose-dependent stimulatory effects on appetite with conse-
quent weight gain in rats. In addition, ANAM has an accom-
panying stimulatory effect on GH and IGF-1. These findings
validate the outcomes observed in clinical trials to date and
support the continued investigation of ANAM as a potential
treatment of CACS.
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