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Viruses express phenotypes to alter their surrounding 
environments, thereby increasing their fitness. These surrounding 
environments include host metabolism and behavior. A recent 
study by Abrahão et al. (2) suggested a novel strategy for 
viral “sustainability” in which virions (i.e., viral particles) 
modulate the population of their predator. The viruses they 
discovered were long tailed giant viruses named Tupanviruses. 
The genomes of Tupanviruses are 1.4–1.5 Mb of DNA, harboring 
the most complete set of genes for the translation apparatus 
among known viruses with up to 70 tRNAs and 20 aminoacyl-
tRNA synthetases, implying the markedly reduced dependence 
of Tupanvirus replication on the host molecular machinery. 
Tupanviruses were consistently shown to infect a broad range 
of protist species including Acanthamoeba spp., Vermamoeba 
vermiformis, Dyctiostelium discoideum, and Willartia magna. 
This wide range of hosts is atypical among known giant 
viruses. Another interesting finding was that when infections 
by Tupanviruses were tested against the bacteria-feeder 
Tetrahymena, Tupanviruses failed to replicate in Tetrahymena; 
however, their virions exerted cytotoxic effects against this 
non-host protist. Therefore, Abrahão et al. performed in vitro 
experiments that simulated multiple virus-cell interactions, in 
which each of the Tupanviruses and Mimiviruses was cultured 
with their host (Acanthamoeba) and predator (Tetrahymena), 
the latter of which feed on giant viruses. The Tupanvirus 
population was maintained in the co-culture experiment because 
their virions diminished the activity of the predator (Tetrahymena) 
and successfully replicated in the host (Acanthamoeba). In 
contrast, Mimivirus particles, which are not toxic to Tetrahymena, 
were rapidly eaten by Tetrahymena, and, thus, did not suc-
cessfully replicate. This finding indicates an ecological strategy 
not reported for viruses whereby their “seeds (8)” (i.e., virions) 
are used as a weapon to control the population of their predators; 
however, this has not yet been validated in natural microbial 
communities.

Besides this outstanding discovery, a series of studies 
described the remarkable survival strategies of viruses that 
control viral host behavior and metabolism (33). Virophages 
are small viruses that require the dual hosts of a giant virus 
and eukaryotic cell for their replication (23). Metagenomic 
studies revealed that they are widespread in various environ-
ments (5, 30, 49, 51, 52). Fischer and Hackl (13) reported an 
interesting phenotype of mavirus, a virophage parasitizing 
the giant Cafeteria roenbergensis virus (CroV). It integrates 
into the genome of the marine protist C. roenbergensis and 
resides in the host genome as a provirophage. Genes of the 

mavirus provirophage are transcriptionally silent, but are 
activated when the host protist encounters the giant CroV 
virus, the predator of the protist. Activation of the provi-
rophage leads to mavirus virion production, the unsuccessful 
replication of CroV, and lysis of the protist. Disseminated 
infectious mavirus virions then suppress CroV replication 
and, thus, enhance the survival of the host protist population. 
Therefore, the mavirus provirophage induces the altruistic 
behavior of its host, in which host cells choose death in order 
to protect their sisters. In this manner, mavirus increases the 
chances of replicating itself (through the activation by CroV 
infection and subsequent co-infection with CroV to the protist 
host) and maintaining the host population (by suppressing the 
propagation of giant CroV viruses).

Viral strategies to manipulate host behaviors are widely 
recognized in insect-virus systems (19, 47). A notable example 
is a baculovirus (Lymantria dispar nucleopolyhedrovirus; 
LdMNPV) that causes tree-top disease in infected lepidopteran 
larvae (18, 36). Infected larvae, or caterpillars, are more 
likely to die at elevated positions on the plant they feed on. 
This unusual behavior of infected larvae is considered to 
promote dissemination of the baculovirus from the top of the 
tree. In this case, the viral gene responsible for the modulation 
of host behavior has been identified. Hoover et al. (18) 
showed that the viral egt gene coding for an ecdysteroid UDP-
glucosyl transferase, which affects the hormonal regulation 
of host development, is responsible for the climbing behavior 
(for death) of infected larvae.

Several viruses are known to be beneficial to their hosts 
(34). One example is an RNA virus (Curvularia thermal 
tolerance virus, CThTV) infecting a fungal endophyte 
(Curvularia protuberate), which is associated with a plant 
(the panic grass Dichanthelium lanuginosum). In this tripartite 
virus-fungus-plant symbiotic system, the RNA virus confers 
thermal tolerance on the plant, which grows on geothermal 
soil in Yellowstone National Park (25). This symbiotic inter-
action between viruses and their hosts, which may be more 
widespread in nature than is currently recognized (6, 31, 35), 
is a focus of an on-going Japanese scientific project, “Neo-
virology” (http://neo-virology.org/; (42)).

The viral modulation of host metabolism is also widely 
recognized, with host-derived metabolic genes often playing 
key roles in the control of host metabolism (20, 21, 29). A 
remarkable finding is the wide range of photosynthesis-
related genes found in the genomes of viruses infecting 
cyanobacteria (24, 39, 48). Virally encoded photosynthesis-
related genes (e.g., psbA encoding the photosystem II core 
reaction center protein D1) are known to be expressed during 
infection and contribute to maintaining the photosynthetic 
activity of cyanobacterial cells during the lytic infection cycle 
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of viruses (24). In this case, viruses, which eventually kill the 
infected hosts through lysis, help the infected cells to maintain 
energy production using the virally modulated photosynthesis 
machinery until viruses complete the production of virions 
that are released from the cells. It is important to note that 
89% of cyanopodovirus genomes from sunlit oceans contain 
psbA (50), and 60% of environmental psbA are virally 
encoded (namely, only 40% encoded by photosynthetic cells) 
(38).

The above described phenotypes (or “extended phenotypes 
(11)”) of viruses do not make an exhaustive list of known 
viral alterations to their surrounding environments; however, 
even an exhaustive list only represents a very small propor-
tion of the viral phenotypes in nature. There are 1031 viral 
particles on Earth (7), and previous studies estimated that 
~20–40% of marine bacteria are killed daily by viruses (15, 
40, 41). A recent study by single-cell genomics revealed that 
virally infected cells account for >60% of the cellular popula-
tion in a hot spring microbial community (27). These findings 
indicate that an abundance of unicellular organisms are present 
not as “pure cells”, but as “virocells” (14), which refers to 
cells highjacked by viruses. The term “virocell” has been 
proposed to refer to the metabolically active stage of a virus 
(i.e., a virocell=a virus). The estimated abundance of virocells 
among living cell populations in nature eloquently explains 
the ecophysiological impact of unseen viral phenotypes, such 
as the significant regulation of microbial food webs and bio-
geochemical cycles (10, 16, 17, 28).

In this issue of Microbes and Environments, Mihara et al. 
(26) reported that the taxonomic richness of a family of giant 
DNA viruses (i.e., the “Megaviridae” family (4)) may exceed 
that of the domain Bacteria. The family “Megaviridae” 
includes the Tupanviruses and CroV cited above, and the 
number of isolated members together with other families of 
the order “Megavirales (9)” is currently increasing (1, 3, 12, 
32, 43, 44). Only three domains of life have been identified 
for the cellular world, whereas 130 families have been 
described for the virosphere (see GenomeNet Taxonomy 
Summary; http://www.genome.jp/tools-bin/taxsummary). It 
currently remains unclear whether each of these viral families 
has the large genetic diversity of “Megaviridae”; however, 
notable diversity has been recognized in an RNA virus family 
(22), although its precise assessment will require an applica-
tion of modern methods (e.g., (37, 45, 46) to various environ-
mental samples. Nevertheless, the diversity of viruses appears 
to represent the wide range of strategies for viral survival in 
environments. In other words, the diversity of viruses may 
represent the viral potential to change their surroundings, 
even possibly the global environment.
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