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Abstract
The SARS-CoV-2 helicase Nsp13 is a promising target for developing anti-COVID drugs. In the present study, we have 
identified potential natural product inhibitors of SARS-CoV-2 Nsp13 targeting the ATP-binding site using molecular dock-
ing and molecular dynamics (MD) simulations. MD simulation of the prepared crystal structure of SARS-CoV-2 Nsp13 was 
performed to generate an ensemble of structures of helicase Nsp13 capturing the conformational diversity of the ATP-binding 
site. A natural product library of more than 14,000 phytochemicals from Indian medicinal plants was used to perform virtual 
screening against the ensemble of Nsp13 structures. Subsequently, a two-stage filter, first based on protein–ligand docking 
binding energy value and second based on protein residues in the ligand-binding site and non-covalent interactions between 
the protein residues and the ligand in the best-docked pose, was used to identify 368 phytochemicals as potential inhibitors 
of SARS-CoV-2 helicase Nsp13. MD simulations of the top inhibitors complexed with protein were performed to confirm 
stable binding, and to compute MM-PBSA based binding energy. From among the 368 potential phytochemical inhibitors, 
the top identified potential inhibitors of SARS-CoV-2 helicase Nsp13 namely, Picrasidine M, (+)-Epiexcelsin, Isorhoeadine, 
Euphorbetin and Picrasidine N, can be taken up initially for experimental studies.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is an enveloped positive-sense RNA virus belong-
ing to the family Coronaviridae that is the causative patho-
gen of the ongoing coronavirus disease 2019 (COVID-19) 
pandemic [1]. In humans, the clinical features of this new 
disease ranges from asymptomatic state to acute respira-
tory distress syndrome [2]. Several small molecules with 
strong in vitro antiviral activity against SARS-CoV-2 have 
been identified [3, 4] and are under different stage of clinical 
trials. Remdesivir, one such small molecule, was granted 
emergency use authorization by US Food and Drug Admin-
istration (FDA) for the treatment of COVID-19 [5]. There is 
an increasing need to develop anti-COVID drugs, especially, 
those targeting the key proteins of SARS-CoV-2.

The SARS-CoV-2 genome has been reported to have 14 
open reading frames which encode for the 27 viral proteins 
[6]. The 5’-terminus of the genome has two genes orf1ab 
and orf1a which code for two polyproteins pp1ab and pp1a, 
respectively. pp1ab and pp1a are cleaved by two proteases 
namely, papain‐like protease (PLpro or Nsp3) and 3C‐like 
cysteine protease (3CLpro or Nsp5), into 15 non-structural 
proteins, Nsp1 to Nsp10 and Nsp12 to Nsp16 [6]. In con-
trast, the 3’-terminus of the genome codes for the 4 struc-
tural proteins, namely, spike (S), envelope (E), matrix (M) 
and nucleocapsid (N), and 8 accessory proteins (3a, 3b, p6, 
7a, 7b, 8b, 9b and orf14) [6]. The 15 non-structural proteins 
in SARS-CoV-2 comprise the viral replication and transcrip-
tion complex which is essential for the coronavirus life cycle 
[7]. Of the 15 non-structural proteins, papain‐like protease 
(PLpro or Nsp3), 3C‐like cysteine protease (3CLpro or 
Nsp5), RNA-dependent RNA polymerase (RdRp or Nsp12) 

and helicase (Nsp13) are among the highly studied targets 
for identifying anti-COVID drugs [8].

SARS-CoV-2 helicase Nsp13 has both ATPase and heli-
case activity, as it unwinds the RNA helices in an ATP-
dependent manner [9]. Notably, due to its high sequence 
conservation across the coronavirus family, Nsp13 is con-
sidered an attractive target for the development of antivi-
ral drugs [10, 11]. Also, it was shown that SARS-CoV-2 
helicase Nsp13 can hydrolyze all types of NTPs including 
ATP to unwind the RNA helices [9]. Therefore, the known 
ATP-binding site of the helicase Nsp13 is a promising tar-
get for effective inhibition. In this direction, the recently 
deposited crystal structure of SARS-CoV-2 helicase Nsp13 
(PDB 6ZSL) has made development of anti-COVID drugs 
via targeting of Nsp13 more viable. Notably, the Nsp13 of 
SARS-CoV and SARS-CoV-2 share 99.8% sequence iden-
tity [11, 12]. Moreover, similar to the SARS-CoV Nsp13 
structure [10], the SARS-CoV-2 Nsp13 adopts a triangu-
lar pyramid shape with five domains namely, the RecA-
like domains 1A and 2A, the 2B domain, the zinc-binding 
domain (ZBD) and the stalk domain (Fig. 1). Thus, potential 
drugs against SARS-CoV-2 Nsp13 may have broad activity 
against β–coronaviruses.

Given the urgent need to identify anti-COVID drugs, 
several computational studies in the past year have under-
taken virtual screening of small molecule libraries against 
key SARS-CoV-2 non-structural proteins especially 3CLpro, 
RdRp and PLpro [13–15]. Some screening studies [12, 
16–19] have also shown that SARS-CoV-2 helicase Nsp13 
is a good target for potential inhibitors. In this work, we 
have identified through computational approaches potential 
natural product inhibitors of SARS-CoV-2 helicase Nsp13 
which can target the ATP-binding site.

Fig. 1  Cartoon representation 
of the prepared crystal structure 
of SARS-CoV-2 helicase Nsp13 
(PDB 6ZSL). The figure shows 
the five domains in the Nsp13 
structure, namely, zinc binding 
domain (ZBD) colored in red, 
the stalk domain colored in 
yellow, the 1B domain colored 
in green, the RecA-like domains 
1A and 2A colored in blue 
and orange, respectively. The 
ATP-binding site of the Nsp13 
with six key residues involved 
in ATP hydrolysis is shown in 
expanded view
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Plant-based natural products are a major contributor to 
the existing approved drug space [20]. Further, medicinal 
plants are integral to the traditional Indian systems of medi-
cine including Ayurveda, Siddha and Unani, and Indian 
herbs have been used to treat several human diseases for 
centuries. Recently, several herbal medicines have been pro-
posed for treating COVID-19 [21, 22]. Previously, we have 
created IMPPAT [23], the largest database on phytochemi-
cals of the Indian medicinal plants. In the present work, we 
have used a small molecule library of 14,011 phytochemi-
cals from Indian medicinal plants, mainly compiled from 
IMPPAT database [23], to perform virtual screening with the 
goal of identification of potential phytochemical inhibitors 
of SARS-CoV-2 helicase Nsp13 targeting the ATP-binding 
site. Picrasidine M, (+)-Epiexcelsin, Isorhoeadine, Euphor-
betin and Picrasidine N identified here as the top potential 
phytochemical inhibitors of SARS-CoV-2 helicase Nsp13, to 
start with, can be taken up for experimental studies.

Methods

Virtual screening library of phytochemicals

We have earlier built the IMPPAT database [23] (https:// cb. 
imsc. res. in/ imppat) which is the largest resource on phyto-
chemicals of Indian medicinal plants or herbs to date. In this 
work, we have used a ligand library of 14,011 phytochemi-
cals, and this screening library was obtained by combining 
phytochemicals in IMPPAT [23, 24] with additional data 
from other literature sources [25–40]. Subsequently, an eval-
uation of these 14,011 phytochemicals based on the widely-
used drug-likeness filter, Lipinski’s rule of five (RO5) [41], 
led to a subset of 10,510 phytochemicals that passed the R05 
filter. Thereafter, we retrieved the three-dimensional (3D) 
structures of these 10,510 drug-like phytochemicals from 
PubChem [42] for virtual screening. Lastly, the 3D struc-
tures of the 10,510 phytochemicals were energy-minimized 
using OpenBabel [43] and converted to .pdb format from 
.sdf format.

Protein structure of SARS‑CoV‑2 Nsp13

In this investigation, we have used the crystal structure 
with 1.94 Å resolution (PDB 6ZSL) of the SARS-CoV-2 
helicase Nsp13 which was downloaded from Protein Data 
Bank (RCSB PDB; https:// www. rcsb. org/). As of 19 Feb-
ruary 2021, there are more than 50 crystal structures of 
SARS-CoV-2 Nsp13 in PDB. However, the crystal structure 
6ZSL selected for this investigation has been validated by 
Wlodawer et al. [44], and furthermore, is the only SARS-
CoV-2 Nsp13 structure not from Pan‐Dataset Density 
Analysis (PanDDA). In the crystal structure 6ZSL for the 

SARS-CoV-2 Nsp13, we have gap-filled the structural coor-
dinates for three missing amino acid residues (339–341) by 
aligning to the crystal structure for the SARS-CoV Nsp13 
(PDB 6JYT). Subsequently, the gap-filled structure of 
SARS-CoV-2 Nsp13 was energy-minimized using the mini-
mize structure utility of UCSF Chimera [45].

Figure 1 shows the cartoon representation of this prepared 
crystal structure of SARS-CoV-2 Nsp13 wherein six impor-
tant residues in the ATP-binding site have been highlighted 
[10, 12]. The SARS-CoV-2 Nsp13 adopts a triangular pyra-
mid shape with five domains similar to the SARS-CoV 
Nsp13 (Fig. 1). The triangular base of the pyramid is formed 
by three domains in SARS-CoV-2 Nsp13, the 2B domain 
and the two RecA-like domains 1A and 2A. The remaining 
two domains in SARS-CoV-2 Nsp13, the N-terminal zinc 
binding domain (ZBD) and the stalk domain, are directed 
toward the apex of the pyramid.

Molecular dynamics simulation

In this work, we have performed molecular dynamics (MD) 
simulations of SARS-CoV-2 Nsp13 protein structures using 
GROMACS 5.1.5 [46] with GROMOS96 54a7 force field 
[47]. Specifically, MD simulations were performed for: 
(a) the prepared crystal structure of SARS-CoV-2 Nsp13 
(uncomplexed protein), and (b) the protein–ligand com-
plexes of SARS-CoV-2 Nsp13 with predicted top five phy-
tochemical inhibitors. The topology of the top five phyto-
chemical inhibitors of SARS-CoV-2 Nsp13 was generated 
using the automated topology builder (ATB) version 3.0 
(https:// atb. uq. edu. au/) [48].

To prepare the system for MD simulation, the uncom-
plexed protein or the protein–ligand complex was placed at 
the center of a cubic box with periodic boundary conditions, 
and thereafter, the system was solvated by adding simple 
point-charge (SPC) water and neutralized by adding thirteen 
chloride  (Cl−) ions. Next, the system was energy-minimized 
using the steepest descent algorithm. Then, the solvated and 
neutralized system was subjected to a NVT simulation of 
1 ns with 2 fs time step, wherein the number of particles, 
volume and temperature of the system is kept constant. Next, 
the pressure of the system was equilibrated to 1 bar during 
a NPT simulation of 1 ns with 2 fs time step, wherein the 
number of particles, pressure, and temperature of the system 
is kept constant. The position of both the protein and ligand 
were restrained during the above-mentioned NVT and NPT 
simulations.

Thereafter, a production MD run was performed, after 
removing the position restraint on protein and ligand, for a 
period of: (a) 100 ns with 2 fs time step for the SARS-CoV-2 
Nsp13 uncomplexed protein, and (b) 50 ns with 2 fs time 
step for the SARS-CoV-2 Nsp13 protein in complex with 
each of the top five phytochemical inhibitors. During the 

https://cb.imsc.res.in/imppat
https://cb.imsc.res.in/imppat
https://www.rcsb.org/
https://atb.uq.edu.au/
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production MD run, the structural coordinates of the system 
were written to the trajectory file after every 2 ps. Further, 
the system temperature and pressure were maintained at 
310 K and 1 bar using the v-rescale temperature [49] and 
Parrinello-Rahman pressure coupling method [50], respec-
tively. Other parameters for the production MD simulation 
were fixed as per our recently published study [24].

Finally, using GROMACS scripts and the trajectories 
obtained from the MD simulations, we have computed the 
following quantities: (a) radius of gyration (Rg) of the pro-
tein, (b) root mean square deviation (RMSD) of the Cα atoms 
of the protein backbone, (c) root mean square fluctuation 
(RMSF) of the Cα atoms of the protein backbone, (d) root 
mean square deviation (RMSD) of the heavy atoms of the 
ligand, and (e) distance between the center of mass of the 
ligand and center of mass of the key binding site residues 
of the protein.

Generation of an ensemble of Nsp13 protein 
structure conformations

The trajectory from the MD simulation of the prepared crys-
tal structure of SARS-CoV-2 Nsp13 protein without any 
bound ligands was used to generate an ensemble of protein 
structures that capture the conformational diversity of the 
ATP-binding site residues of the helicase. The MD simu-
lation trajectory from 60 to 100 ns was subjected to geo-
metric clustering using the Daura algorithm [51] based on 
the conformations of the ATP-binding site residues within 
8 Å from the two phosphate ions in the crystal structure 
of SARS-CoV-2 Nsp13. Using a clustering cutoff of 1.2 Å, 
we were able to identify 23 clusters from the SARS-CoV-2 
Nsp13 protein simulation, from which we selected ten rep-
resentative mid-point structures corresponding to the top 
ten populated clusters accounting for 97.6% of the sampled 
conformations of the ATP-binding site residues. Thus, along 
with the prepared crystal structure of SARS-CoV-2 Nsp13, 
ten structures based on clustering from the MD simulation 
trajectory of the protein were selected for virtual screening.

Molecular docking

Molecular docking of the energy-minimized 3D structures of 
phytochemicals in the ligand library against the structures of 
SARS-CoV-2 Nsp13 was performed using AutoDock Vina 
[52]. The structures of SARS-CoV-2 Nsp13 considered for 
molecular docking were: (a) the prepared crystal structure 
of Nsp13, and (b) ten selected structures from geometric 
clustering of the MD simulation trajectory between 60 and 
100 ns for the Nsp13 protein.

To perform docking, the structures of small mol-
ecule ligands and protein in.pdb file format were con-
verted to .pdbqt format using prepare_ligand4.py and 

prepare_receptor4.py scripts, respectively, from AutoDock-
Tools [53]. Thereafter, the search space center and dimen-
sion for the protein–ligand docking in AutoDock Vina for 
the above-mentioned eleven structures of SARS-CoV-2 
Nsp13 were manually determined by considering the resi-
dues in the ATP-binding site. Subsequently, protein–ligand 
docking was performed using AutoDock Vina by setting the 
exhaustiveness parameter to 8.

Determination of protein–ligand interactions

Using pdb-tools [54], we have prepared a combined struc-
ture of the best-docked conformation of a phytochemical 
obtained from AutoDock Vina (with the lowest binding 
energy) and the prepared crystal structure of SARS-CoV-2 
Nsp13. Thereafter, the combined structure file of a pro-
tein–ligand complex was analyzed for non-covalent inter-
actions between ligand and protein residues using a custom 
script as described in our earlier work [24]. The non-cova-
lent interactions identified were hydrogen bonds and hydro-
phobic interactions. The atoms of protein and ligand are 
reported to have hydrophobic interactions if the distance 
between a carbon atom of protein (or ligand) and a carbon, 
halogen or sulfur atom of ligand (or protein) is ≤ 4 Å. Note 
that the hydrogen, chalcogen or halogen bonds identified 
between the atoms of protein and ligand are not reported 
again as hydrophobic interactions [24].

ADMET prediction for phytochemical inhibitors

Based on the computed Absorption, Distribution, Metabo-
lism, Excretion and Toxicity (ADMET) properties using 
SwissADME [55] and vNN-ADMET [56], we have evalu-
ated the pharmacokinetic properties and potential toxicity 
of the predicted phytochemical inhibitors for SARS-CoV-2 
Nsp13 from this study.

MM‑PBSA calculation

In this study, the Molecular Mechanics Poisson-Boltzmann 
Surface Area (MM-PBSA) method was used to compute the 
binding energy of only the top five phytochemical inhibitors 
of SARS-CoV-2 Nsp13. From the 50 ns MD simulation tra-
jectories for each of the protein–ligand complex, trajectories 
were extracted at an interval of 1 ns between 20 and 50 ns 
after equilibration. These were used to calculate the binding 
energy using g_mmpbsa [57, 58] of the phytochemical to 
SARS-CoV-2 Nsp13.
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Results and discussion

The helicase Nsp13 is one of the 15 non-structural pro-
teins coded by the SARS-CoV-2 genome and shares a high 
sequence conservation across the family Coronaviridae [9, 
12]. This protein is a critical component of the replication 
and transcription complex and it unwinds the RNA helices in 
a ATP-dependent manner similar to the SARS-CoV helicase 
Nsp13 [9–11].

Virtual screening

In this work, we have identified, using the largest small mol-
ecule library of phytochemicals from Indian herbs, potential 
phytochemical inhibitors of SARS-CoV-2 helicase Nsp13 
that can target the ATP-binding site (Fig. 2). From the small 
molecule library of 14,011 phytochemicals which was 
compiled based on information in our IMPPAT database 
[23, 24], we identified 10,510 phytochemicals as drug-like 
(Methods).

Figure 1 shows the prepared crystal structure of SARS-
CoV-2 Nsp13 with emphasis on the six key residues in the 
ATP-binding site. Previously, Jia et al. [10] had identified 
six residues, namely, K288, S289, D374, E375, Q404 and 
R567, in SARS-CoV Nsp13 to be crucial for ATP hydroly-
sis. These six key ATP-binding site residues are also con-
served in SARS-CoV-2 Nsp13. SARS-CoV-2 Nsp13 and 
SARS-CoV Nsp13 share 99.8% sequence identity with only 
one varying residue which is away from the ATP-binding 
site and RNA-binding site [11, 12].

In the first stage of filtering of ligands for potential inhibi-
tors, we have considered the binding energy of the phyto-
chemicals with the ensemble structures, as described in the 
Methods section, of SARS-CoV-2 Nsp13 which represented 
the conformational landscape of the binding site. To decide 
on the binding energy cutoff for this filtering, we used the 
known experimental information on binding from the twelve 
PanDDA co-crystallized structures of SARS-CoV-2 Nsp13 
with ligands bound to the ATP-binding site, namely, PDB 
5RM2, 5RM7, 5RLW, 5RL9, 5RLO, 5RLY, 5RLJ, 5RLI, 
5RLV, 5RLR, 5RLN and 5RLS. The binding energy of 

Fig. 2  Workflow for the identifi-
cation of potential phytochemi-
cal inhibitors of SARS-CoV-2 
helicase Nsp13
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the co-crystallized ligand in the experimentally observed 
binding pose in the respective co-crystallized structure 
of SARS-CoV-2 Nsp13 was estimated using score_only 
option of AutoDock Vina (Supplementary Table S1). From 
the analysis of the twelve PanDDA co-crystallized struc-
tures of SARS-CoV-2 Nsp13, the best binding energy value 
of − 5.14 kcal/mol obtained for ligand UXG in the structure 
PDB 5RM2 was used as the cutoff to filter phytochemicals in 
the protein–ligand docking. Overall, this first stage of filter-
ing of ligands based on known experimental evidence led to 
a filtered set of 5260 phytochemicals.

In the second stage of filtering of ligands for potential 
inhibitors, we used the interactions with the residues in the 
ATP-binding site based on molecular docking performed 
with the crystal structure conformation. Specifically, we 
checked that the phytochemical either binds to or forms 
non-covalent interactions with all six key ATP-binding site 
residues. At the end of the second stage of filtering, we iden-
tified 368 phytochemicals (H1–H368) as potential inhibitors 
of SARS-CoV-2 Nsp13 targeting the crucial ATP-binding 
site (Supplementary Table S2).

Interestingly, several of the Indian medicinal plants or 
herbs that produce the 368 phytochemicals H1 to H368 iden-
tified here as potential inhibitors of SARS-CoV-2 Nsp13 
are mentioned for potential antiviral use in traditional medi-
cine (Supplementary Table S3). Furthermore, an analysis of 
the best-docked pose with the prepared crystal structure of 
SARS-CoV-2 Nsp13 shows the extent of non-covalent inter-
actions between the binding site residues of the protein and 
the complexed inhibitor (Supplementary Table S4). These 
are supplemented by the predicted physicochemical and 
ADMET properties of the 368 potential inhibitors of SARS-
CoV-2 Nsp13 identified here (Supplementary Table S5).

Description of the top ten potential phytochemical 
inhibitor complexes of SARS‑CoV‑2 Nsp13

The PubChem chemical identifier, chemical name, IUPAC 
name and chemical structure in SMILES format have been 
provided for the 368 potential phytochemical inhibitors 
(H1–H368) of SARS-CoV-2 Nsp13 identified here (Supple-
mentary Table S2). In this section, a detailed description of 
the top ten potential phytochemical inhibitors (H1–H10) that 
have protein–ligand docking binding energies <  − 8.5 kcal/
mol with the prepared crystal structure of SARS-CoV-2 
Nsp13 (Tables 1 and 2) are discussed. Table 1 also pro-
vides the list of Indian herbs which can produce these top 
ten potential phytochemical inhibitors of SARS-CoV-2 
Nsp13, whereas Table 2 provides the list of protein residues 
which form hydrogen bond or hydrophobic interaction with 
the top potential phytochemical inhibitors H1 to H10. The 
two-dimensional (2D) chemical structures and the hydro-
gen bond interactions in the protein–ligand complex of these 
top ten inhibitors are shown in Figs. 3 and 4, respectively. 
Of these only the top five, namely, H1 (Picrasidine M), H2 
((+)-Epiexcelsin), H3 (Isorhoeadine), H4 (Euphorbetin) and 
H5 (Picrasidine N), were examined in more detail through 
further MD simulations to estimate their binding energies 
using MM-PBSA (Table 3).

Phytochemicals H1 (Picrasidine M) and H5 (Picrasi-
dine N) are dimeric β-carboline-type alkaloid produced 
by the herb Picrasma quassioides. The herb Picrasma 
quassioides has been reported to have antiviral, antifungal 
and antiparasitic activities [25, 59, 60]. Additionally, the 
β-carboline alkaloids from Picrasma quassioides have been 
experimentally found to inhibit the RNA replication of the 
plant pathogen Tobacco mosaic virus (TMV) [61]. From 
Fig. 4a it is seen residue S289 forms 2 hydrogen bonds with 
H1 (C–H···O type and C–H···N type), and residues Q404 
and R567 form 1 N–H···O type hydrogen bond each with 

Table 1  Plant sources of the 
top ten potential phytochemical 
inhibitors of SARS-CoV-2 
Nsp13

For each inhibitor, the table gives the phytochemical symbol, docking binding energy in kcal/mol, chemical 
name and herbal source. Plants for which there is evidence in traditional medicine literature for antiviral 
use are shown in bold and marked with an [*] sign

Phytochemi-
cal symbol

Docking binding 
energy (kcal/mol)

Chemical name Plant source

H1 − 10.2 Picrasidine M Picrasma quassioides [*]
H2 − 9 (+)-Epiexcelsin Litsea verticillata
H3 − 8.9 Isorhoeadine Papaver rhoeas [*]
H4 − 8.9 Euphorbetin Euphorbia lathyris
H5 − 8.9 Picrasidine N Picrasma quassioides [*]
H6 − 8.8 Ovigerine Hernandia guianensis,Hernandia nymphaeifolia
H7 − 8.8 Cassamedine Cassytha filiformis
H8 − 8.6 Hernandonine Hernandia guianensis,Hernandia nymphaeifolia
H9 − 8.6 Picriside A Picris hieracioides
H10 − 8.6 Convolvidine Convolvulus prostratus [*]
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H1. In case of H5, residues S289, Q404 and R567, which 
are among the six key ATP-binding site residues, form 1 
C–H···O type, 1 N–H···O type and 2 N–H···O type hydrogen 
bonds with H5, respectively (Fig. 4e).

Phytochemical H2 ((+)-Epiexcelsin) is a lignan produced 
by the herb Litsea verticillata [62]. Extract of Litsea verti-
cillata has been experimentally found to have antiviral and 
anti-HIV activities [63]. From Fig. 4b it is seen, the residues 
K288 and S289 form 2 hydrogen bonds (C–H···O type and 
C–H···N type) and 1 hydrogen bond (N–H···O type) with 
H2, respectively.

Phytochemical H3 (Isorhoeadine) is a rhoeadine alka-
loid produced by the herb Papaver rhoeas [59]. H3 forms 3 
C–H···O type hydrogen bonds with S289, E375 and Q404, 
2 C–H···N type hydrogen bonds with R443 and R567, 
and 2 N–H···O type hydrogen bonds with K288 and Q404 
(Fig. 4c).

Phytochemical H4 (Euphorbetin) is a bicoumarin pro-
duced by the herb Euphorbia lathyris [64]. Figure 4d shows 
the extensive hydrogen bond network between H4 and the 
protein residues. Residues K288, S289, D374, E375 and 
R567 form 2 hydrogen bonds (C–H···O type and N–H···O 
type), 4 hydrogen bonds (2 of N–H···O type, 1 of C–H···O 
type and 1 of O–H···O type), 1 hydrogen bond (O–H···O 
type), 1 hydrogen bond (C–H···O type) and 2 hydrogen 
bonds (N–H···O type) with H4, respectively.

Phytochemicals H6 (Ovigerine) and H8 (Hernandonine) 
are both produced by the herbs Hernandia guianensis and 
Hernandia nymphaeifolia. Figure 4f shows the hydrogen 
bonds H6 forms with residues of Nsp13. In case of H8, resi-
dues K288, S289, Q404, and R567 form 1 hydrogen bond 
(C–H···N type), 4 hydrogen bonds (2 of C–H···O type, 1 
of N–H···O type and 1 of C–H···N type), 1 hydrogen bond 
(N–H···N type) and 1 hydrogen bond (C–H···N type) with 
H8, respectively (Fig. 4h).

Phytochemical H7 (Cassamedine) is an oxoaporphine 
alkaloid produced by the herb Cassytha filiformis [25, 59]. 
From Fig. 4g it is seen, the residues S289, Q404 and R567 
form 1 hydrogen bond (O–H···O type), 2 hydrogen bonds 
(N–H···O type and C–H···N type) and 1 hydrogen bond 
(C–H···N type) with H7, respectively.

Phytochemical H9 (Picriside A) is a glycoside produced 
by the herb Picris hieracioides [33]. H9 forms an extensive 
network of 17 hydrogen bonds with the residues of Nsp13 
(Fig. 4i).

Phytochemical H10 (Convolvidine) is a tropane alkaloid 
produced by the herb Convolvulus prostratus [26]. Resi-
dues S289, D374, E375 and Q404 form 2 hydrogen bonds 
(C–H···O type), 1 hydrogen bond (C–H···O type), 1 hydro-
gen bond (C–H···O type) and 2 hydrogen bonds (N–H···O 
type) with H10, respectively (Fig. 4j).

In order to use the knowledge-based information from 
the PanDDA co-crystallized structures used for our analysis 

Table 2  The protein residues of SARS-CoV-2 Nsp13 that are involved in hydrogen bond and hydrophobic interaction with the top ten potential 
phytochemical inhibitors H1 to H10 in the best-docked pose

For each protein–ligand complex the table lists the docking binding energy in kcal/mol, number of hydrogen bonds, and the residues forming 
hydrogen bond and hydrophobic interactions with the ligand atoms. Note that the hydrophobic interactions listed here are between the carbon 
atom of the protein residue and the carbon, halogen or sulfur atom of the ligand

Protein–ligand complex Docking binding 
energy (kcal/mol)

Number of 
hydrogen 
bonds

Hydrogen bond interaction residues Hydrophobic interaction residues

Nsp13-H1 − 10.2 9 P284, G285, S289, S310, Q404, R443, 
R567

G285, G287, K288, S289, A312, A313, 
E375, M378, G538

Nsp13-H2 − 9 7 G287, K288, S289, S310, R443, S535 P284, K288, A312, A313, A316, E375, 
G538

Nsp13-H3 − 8.9 7 K288, S289, E375, Q404, R443, R567 G285, K288
Nsp13-H4 − 8.9 15 P284, G285, K288, S289, D374, E375, 

R443, R567
K288, A313, A316, D374, G538

Nsp13-H5 − 8.9 13 P284, G285, G287, S289, K320, Q404, 
R443, G538, R567

G285, K288, K320, E375, E540

Nsp13-H6 − 8.8 4 D374, Q404, R443, R567 G285, K288, A316, E375, G538
Nsp13-H7 − 8.8 7 S289, A316, Q404, R443, R567 K288, S289, G538
Nsp13-H8 − 8.6 11 G285, K288, S289, A316, Q404, R443, 

G538, R567
K288, A313, A316, E375

Nsp13-H9 − 8.6 17 G285, G287, S289, A316, E375, Q404, 
R443, G538, R567

G285, G287, K288, E375

Nsp13-H10 − 8.6 10 S264, G287, S289, D374, E375, Q404, 
R442

S264, G285, G287, K288, H290, E375, 
G400, Q404, L438, R442, G538
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as mentioned earlier, we have examined the ten PanDDA 
co-crystallized structures of SARS-CoV-2 Nsp13 with 
ligands bound near the ATP-binding site, namely, PDB 

5RM2, 5RM7, 5RLW, 5RL9, 5RLO, 5RLY, 5RLJ, 5RLV, 
5RLN and 5RLS, in relation to the top five phytochemicals 
identified as potential inhibitors of SARS-CoV-2 Nsp13. 

Fig. 3  Chemical name and 2D structure for the top ten potential phytochemical inhibitors of SARS-CoV-2 Nsp13
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The ligands from PanDDA co-crystallized structures PDB 
5RLI and 5RLR were not considered for comparison as they 
were found to be structurally similar to the ligand present 
in PDB 5RLJ. The comparison of the binding modes of the 
top five phytochemical inhibitors of Nsp13 and the ligands 
from the PanDDA co-crystallized structures reveals distinct 
modes of binding for the top inhibitors that are different 
from the ligands of the PanDDA structures (Supplemen-
tary Figure S1a–d). Specifically, the binding mode of the 
top phytochemical inhibitor H1 in the ATP-binding site of 
Nsp13 doesn’t overlap with that of the ligand N0E from the 
PanDDA structure PDB 5RM7, which has the highest 2D 
structural similarity with H1 (Supplementary Figure S1a, 
d). The 2D structural similarity was calculated using Tani-
moto coefficient along with ECFP4 fingerprint as described 
in Vivek-Ananth et al. [65]. The above observations suggest 
the need for further experimental examination through co-
crystallized structures and in vitro binding studies for the 
phytochemical inhibitors uncovered here.

MD analysis of the protein–ligand complexes 
of the top five phytochemical inhibitors

Based on the 50 ns MD simulations of the protein–ligand 
complexes of the top five phytochemical inhibitors of SARS-
CoV-2 Nsp13 identified here, namely, Picrasidine M (H1), 
(+)-Epiexcelsin (H2), Isorhoeadine (H3), Euphorbetin (H4) 
and Picrasidine N (H5) (Methods), the structural character-
istics of the complexes were evaluated (Fig. 5).

Figure  5a shows the Rg of SARS-CoV-2 Nsp13 in 
complex with the top five inhibitors. Rg remains largely 
compact throughout the MD simulation of the five pro-
tein–ligand complexes (average Rg values are Nsp13-
H1 = 27.836 ± 0.164  Å, Nsp13-H2 = 27.968 ± 0.147  Å, 
N s p 1 3 - H 3  =  2 7 . 8 7 8  ±  0 . 1 5 4   Å ,  N s p 1 3 -
H4 = 28.071 ± 0.174 Å, and Nsp13-H5 = 27.982 ± 0.167 Å). 
The RMSD value of the Cα atoms of SARS-CoV-2 Nsp13 
in complex with the top five inhibitors stabilizes after 20 ns 
(Fig. 5b; average RMSD Cα over 20 ns–50 ns are Nsp13-
H1 = 2.714 ± 0.222 Å, Nsp13-H2 = 3.823 ± 0.288 Å, Nsp13-
H3 = 3.050 ± 0.226 Å, Nsp13-H4 = 4.010 ± 0.295 Å, and 
Nsp13-H5 = 2.971 ± 0.226 Å). In addition, the RMSF value 
per residue in the MD simulations of the SARS-CoV-2 
Nsp13 in complex with the top five inhibitors closely fol-
lows the RMSF value per residue in the MD simulation 
of the SARS-CoV-2 Nsp13 uncomplexed protein (Fig. 5c; 
Supplementary Figure S2). The superimposed snapshots at 
20 ns, 30 ns, 40 ns and 50 ns from the MD simulations 
of the protein–ligand complexes Nsp13-H1, Nsp13-H2, 
Nsp13-H3, Nsp13-H4 and Nsp13-H5 shows the conforma-
tional variations upon ligand binding (Supplementary Figure 
S3a–e). This is also seen by the RMSD of the top inhibi-
tors (H1–H5) (Fig. 5d). The binding of the inhibitors to the 

protein is good as characterized by the distance between the 
center of masses of the inhibitors (H1–H5) and the six key 
ATP-binding site residues namely, K288, S289, D374, E375, 
Q404 and R567 (Supplementary Figure S4).

Molecular Mechanics Poisson–Boltzmann Surface Area 
(MM-PBSA) method has been reported to be more accurate 
in predicting the protein–ligand binding energy in compari-
son with molecular docking [66]. The MM-PBSA based 
binding energy of the top five phytochemical inhibitors of 
SARS-CoV-2 Nsp13 (Table 3) indicates the importance 
of the relative contributions of the van der Waals energy, 
the electrostatic energy, the polar solvation energy, and the 
solvent accessible surface area energy to the binding. The 
top five phytochemical inhibitors identified here, namely, 
Picrasidine M (H1), (+)-Epiexcelsin (H2), Isorhoeadine 
(H3), Euphorbetin (H4) and Picrasidine N (H5), have MM-
PBSA based binding energy values of − 13.211 ± 5.507 kcal/
mol, − 21.329 ± 4.067  kcal/mol, − 17.618 ± 3.846  kcal/
mol, − 6.564 ± 5.422 kcal/mol and − 11.76 ± 3.253 kcal/mol, 
respectively.

The comparative analysis with the ligands of the Pan-
DDA SARS-CoV-2 Nsp13 co-crystallized structures shows 
the distinct binding mode of the top inhibitor Picrasidine M 
(H1) (Supplementary Figure S1a–d). Further, the analysis of 
the docked pose with SARS-CoV-2 Nsp13 reveals the extent 
of interactions Picrasidine M makes with the ATP-binding 
site residues of Nsp13 (Fig. 4a; Table 2; Supplementary 
Table S4). In the MD simulation, Picrasidine M has exhib-
ited stable interactions with SARS-CoV-2 Nsp13 (Fig. 5; 
Supplementary Figure S4). Therefore, the phytochemical 
Picrasidine M is likely to be a good potential inhibitor of 
SARS-CoV-2 Nsp13 which must be taken forward as a lead 
compound for experimental and clinical studies.

Conclusions

More than 3.7 million people have died due to COVID-19 
which is likely to become endemic past the pandemic phase. 
Computational approaches such as molecular docking and 
molecular dynamics simulation can be used to accelerate 
the identification and development of anti-COVID drugs. 
SARS-CoV-2 Nsp13 is one of the key components of the 
viral replication and translation complex, and has been 
identified as one of the key targets for development of anti-
COVID drugs [8, 11]. In this study, we have computationally 
screened a small molecule library of 14,011 phytochemicals 
against the ATP-binding site of the SARS-CoV-2 helicase 
Nsp13.

Natural products have directly or indirectly contributed 
to many FDA approved drugs [20] and the therapeutic activ-
ity space of the diverse natural product space is still largely 
unmapped and unexplored. This motivated this virtual 
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Fig. 4  Cartoon representation of the hydrogen bond interactions in the 
best-docked pose of the top ten potential phytochemical inhibitors of 
SARS-CoV-2 helicase Nsp13. In this figure, hydrogen bond interactions 
are shown as yellow colored dotted lines between the residues of Nsp13 
and the atoms of a H1, b H2, c H3, d H4, e H5, f H6, g H7, h H8, i H9 
and j H10. The carbon atoms of the ligand are colored in green and the 
carbon atoms of the residues in Nsp13 are colored in cyan. The Nsp13 
residues forming hydrogen bond interactions with the ligand are labeled 
with their one letter amino acid code and their residue number

◂

Table 3  MM-PBSA based binding energies for the protein–ligand complexes of the top five phytochemical inhibitors of SARS-CoV-2 Nsp13

Protein–ligand 
complex

Binding energy (kcal/mol) Van der waals energy 
(kcal/mol)

Electrostatic energy 
(kcal/mol)

Polar solvation 
energy (kcal/mol)

SASA energy (kcal/mol)

NSP13-H1 − 13.211 ± 5.507 − 52.006 ± 3.019 − 14.428 ± 2.359 58.398 ± 6.429 − 5.174 ± 0.270
NSP13-H2 − 21.329 ± 4.067 − 44.04 ± 2.424 − 6.027 ± 1.608 33.337 ± 5.045 − 4.599 ± 0.234
NSP13-H3 − 17.618 ± 3.846 − 44.531 ± 3.207 − 5.494 ± 2.005 36.548 ± 4.424 − 4.141 ± 0.320
NSP13-H4 − 6.564 ± 5.422 − 23.793 ± 4.342 − 49.666 ± 7.567 70.915 ± 10.753 − 4.02 ± 0.248
NSP13-H5 − 11.76 ± 3.253 − 47.293 ± 2.625 − 13.453 ± 2.402 53.897 ± 4.958 − 4.912 ± 0.334

Fig. 5  Based on the 50  ns MD simulations of the protein–ligand 
complexes, the figure shows the a  Rg, b RMSD and c RMSF of the 
SARS-CoV-2 Nsp13 in complex with the top five phytochemical 

inhibitors, namely, Nsp13-H1, Nsp13-H2, Nsp13-H3, Nsp13-H4 and 
Nsp13-H5, and d RMSD of the top five phytochemical inhibitors H1, 
H2, H3, H4 and H5

screening study involving the largest small molecule library 
of phytochemicals from Indian medicinal plants and the key 
drug target SARS-CoV-2 helicase Nsp13. We have identified 
368 phytochemicals as potential inhibitors of SARS-CoV-2 
Nsp13, targeting the ATP-binding site.

Notably, among the top five potential inhibitors, both 
Picrasidine M (H1) and Picrasidine N (H5) are found to 
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be produced by the herb Picrasma quassioides, which has 
been used in traditional medicine as antiviral, antifungal and 
antiparasitic. The herb Litsea verticillata which can pro-
duce (+)-Epiexcelsin (H2), has been reported to have anti-
viral and anti-HIV activities [63]. It should be emphasized 
that, further experimental studies are required to validate 
the inhibitory potential of the phytochemical inhibitors of 
SARS-CoV-2 Nsp13 identified in this study. In conclusion, 
the potential phytochemical inhibitors of SARS-CoV-2 heli-
case Nsp13 identified here constitute a potential chemical 
library for the development of anti-COVID drugs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10251-1.
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