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ABSTRACT 

Metallic drug-eluting stents have led to significant improvements in clinical outcomes but are inherently 
limited by their caging of the vessel wall. Fully bioresorbable scaffolds (BRS) have emerged in an effort to 
overcome these limitations, allowing a “leave nothing behind” approach. Although theoretically appealing, 
the initial experience with BRS technology was limited by increased rates of scaffold thrombosis compared 
with contemporary stents. This review gives a broad outline of the current BRS technologies and outlines 
the refinements in BRS design, procedural approach, lesion selection, and post-procedural care that 
resulted from early BRS trials. 

KEY WORDS: Bioresorbable scaffold, drug-eluting stent, stent thrombosis, target lesion failure, target 
lesion revascularization 
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INTRODUCTION 

Since their introduction in the mid-1980s, coronary 
stents have evolved significantly and have led to im-
provements in the treatment of patients with coro-
nary artery disease. The prevention of acute and 
subacute vessel closure due to vessel recoil by the 
initial bare metal stents led to reductions in resteno-
sis rates, a major limitation of balloon angioplasty.1 
Subsequent generations of stents, with the addition 
of antiproliferative agents and polymer coatings, led 
to even further improvements in restenosis rates, 
and to the widespread adoption of the technology.2  

As with any new technology, however, there were 
limitations with leaving a permanent scaffold within 
the vessel. These included impaired normal vasomo-
tor reactivity3 and jailing of side branches. Other 
concerns included initiating the inflammatory host 
response to the polymer coatings of the device at the 
vessel wall, leading to neointimal hyperplasia, reste-
nosis, and stent thrombosis.4 Bioresorbable scaf-
folds (BRS) were developed to provide all of the 
short-term benefits of permanent stents but with the 
added benefit of completely degrading over the 
medium- to long-term period, allowing full recovery 
of vasomotor and endothelial function.5,6 This strat-
egy of “leave nothing behind” aimed to prevent long-
term inflammation, preserve distal bypass grafting 
sites, and allow unimpeded future vessel imaging. 

Although the theoretical benefits of BRS were 
attractive, the initial generation of BRS devices, 
principally the Absorb Bioresorbable Vascular Scaf-
fold (Abbott Vascular, Santa Clara, CA, USA), were 
hampered by increased rates of stent thrombosis 
compared with contemporary stents.7,8 This led to 
the withdrawal of the product from the market in 
2017, and a loss of trust in the technology. Newer-
generation devices utilizing different bioresorbable 
materials and featuring improved stent strut thick-
ness may still provide a viable path to the “leave 
nothing behind” strategy.  

Here, we aim to provide an outline of the devel-
opment of the current BRS technologies and an 
overview of the field’s future directions.  

CURRENT DEVICES 

The majority of BRS that have been brought to the 
clinical trial stage have been based on lactate poly-
mers. Other materials utilized include magnesium 
alloys, tyrosine copolymers, and iron. Table 1 out-
lines some of the major BRS that have been brought 

to clinical trials. The following section outlines some 
of the key materials used in BRS and design features 
of the representative devices, with Table 2 outlining 
their clinical performance. The technologies used for 
BRS can be broadly categorized as polymeric resorb-
able scaffolds or metallic resorbable scaffolds (MRS). 

Poly-lactate-based BRS 

The majority of the data on BRS has been provided 
by lactate-based polymer systems, with poly-L-lactic 
acid (PLLA) the most commonly used polymer. The 
PLLA polymer is a thermoplastic aliphatic polyester 
that undergoes hydrolysis upon contact with the 
blood pool into lactate monomers and, ultimately, 
water and carbon dioxide when metabolized by the 
Krebs cycle.9,10 For many years PLLA has been used 
in a variety of other applications, such as resorbable 
sutures. Compared with metal alloys such as cobalt 
chromium and stainless steel, which are typically 
used in modern stents, PLLA has a lower tensile 
strength and, therefore, requires significantly thicker 
struts to provide comparable radial strength.11 Poly-
D, L-lactic acid (PDLLA) undergoes a similar break-
down process to PLLA but at a faster rate because of 
a decreased crystalline structure compared to PLLA.  

Several PLLA and PDLLA BRS exist at various 
stages of development, but the ABSORB clinical pro-
gram has provided the majority of data on lactate-
based BRS.  

The Absorb BRS program 

The Absorb BRS was the first BRS approved for use 
in the United States by the US Food and Drug 
Administration on the basis of several large, multi-
center, randomized controlled trials. The ABSORB 
II, ABSORB III, ABSORB CHINA, ABSORB JAPAN, 
TROFI II, and EVERBIO III trials8,12–16 were all large-
scale, multicenter, prospective trials comparing Ab-
sorb to a contemporary cobalt chromium everolimus-
eluting stent (CoCr-EES) (Abbott Vascular, Santa 
Clara, CA, USA). Although individual trial-level 
results demonstrated similar performance charac-
teristics and safety profiles between the two stents, 
subsequent analyses demonstrated increased rates 
of scaffold thrombosis at 1 year in the Absorb 
cohort.17,18 This trend appeared to continue to 3 
years,19 with the additional worrisome finding of 
increased ischemia-driven target lesion revascular-
ization (TLR) in the Absorb group.7 Longer-term 
follow-up to 4 and 5 years post-implantation dem-
onstrated that the risk of adverse  events appeared 
to stabilize after 3 years and was comparable to 
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CoCr-EES,12 likely reflecting the complete resorption 
of the scaffold within the vessel wall.  

The short- to medium-term concerns raised by 
the ABSORB program led to the withdrawal from 
the US market in 2018.4 However, the program 
provided some valuable lessons, in particular in BRS 

deployment techniques. Optimal deployment tech-
niques that aimed at reducing inadequate vessel 
sizing, malposition, and scaffold underexpansion 
appeared, in smaller sub-studies, to reduce the rates 
of scaffold thrombosis, and the “PSP” technique (pre-
dilation, proper sizing, and post-dilation) emerged. 
These findings were not consistent across all studies 

Table 1. Key Design Characteristics of Current Bioresorbable Scaffold Technologies. 

Device 
(Manufacturer) 

Drug 
Backbone 
Material 

Strut 
Thickness (µm) 

Bioresorption 
Time (months) 

EU CE 
Mark 

FDA 
Approval 

ABSORB GT1 BRS 
(Abbott) 

Everolimus PLLA 156 24-36 Jan 
2011 

July 2016* 

DESolve 

(Elixir Medical) 

Novalimus PLLA 150 24-36 May 
2014 

No 

ART Pure (Arterial 
Remodelling 
Technologies) 

Drug-free PDLLA 170 12-24 May 
2015 

No 

MeRes 100 (Meril 
Life Sciences) 

Sirolimus PLLA 180 24 August 
2019 

No 

FORTITUDE 
(Amaranth 
Medical) 

Sirolimus PLLA 150 12-24 No No 

APTITUDE 
(Amaranth 
Medical) 

Sirolimus PLLA 115 12-24 No No 

MAGNITUDE 
(Amaranth 
Medical) 

Sirolimus PLLA 98 12-24 No No 

DEFIANCE 
(Amaranth 
Medical) 

Sirolimus PLLA 85 12-24 No No 

Mirage (Manli) Sirolimus PLLA 125-150 14 No No 

NeoVas (Lepu 
Medical 
Technology) 

Sirolimus PLLA 180 36 No No 

Firesorb (Shanghai 
MicroPort) 

Sirolimus PLLA 100-125 36 No No 

Falcon (Abbott) Everolimus PLLA <100  No No 

Fantom (REVA 
Medical) 

Sirolimus DAT 125 12 April 
2017 

No 

Magmaris 
(Biotronik) 

Sirolimus Magnesium 120-150 12 June 
2016 

No 

IBS (Lifetech 
Scientific) 

Sirolimus Iron 70 >12 No No 

* US sales discontinued September 2017. 

DAT, Desaminotyrosine polycarbonate; PDLLA, poly-D, L-lactic acid; PLLA, poly-L-lactic acid. 

Modified with updated data from Jinnouchi H et al.6 with permission, ©2018 Springer Nature. 
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examining the effect of pre-dilation and post-dila-
tion, and it remains unclear whether the risk of scaf-
fold thrombosis related to the Absorb device or the 
deployment technique.20  

Desaminotyrosine Polycarbonate-based 

BRS 

Desaminotyrosine polycarbonate (DAT) is a polycar-
bonate copolymer of tyrosine analogues and is com-
bined with biocompatible hydroxyesters when used 
in BRS. The DAT polymer has similar radial strength 

and recoil characteristics to metallic stents21 and has 
the added benefit of allowing combination with low 
levels (3%) of iodine to allow improved visualization 
under fluoroscopy.6,21  

The FANTOM program 

The Fantom stent (REVA Medical, San Diego, CA, 
USA), based on DAT, has a 125-µm strut and incor-
porates iodine into the scaffold to improve visualiza-
tion. Upon breakdown, the stent elutes sirolimus, 
with 80% of strut degradation occurring in the first 

Table 2. Key Clinical Performance Measures of Selected Bioresorbable Scaffolds. 

Device 
(Manufacturer) 

Patients 
Enrolled 

Angiographic 
Follow-up 

(months post 
implant) 

Late 
Lumen 

Loss (mm) 

Clinical Follow-
up Period 
(months) 

TLF 
(%) 

Scaffold 
Thrombosis 

(%) 

Ischemia-
driven TLR 

(%) 

ABSORB GT1 
BRS (Abbott) 

2161* 6 0.19±0.18 60 11.6 2.5 8.4 

DESolve Nx 
(Elixir Medical) 

122 6 0.20±0.32 60 7.4 0 4.1 

ART Pure 
(Arterial 
Remodelling 
Technologies) 

30 6 - - - - - 

MeRes 100 
(Meril Life 
Sciences) 

108 6 0.15±0.23 12 - 0 0.9 

FORTITUDE 
(Amaranth 
Medical) 

63 24 0.27±0.37 24 4.9 1.8 5.3 

APTITUDE 
(Amaranth 
Medical) 

60 9 0.33±0.36 24 3.4 0 0 

MAGNITUDE 
(Amaranth 
Medical) 

70 9 0.19±0.16 9 2.9 0 0 

Mirage (Manli) 35 12 0.37±0.14 12 17.2 3.4 17.2 

NeoVas (Lepu 
Medical 
Technology) 

1103 MSCT follow-up - 12 3.0 0.5 1.7 

Fantom (REVA 
Medical) 

117 6 0.25±0.40 24 4.2 0.8 2.9 

Magmaris 
(Biotronik) 

1075 12 0.52±0.39 36 4.3 0.5 2.4 

* Pooled analysis of ABSORB II, ABSORB JAPAN, ABSORB CHINA, ABSORB III; >150,000 commercially treated patients 

worldwide. 

MSCT, multi-slice computed tomography; TLF, target lesion failure; TLR, target lesion revascularization. 

Modified with updated data from Jinnouchi H et al.6 with permission, ©2018 Springer Nature. 



 

BRS: Current Technology and Future Perspectives 
 

 

Rambam Maimonides Medical Journal 5 April 2020  Volume 11  Issue 2  e0016 
 

12 months and complete resorption occurring at 36 
months.21 Additionally, the strut design and DAT 
allow for single inflation.  

The FANTOM II study enrolled 240 patients 
across 28 sites and demonstrated promising safety 
and efficacy at 12 months, with target lesion failure 
(TLF) occurring in 4.2% of patients, with only 1 
event of scaffold thrombosis.21 Despite these initial 
successes, the company has been beset by financial 
difficulties. In early 2019 it voluntarily suspended 
trading,22 and filed for bankruptcy protection in 
early 2020.23  

Magnesium-based BRS 

Magnesium in its pure elemental form does not have 
the radial strength required to prevent acute elastic 
recoil.6 When combined with zinc and manganese, 
however, the mechanical properties are comparable 
to stainless steel stents, with low elastic recoil (less 
than 8%), minimal shortening after inflation (less 
than 5%), and high collapse pressures (0.8 to 1.5 
bar).24  

Once deployed and in the body, the magnesium 
gradually breaks down into inorganic ions and is 
replaced by amorphous hydroxyapatite, a calcium-
phosphorus compound. Additional processes, such 
as electropolishing of the alloy, can slow the degra-
dation process, with complete degradation occurring 
by 12 months.25 Anti-neoproliferative agents are 
incorporated into an outer layer of PLLA to allow 
controlled drug elution. Interestingly, ex vivo mod-
els have demonstrated that the ionic properties of 
magnesium may have intrinsic antithrombotic ef-
fects, driven by decreased inflammatory cell and 
platelet deposition.26  

The Magmaris program 

The Magmaris program began with the AMS 1 stent 
(Biotronik AG, Bülach, Switzerland), which was 
bulky, hard to deliver, and limited by significant ves-
sel recoil due to poor radial strength. This led to 
unacceptably high rates of TLR (45%) and major ad-
verse cardiovascular events (26.7%) as demonstrated 
in the PROGRESS-AMS study.24 The AMS 2 and 
AMS 3 stents incorporated changes in the strut 
design, the magnesium alloy, and the outer polymer 
matrix, aimed at improving neointimal hyperplasia 
and vessel recoil. The best-performing of these early 
BRS—namely the AMS 3—was renamed Drug-
Eluting AMS 1.0 (DREAMS),27 leading to the first-
in-man BIOSOLVE-I28 clinical trial.  

The BIOSOLVE-I trial demonstrated substantial 
improvements compared to the PROGRESS-AMS 
study, with TLR rates of  4.7% and TLF rates of 7% 
at 12 months, but still underperformed in compari-
son with contemporary stents.29 With further im-
provements in design—such as the incorporation of 
tantalum markers to enhance visualization, switch-
ing from a poly-D-lactc acid (PDLA) to a PLLA outer 
coating, and improved deployment technique—the 
DREAMS 2G scaffold was tested in the BIOSOLVE-
II and BIOSOLVE-III trials.30 Both trials enrolled 
stable patients with simple de novo lesions. A 
recently presented pooled analysis of BIOSOLVE-II 
and BIOSOLVE-III demonstrated similar rates of 
TLF (6.4%, n=174) and clinically driven revascular-
ization (3.7%, n=174) at 36 months’ follow-up when 
compared to second-generation drug-eluting stents 
(DES). No stent thrombosis events were reported.31 
The ongoing BIOSOLVE-IV all-comers registry, with 
more than 1,000 patients enrolled, shows similar 
TLF rates to those of the earlier, smaller-scale 
BIOSOLVE-II and BIOSOLVE-III trials.32  

Despite the DREAMS 2G (marketed as Mag-
maris) scaffold gaining CE mark approval in 2016, 
the lessons from the failure of the ABSORB program 
were at the forefront of operator’s experiences with 
BRS technology. Urging caution, a consensus paper 
by experts in the field recommended restricting the 
use of Magmaris in certain areas until further data 
became available, specifically recommending against 
the use of Magmaris in situations such as ST eleva-
tion myocardial infarction (STEMI), calcified le-
sions, poor medication compliance, or ostial lesions, 
restricting its use to stable patients with simple de 
novo lesions.33  

The third generation of Magmaris, 3G, is ready to 
start clinical trials. This 3G platform utilizes Biomag 
as scaffold material, has thinner struts, markers 
enhancing visualization, and a large matrix of sizes 
and lengths to allow proper device selection.  

Iron-based BRS 

Iron-based devices offer the advantage of being 
highly biocompatible with high radial strength but 
have been limited by a long corrosion period and 
clearance from the vessel.34 Previous in vitro studies 
have shown that a 26-mm long, pure iron-based stent 
releases 41 mg/month of iron into the bloodstream, 
equivalent to the typical oral intake of dietary iron 
over the same period.35 Animal models up to 18 
months have not shown evidence of iron toxicity.36 
Pre-clinical porcine models have shown that the iron 
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bioresorbable coronary scaffold (IBS) from Lifetech 
Scientific (Shenzhen, Guangdong, China) displays 
similar efficacy and safety profiles to current-
generation everolimus DES,37 but no current data in 
humans are available.  

FUTURE DIRECTIONS OF BRS 

TECHNOLOGY 

Scaffold Design 

Strut thickness is one of the principal features 
thought to be a mechanism behind the rates of stent 
thrombosis seen with early-generation BRS.38 
Thicker struts (greater than 150 µm) were required 
to provide enough radial strength to prevent vessel 
recoil but led to longer resorption times. Additional 
concerns, such as polymer dismantling and scaffold 
discontinuity, have also been shown to be factors 
related to thicker strut designs leading to adverse 
events.39  

Future generations of BRS are in development, 
and, through innovations in stent design, reductions 
in strut thickness have been achieved (MeRes100, 
Meril Life Science, Gujaret, India; Mirage, Manli 
Cardiology, Singapore; MAGNITUDE, Amaranth 
Medical, Mountain View, CA, USA; Firesorb,  Micro-
Port, Shanghai, China). In addition to allowing small-
er crossing profiles, which improves deliverability, 
thinner struts have been shown to reduce the shear 
stress at the vessel wall, allowing for less turbulent 
blood flow, improved endothelization, and reduced 
thrombus formation.40 Thinner struts have also 
been shown to reduce restenosis and periprocedural 
myocardial infarction rates.41,42 Through these inno-
vations in stent and strut design, lower-profile scaf-
folds have been made possible without sacrificing 
radial strength. Trials are ongoing to evaluate 
whether these innovations will lead to improved 
outcomes compared to early-generation devices.  

Procedural Considerations 

Despite improvements in scaffold design, the im-
portance of correct deployment technique cannot be 
underestimated. Underexpansion and malapposi-
tion were the two most common procedural-related 
factors leading to adverse outcomes in early clinical 
trials.43 With the implementation of the PSP tech-
nique steps to mitigate underexpansion and malap-
position, the incidence of stent thrombosis was sig-
nificantly reduced and was comparable with ever-
olimus DES.44,45 The 4P technique (patient selection, 
proper sizing, pre-dilation, and post-dilation) is 

similar and is aimed at preventing underexpansion 
and malapposition when using MRS. Future trials 
utilizing BRS should only proceed with such 
mandatory procedural steps to mitigate these risks 
and ensure a favorable result.  

Patient and Lesion Selection  

The ABSORB and Magmaris clinical programs have 
also provided several important lessons on patient 
and lesion selection. Specific anatomic character-
istics seem more amenable to BRS with the current 
generation of scaffolds.  

Vessel size is a key factor, with small vessels 
(<2.25 mm) displaying higher rates of scaffold 
thrombosis and stent thrombosis,45 and large vessels 
(>3.75 mm) risking underexpansion or scaffold 
fracture.6 Other complex anatomical subsets such as 
ostial lesions,46 bifurcation, severely calcified 
lesions,47 and in-stent restenosis48 have all shown 
inferior outcomes in small-scale substudies and 
clinical trials.  

Patient-related factors and the clinical presenta-
tions of patients also play a role. When used in 
STEMI, both magnesium- and lactate-based scaf-
folds have demonstrated inferior event rates com-
pared with everolimus DES.49,50 When used in non-
STEMI patients, the Magmaris BRS appears safe 
when compared to EES at 12 months, but long-term 
data are not yet available.51  

Future clinical trials should aim to adequately 
assess the safety and efficacy of BRS in higher-risk 
anatomic and patient subsets. With improvements 
in scaffold design, preservation of vessel lumen and 
vasomotion may become possible in situations such 
as in-stent restenosis and chronic total occlusions.  

Dual Antiplatelet Therapy after BRS  

Understanding the BRS resorption period is an 
important factor when considering dual antiplatelet 
therapy (DAPT) duration. During resorption, scaf-
fold discontinuity and polymer breakdown may 
provide a nidus of thrombus formation, so DAPT 
should be maintained until complete scaffold 
resorption is achieved. As with all DAPT, however, 
this needs to be balanced against the increased risk 
of bleeding events. As scaffold technology advances 
and quicker resorption times are achieved, thus 
reducing DAPT duration, BRS may become more 
suitable in patients at high risk of bleeding, but trials 
will be needed. Current European guidelines treat 
polymeric and metallic resorbable scaffolds as a 
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single class and recommend a minimum of 12 
months of DAPT (class IIA C).52 

Future Directions 

With the latest improvements of the permanent 
metallic scaffolds, and their performance with short 
DAPT without stent thrombosis, the question arises 
as to what the role of bioresorbable scaffolds should 
be in 2020 and beyond. Recent data suggest an 
ongoing TLR rate of 2% per year with second-
generation DES.53 The BRS technology may provide 
a way to avoid these late events, but the technology 
needs to at least perform as well as permanent 
metallic stents in the short term and better in the 
long term. This was not achieved with the first gen-
eration of BRS technology, and continued iterations 
of the technology are warranted to meet this goal.  

CONCLUSIONS 

The BRS technology still holds promise. The lessons 
learned from the ABSORB program about patient 
and lesion selection, deployment technique, and the 
need for long-term follow-up were all valuable. The 
key to ensuring that the clinical community does not 
lose faith and prematurely turn its back on future 
BRS technologies lies in rigorous, adequately pow-
ered clinical trials with long-term (>5 years) follow-
up. Ongoing device development focusing on new 
materials and thinner struts may still allow a path to 
the “leave nothing behind” strategy. 
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