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Abstract: Electrospinning natural polymers represents a developing interest in the field of bioma-
terials. Electrospun nanofibers have been shown to facilitate tissue regeneration and emulate body
tissue, making them ideal for modern biomedical applications. These water-soluble natural polymers
including alginate, have also shown promise as drug delivery vehicles. However, many biopolymers
including alginate are inherently charged, making the formation of nanofibers difficult. To better
understand the potential of natural polymer-based fibers in drug delivery applications, fiber formula-
tions and drug loading concentrations of alginate-based scaffolds were investigated. It was found
electrospinning poly(vinyl alcohol) with alginate facilitated fiber formation while the co-polymer
agarose showed minor improvement in terms of alginate electrospinnability. Once uniform fibers
were formed, the antibiotic ciprofloxacin was added into the polymer electrospinning solution to yield
drug-loaded nanofibers. These optimized parameters coupled with small molecule release rate data
from the drug-loaded, alginate-based fibers have been used to establish a catalog of small molecule
release profiles. In the future, this catalog will be further expanded to include drug release rate data
from other innately charged natural polymer-based fibers such as chitosan. It is anticipated that the
cataloged profiles can be applied in the further development of biomaterials used in drug delivery.

Keywords: biomaterials; naturally-occurring polymers; alginate; polysaccharide; electrospinning

1. Introduction

Biomaterials research has recently been investigating natural polymers due to their
biocompatibility and nontoxic nature. One of the natural polymers in use is alginate (Alg),
an anionic polysaccharide found in brown algae. Alginate-based products are particularly
suited for biomedical applications since they are biocompatible, biodegradable, and non-
immunogenic. Such constructs have been used in 2-D and 3-D cell culture as well as in
drug delivery and wound healing applications [1–6].

Electrospinning solutions of polymers such as alginate allows for the creation of non-
woven, fibrous scaffolds that resemble the architecture of the extracellular matrix-a useful
characteristic for wound healing dressings and tissue regeneration scaffolds [7,8]. With
fiber diameters ranging from the nanometer to microscale, electrospun scaffolds possess
a high surface-to-volume ratio, tunable porosity, and flexibility to conform to a variety of
sizes and shapes [9]. Additionally, electrospinning represents an attractive approach for
polymer biomaterials processing with the opportunity to control scaffold composition to
combine desired compounds, properties, and functionalities [10–12]. These advantages
allow electrospun scaffolds to address specific application challenges in wound healing,
tissue engineering, and delivery matrices [9,13,14].

However, little research has been published on the controlled delivery of drugs using
natural polymeric dressings, especially nanofibers [7]. Local delivery of drugs to a site
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should be sustained for at least one week to improve the overall effectiveness of the drug
therapy and reduce the frequency of dressing replacements [15–17]. The fine diameter and
highly porous structure of nanofiber scaffolds help drug molecules efficiently diffuse out of
the structure; though, a burst release is often observed when therapeutic-loaded nanofibers
have been investigated as drug delivery vehicles [15,18–20].

The innate charges from functional groups on natural polymers make these com-
pounds difficult to electrospin. To overcome this inert charge, co-polymers with similar
intermolecular forces as the natural polymers are incorporated into the spinning solution
to aid fiber formation [8,15,21–23]. Blending of polymers for electrospinning provides a
straightforward method to combine different bioactivities, properties, and characteristics
for biomedical applications [9,24,25]. To date, there are few reports investigating the impact
of these co-polymers or the innate charges in the biopolymers on the drug release capabil-
ities of natural polymer electrospun fibers. Combining alginate with poly(vinyl alcohol)
or agarose via electrospinning should capitalize on the properties of both biocompatible
materials in each fiber type to create a unique drug release profile for each scaffold.

Here we report our initial findings on the impact of co-polymers and innate polymer
charges on the small molecules release rate of natural polymer-based scaffolds. Our goal
was to utilize two co-polymers, poly(vinyl alcohol) (PVA) and agarose (Ag) in conjunction
with alginate to create alginate–based nanofibers with minimal beading and polymer
webbing to provide a uniform scaffold for loading the small molecule drug ciprofloxacin
(Cipro). These co–polymers were selected to compare the impact of a synthetic versus
natural co-polymer. The overall aims of this project were: (1) to develop and analyze
alginate-based electrospun fibers; and (2) to study the release rate of a small molecule from
negatively charged, alginate-based nanofibers. These results will eventually be compared to
drug release rates from positively charged, natural polymer-based fibers to further analyze
the impact of co-polymers and innate polymer charges on small molecule therapeutic
release rates from nanofiber scaffolds.

2. Materials and Methods
2.1. Materials

Sodium alginate powder (Alginic acid sodium salt (Alg) from brown algae, medium
viscosity, MW 80,000–120,000, (Sigma-Aldrich, St. Louis, MO, USA)), poly(vinyl alcohol)
(PVA) powder 87–89% hydrolyzed, high molecular weight (Sigma-Aldrich, St. Louis, MO,
USA), agarose powder (Agarose (Ag) Type III–A, High EEO) (Sigma-Aldrich, St. Louis, MO,
USA), and ciprofloxacin powder (Ciprofloxacin (Cipro), 98%, Ciprofloxacin hydrochloride
hydrate, 98%) (Alfa Aesar, Haverhill, MA, USA) were all obtained through commercial
suppliers and used without purification or alteration unless otherwise noted.

2.2. Creation of Alginate-Based Nanofibers
2.2.1. Preparation of Alginate and PVA (Alg-PVA) Electrospinning Solution

Sodium alginate powder (2.0–2.5 g) was dissolved in 10 mL dH2O to make a stock
solution of the desired concentration and stirred until homogeneous. PVA powder (10.0 g)
was dissolved in 10 mL of dH2O to make a stock solution of the desired concentration and
heated at 80 ◦C until thoroughly dissolved. The PVA stock solution was brought to room
temperature before further use.

The desired volumes of alginate and PVA solutions were micropipetted into one vial
to create a 10 mL electrospinning solution. The combined polymer solution was then
placed on a shaker plate for approximately 1 h to ensure the two components were properly
incorporated before electrospinning.

2.2.2. Preparation of Alginate and Agarose (Alg-Ag) Electrospinning Solution

Sodium alginate powder was prepared as previously mentioned. Agarose powder
(0.5–1.0 g) was dissolved in 10 mL dH2O to make stock solutions of desired concentrations.
The solutions were stirred and heated at 95 ◦C until thoroughly dissolved. Agarose
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solutions were allowed to cool before incorporation into alginate solutions. The Alg-Ag
solutions were prepared as described above for the Alg-PVA solutions.

2.2.3. Preparation of Cipro-Loaded Alginate-Based Electrospinning Solution

Sodium alginate, PVA, and agarose solutions were prepared as previously mentioned.
Ciprofloxacin powder (3.0–5.0 g) was dissolved in the respective polymer solution (10 mL)
and stirred overnight.

2.3. Electrospinning Alginate-Based Nanofibers

A Spraybase® (Spraybase, Dublin, Ireland) 30 kV electrospinner and a laptop com-
puter (Windows 10, Acer Inc., New Taipei City, Taiwan) was dedicated to this system for
equipment control, data collection, and syringe pump program design (SyringePumpPro
V1 Version:1.6.4.7). Electrospinning solutions were initially spun at 5.8, 7.5, and 9.8 µL/min.
Electrospinning volumes and voltages fluctuated dependent on sample however the height
from the collector plate to the needle was constant at 100 mm unless otherwise stated.

2.4. Analysis of Nanofibers

A JEOL, Ltd. (Akishima, Tokyo, Japan) JSM-6010LA variable pressure scanning
electron microscope (SEM) was used at 10 and 15 kV for sample imaging and an EMS
550X Auto Sputter Coating Device with carbon coating attachment was used for gold
sputter coating samples before imaging. SEM micrograph images of fibers were analyzed
using Zeiss 3.4 ZEN Blue edition software (Carl Zeiss AG, Oberkochen, Germany). Briefly,
the diameters of 40 fibers per fiber type were measured and averaged and the standard
deviation of each fiber type calculated using Excel® (V. 16.6.1, Microsoft, Redmond, WA,
USA). A paired t-test at 95% confidence level was conducted to determine if the loading of
ciprofloxacin into nanofibers significantly impacted the diameter of the resulting fibers.

2.5. Release Studies of Drug-Loaded Alginate-Based Nanofibers

The drug-loaded alginate-based nanofibers were cut into 1.5 centimeters (cm) × 1.5 cm
samples and placed into 20 mL of phosphate-buffered saline solution (PBS) at pH = 7.4
and incubated at 37 ◦C for 14 days [15,26,27]. These conditions were selected to mimic
natural body temperature and pH levels to observe drug release from the fiber mats in
near physiological settings. Every 24 h, 10 µL aliquot was collected and replaced with fresh
PBS buffer. The amount of Cipro released from the drug-loaded mats was determined
via ultraviolet-visible spectroscopy (UV-Vis, NanoDrop OneC, Thermo Fisher Scientific,
Waltham, MA, USA) at a wavelength (λmax) of 271 nanometers (nm). The collected samples
were analyzed by UV-Vis absorption measurements taken in triplicate and compared to
a standard calibration curve made from aqueous Cipro standard solutions to determine
the release concentration of Cipro in each sample. A p-test at 95% confidence level was
conducted to determine if the ciprofloxacin release rates from the drug-loaded scaffolds
was significantly different than the control, non-loaded samples. These data provided the
small molecule release concentration from the nanofiber mat as a function of time.

3. Results
3.1. Alg-PVA Nanofibers

Preliminary efforts to prepare alginate-based fibers began with using the synthetic
polymer PVA as a co-polymer to facilitate fiber formation. To make alginate the major com-
ponent of the fiber mats, initial efforts to prepare alginate and PVA fibers began at a 7:3 ratio
of 2% weight per volume (w/v) alginate to 10% (w/v) PVA (based on previously unpublished
data). SEM analysis of this sample showed heavy polymer beading on the fibers as well
as webbing of fibers together by polymer that did not effectively spin (Figure 1). These
fibers had an average diameter of 157.9 nm (SD = 43.1). The inconsistent fiber architecture
could convolute drug release results and future studies of the mat degradation and thus
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additional fiber formulations and electrospinning parameters were investigated prior to
drug loading.
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Figure 1. Scanning electron microscopy (SEM) micrographs of 7:3 2% alginate (Alg):10% poly(vinyl
alcohol (PVA) at different magnifications; average diameter = 157.9 nm, SD = 43.1, n = 40. (A) × 950
and (B) × 3000 at 5.8 µL/min, 18.5 kV, 90 mm, and 2 mL dispensed (disp).

Subsequently, the alginate percentage was increased to 2.5% (w/v) and different poly-
mer ratios investigated with all samples being spun at a rate of 7.5 µL/min with a target
distance of 100 mm (Figure 2) [28,29]. Polymer compositions ranged from a majority natural
polymer to a majority synthetic polymer. A ratio of 8:2 of alginate to PVA solutions spun
at a lower voltage (20 kV) yielded fibers with extensive webbing to the point that fiber
diameters were unable to be measured consistently (Figure 2A). A ratio of 7:3 of alginate to
PVA solutions was spun at 25 kV and yielded fibers with an average diameter of 197.8 nm
(SD = 44.3) with very little beading and some webbing (Figure 2B). An equal ratio of
alginate to PVA solutions spun at 30 kV yielded a wide distribution of nanofiber diameters
with beading and some polymer webbing connecting fibers (M = 157.7 nm, SD = 47.9,
Figure 2C). A ratio of 2:8 of alginate to PVA solutions spun at 25 kV yielded wider fibers
with smaller beads and less webbing (M = 189.5 nm, SD = 59.6, Figure 2D).

It was found that lowering the amount of alginate in the electrospinning solution
and using a higher voltage yielded nanofibers with more consistent diameters without
beading or webbing. This algins with the literature and common use of a co-polymer when
electrospinning alginate [30–32]. A 3:7 ratio of 2.5% (w/v) alginate solution to 10% (w/v)
PVA solution produced fibers with minimal to no beading or webbing when spun at a rate
of 7.5 µL/min, with a 100 mm target distance, using 15 kV of electricity (M = 185.1 nm,
SD = 29.4, Figure 3). These conditions were used as the finalized parameters for electrospin-
ning alginate and PVA fibers and served as the initial formulation and spinning conditions
for preparing drug–loaded alginate and PVA nanofibers. As the standard deviation of aver-
age nanofiber diameters decreased as the uniformity of nanofibers increased, we believe
beading on the fibers resulted in the formation of fibers with inconsistent diameters.
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Figure 3. Left: SEM micrograph of Alg–PVA nanofibers. 3:7 2.5% Alg:10% PVA at 7.5 µL/min, 30 kV,
100 mm, and 2.5 mL disp. Right: Comparison of average Alg/PVA fiber diameters, n = 40. Each label
corresponds to the referenced fiber formulation and spinning conditions described for the micrograph
image of the fibers. All fibers formed spun at a rate of 7.5 µL/min, with a target distance of 100 mm:
Figure 2B 7:3 2.5% Alg:10% PVA at 25 kV; Figure 2C 1:1 2.5% Alg:10% PVA at 30 kV; Figure 2D
2:8 2.5% Alg:10% PVA at 25 kV; Figure 3 3:7 2.5% Alg:10% PVA at 30 kV.
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3.2. Alg-Ag and Alginate, PVA, and Agarose (Alg-PVA-Ag) Nanofibers

Next, the development of novel alginate fibers spun with natural co-polymer agarose
was explored. Due to the low water solubility of agarose, lower agarose concentrations
(0.5–1%, w/v) were used to prepare alginate and agarose samples. One to one ratios of
alginate solution to 0.5%, 0.75%, or 1.0% (w/v) agarose were utilized. However, solutions of
pure alginate and agarose did not yield fiber formation regardless of electrospinning rate
or voltage. Micrograph images of samples from these spins revealed large aggregations
of polymer or smoother polymer surfaces (Figure 4). As a result, PVA was used as a
co-polymer in the alginate and agarose electrospinning solutions to help produce alginate
and agarose–based nanofibers (Figure 5).
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Figure 4. SEM micrographs of 1:1 2.5% Alg: agarose (Ag) samples at various concentrations of
agarose spun with a target distance of 100 mm. (A) 0.5% Ag at 5.8 µL/min, 25 kV, and 1 mL disp.;
(B) 0.5% Ag at 7.5 µL/min, 30 kV, and 0.2 mL disp.; (C) 0.75% Ag at 5.8 µL/min, 22 kV, and 1 mL
disp.; and (D) 1% Ag at 7.5 µL/min, 19 kV, and 1 mL disp.

Alginate, PVA, and agarose samples were prepared using 2.5% (w/v) alginate, 0.5–1% (w/v)
agarose, and 10% (w/v) PVA solutions (Figure 5). To have alginate be the major component
of the fiber mats, initial efforts to prepare alginate, agarose, and PVA fibers began at a
2:1:1 ratio of 2.5% w/v Alg to 10% w/v PVA to 1% w/v Ag. This formulation yielded a
sample with significant amounts of webbing and beading and distinct, individual fiber
were distinguishable. For the next trial, the ratio of polymers was kept constant and the
concentration of the agarose decreased to 0.5% w/v. This yielded less webbing in the sample;
however, beading was prevalent and thus fiber diameters were unable to be measured for
this formulation. Decreasing the amount of alginate in the electrospinning solution (1:2:1,
Alg:PVA:Ag, Figure 5C) and increasing the voltage led to fiber formation with an average
fiber diameter of 122.5 nm (SD = 36.7) yet there was still beads along the fibers. Increasing
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the amount of agarose in the formulation (1:2:2, Alg:PVA:Ag, Figure 5D) yielded thicker
fibers with beading as well as webbing connecting fibers (M = 174.4 nm, SD = 29.3).
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Figure 5. Left: SEM micrographs of Alg-PVA-Ag nanofibers at various ratios and concentra-
tions at 7.5 µL/min and 100 mm. (A) 2:1:1 2.5% Alg:10% PVA:1% Ag at 19 kV and 0.5 mL disp.;
(B) 2:1:1 2.5% Alg:10% PVA:0.5% Ag at 12 kV and 1.0 mL disp.; (C) 1:2:1 2.5% Alg:10% PVA:0.5%
Ag at 22.8 kV and 1.0 mL disp.; (D) 1:2:2 2.5% Alg:10% PVA:0.5% Ag at 22 kV and 1.0 mL disp.
Right: Comparison of average Alg:PVA:Ag fiber diameters, n = 40. Each label corresponds to the
referenced fiber formulation and spinning conditions described for the micrograph image of the
fibers. All fibers formed spun at a rate of 7.5 µL/min, with a target distance of 100 mm: Figure 5C
1:2:1 2.5% Alg:10% PVA:0.5% Ag at 22.8 kV; Figure 5D 1:2:2 2.5% Alg:10% PVA:0.5% Ag at 22 kV.

While electrospun alginate, PVA, and agarose fibers still have beads, the webbing
on the samples has been greatly reduced. Optimal electrospinning conditions and fiber
formulations have not yet been determined for alginate, PVA, and agarose fiber mats. The
literature indicates that agarose is often structurally modified prior to electrospinning or
that a co-polymer or organic solvents are required for agarose-based fibers to form [33–35].
In lieu of a polymer formulation that will yield uniform fibers, these novel, tri-component
fibers were not utilized in drug release studies. There was concern that inconsistent beading
and webbing on these fibers would result in inconsistent small molecule release rates as
compared to uniform fibers. Since the goal of these studies is to establish a release rate
catalog with data for each unique fiber formulation, it was determined that beading and
webbing was not desired in the fiber scaffolds used to collect the release rate data.

3.3. Cipro-Loaded Alg-PVA Nanofibers

The finalized parameter of a 3:7 ratio of 2.5% (w/v) alginate solution to 10% (w/v)
PVA solution was used as the polymer electrospinning solution for all drug-loaded sam-
ples. Ciprofloxacin, an antibiotic used to treat infections was chosen as a model drug.
Ciprofloxacin-containing polymer solutions were prepared as described by blending solid
ciprofloxacin into the polymer solutions to the desired final antibiotic concentration. Fibers
prepared from 5% (w/v) ciprofloxacin-loaded solution spun at a rate of 7.5 µL/min at 19 kV
showed beading and some webbing between fibers with an average diameter of 206.7 nm
(SD = 41.7). Increasing the dispensing rate and voltage to 9.8 µL/min and 20 kV, respec-
tively, yielded thinner fibers with some beading but very little webbing (M = 178.7 nm,
SD = 48.3). Lowering the ciprofloxacin concentration to 4% (w/v) yielded thinner fibers
(M = 148.0 nm, SD = 34.8) with less beading and webbing in the samples when spun at a
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rate of 7.5 µL/min and 20 kV and thicker fibers (M = 183.7 nm, SD = 52.4) when spun at a
rate of 9.8 µL/min at 15 kV (Figure 6).
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To further optimize scaffold uniformity, ciprofloxacin concentrations were lowered to
3.5 and 3% (w/v) while maintaining the same alginate and PVA concentrations and ratios
(Figure 7). The 3.5% (w/v) ciprofloxacin solution produced nanofibers with an average diam-
eter of 200.1 nm (SD = 26.9) and the 3% (w/v) ciprofloxacin solution produced fibers with an
average diameter of 201.9 nm (SD = 32.3). It was found that non-loaded alginate and PVA
fibers were not significantly different in size to the 4% and 5% (w/v) ciprofloxacin-loaded
scaffolds. However, the 3% and 3.5% (w/v) ciprofloxacin-loaded mats were significantly
larger in diameter than the non-loaded fibers. The calculated t-value at 95% confidence
was 1.684 for this analysis. While the drug-containing polymer solution appeared to be
homogenously mixed when it was electrospun, occasionally larger ciprofloxacin crystals
were observed in the micrographs of ciprofloxacin-loaded fibers, particularly at higher drug
concentrations. We believe this indicates that lower concentrations of ciprofloxacin were
more effectively incorporated into the nanofibers resulting in thicker, more uniform fibers.
This also accounts for the significant difference in the diameters of non-loaded nanofibers
versus the 3% and 3.5% (w/v) ciprofloxacin-loaded fibers.
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150 mm, 21 kV; and Figure 7B 3% Cipro at 5.8 µL/min, 150 mm, 21 kV.

3.4. Release Studies on Drug-Loaded Alg-PVA Nanofibers

Upon successfully preparing uniform ciprofloxacin-loaded fibers, an initial drug
release study was conducted comparing 5% (w/v) ciprofloxacin-loaded 3:7 2.5% (w/v)
Alg:10% (w/v) PVA fibers to 3:7 2.5% (w/v) Alg:10% (w/v) PVA as the control (Figure 8).
For this study, two different sizes of drug-loaded mats were used, 1.5 cm × 1.5 cm and
0.5 cm × 0.5 cm (5% Cipro in 3:7 Alg:PVA-S). The 1.5 cm × 1.5 cm ciprofloxacin-loaded
sample showed a significant release of ciprofloxacin compared to the control and the
smaller sized drug-loaded sample which did not show much release of ciprofloxacin (p-test,
95% confidence).

An additional study was conducted to compare the release rate of ciprofloxacin from
drug-loaded scaffolds containing different amount of the antibiotic (3.0% vs, 3.5% (w/v)).
All scaffolds in this study measured 1.5 cm × 1.5 cm. While both drug-loaded samples
released ciprofloxacin over time, it was found that the 3.5% (w/v) ciprofloxacin-loaded
samples released more drug over the same amount of time when compared to the 3% (w/v)
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loaded sample. A p-test conducted at 95% confidence, indicated that the ciprofloxacin
release of each drug-loaded scaffold was significantly different from the non-loaded, control
fibers. Overall, it was determined that the 1.5 cm × 1.5 cm, 5% and 3.5% (w/v) ciprofloxacin-
loaded 3:7 2.5% (w/v) Alg:10% (w/v) PVA fiber mats showed the largest amount of release
(Figure 9). These results were anticipated as these samples contained the highest amounts
of ciprofloxacin. We observed a sustained release of the antibiotic over the course of
14 days. This gradual release is comparable to the release profiles of ciprofloxacin from
alginate/poly(ethylene oxide) nanofibers [34] and the release of metronidazole from algi-
nate/PVA fibers [36].
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3:7 2.5% Alg:10% PVA nanofibers and control, non-loaded 3:7 2.5% Alg:10% PVA nanofibers (n = 3,
p ≤ 0.001). All fiber scaffolds were 1.5 cm × 1.5 cm. A standard deviation for each time point is given.

The described drug release studies are compiled in Table 1 with electrospinning
parameters and the average ciprofloxacin concentration released over 14 days.
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Table 1. Compilation of Alg-PVA Release Study Runs.

Polymer
Ratio

Polymer
Formulation

Cipro
Percentage (w/v)

Rate
(µL/min)

Height
(mm)

Voltage
(kV)

Volume
Dispersed (mL)

Average Cipro
Release 1 (mM)

3:7 2.5% Alg:10% PVA 0 9.8 100 16 1 0
3:7 2.5% Alg:10% PVA 3.0 9.8 100 16 1 0.134
3:7 2.5% Alg:10% PVA 3.5 9.8 100 16 1 0.920
3:7 2.5% Alg:10% PVA 5 9.8 100 16 1 0.924

1 Averaged over 14 days.

4. Discussion

The optimal polymer solution to prepare Alg-PVA nanofibers was determined to be
a 3:7 ratio of 2.5% (w/v) alginate and 10% (w/v) PVA dispensed at a rate of 7.5 µL/min,
with a target distance of 100 mm, with a voltage of 30 kV. This formulation combined
with these electrospinning conditions produced smooth, uniform fibers with an average
diameter of 185.1 nm. Agarose’s low water solubility hindered the creation of nanofibers
containing both alginate and agarose. However, thin fibers were formed using a 1:2:1 ratio
of 2.5% Alg:10% PVA:0.5% Ag (M = 122.5 nm). These Alg-PVA-Ag fibers still showed
beading and thus were not drug–loaded. Once further experimentation identifies a set of
finalized parameters for the preparation of Alg-PVA-Ag fibers, these fibers will be loaded
with ciprofloxacin and drug release data for these fiber formulations collected.

Ciprofloxacin was successfully introduced into 3:7 2.5% (w/v) Alg:10% (w/v) PVA
nanofibers in various concentrations and multiple release studies were performed. The
lower ciprofloxacin concentrations showed decreased beading and webbing on the sam-
ples, producing more uniform fibers with significantly larger diameters. Regardless of
ciprofloxacin concentration, drug-loaded fibers had a higher standard deviation of the
average fiber diameter as compared to the control, non-loaded fibers. Our fiber diameters
and their corresponding standard deviations were consistent with those reported for other
alginate-based and drug-loaded nanofibers in the literature. The increase in the thickness
of our 3 and 3.5% (w/v) ciprofloxacin-loaded fibers diameters was similar to that of other
drug-loaded fibers that have been reported. While it is possible to load more of the drug
into scaffold, lower concentrations were used in these studies due to the more uniform fiber
architecture of the drug-loaded mats. It was found that the 3.5% (w/v) ciprofloxacin-loaded
fibers released the drug more effectively over time as compared to the 3% or 5% (w/v)
ciprofloxacin-loaded fibers and the release profile was consistent with that reported in
the literature.

In the future, fluorescently tagged ciprofloxacin will be electrospun into alginate and
PVA fiber scaffolds to verify the location of the drug molecules in the polymer mat via con-
focal imaging. Towards the overarching goal of understanding the impact of co-polymers
and innate polymer charges on drug release rates, ciprofloxacin will be electrospun with
positively charged chitosan and PVA to determine if the inherent charges on natural poly-
mers influences the release rate of therapeutics. We anticipate investigating the release
of other drugs from natural polymer-based fibers including large therapeutics such as
proteins. The release rates of each therapeutic from the corresponding fiber formulations
will be compiled into and expanded release profile catalog. Furthermore, the antibacterial
properties of these materials will be investigated as well as cell responses to these novel
nanofibers to observe their antibacterial capabilities [37]. Long term, we anticipate that
these drug-loaded fibers will have applications within the biomedical field as have other
nanomaterials, including utilization as drug delivery vehicles and antibiotic-containing
wound dressings [38].
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