
Contents lists available at ScienceDirect

Biochemistry and Biophysics Reports

journal homepage: www.elsevier.com/locate/bbrep

A Dictyostelium discoideum mitochondrial fluorescent tagging vector that
does not affect respiratory function

Christopher J. Perrya, Eleanor C. Warrena, Joseph L. Damstra-Oddya, Claire Storeyb,
Lisa M. Francioneb, Sarah J. Annesleyb, Paul R. Fisherb, Annette Müller-Taubenbergerc,
Robin S.B. Williamsa,∗

a Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
bDepartment of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
c Department of Cell Biology, Biomedical Center, LMU Munich, 82152, Planegg-Martinsried, Germany

A R T I C L E I N F O

Keywords:
Dictyostelium discoideum
Mitochondria
Fluorescent tagging
Live cell imaging

A B S T R A C T

Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due
to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial
function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization
sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluor-
escent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mi-
tochondria load or respiratory function.

1. Introduction

Mitochondria play important roles, most notably cellular energy
production by oxidative phosphorylation [1], hence the aptly coined
phrase “the powerhouse of the cell” [2]. Mitochondria are also involved
in Ca2+ management [3], production of ROS [4], redox signalling [5,6]
and apoptosis [7]. Many studies investigating mitochondrial function
observe mitochondrial morphology and their dynamics within the cell
[8]. Such observations can be achieved by the use of various fluorescent
dyes such as Rhodamine 123 (R123) [9], tetramethylrhodamine-me-
thyl-ester (TMRM) [10] and JC-1 (tetraethylbenzimi-dazolylcarbocya-
nine iodide) [11]. However, these dyes rely upon a mitochondrial
membrane potential and can be washed out if the mitochondria ex-
perience depolarisation [12]. Furthermore, these dyes are unsuitable
for use with aldehyde fixation due to resulting changes in mitochon-
drial metabolic state [12]. Other fluorescent dyes developed for vi-
sualizing mitochondria include the Mitotracker Red and Green dyes.
Mitotracker Red binding depends on both the presence of a mi-
tochondrial membrane potential while Mitotracker Green binding does
not. These dyes can be used in combination with a number of cell
fixation methods, however, they may cause cytotoxic effects following
prolonged use. Other methods of real time mitochondrial imaging

include the use of fluorescently tagged mitochondrial localised pro-
teins, where the tagged protein is recognised by the mitochondrial
‘Translocase of the outer/inner membrane’ (TOM/TIM) protein com-
plexes and transported into the mitochondria [13]. The transport of
mitochondrial proteins into the mitochondrial matrix is facilitated by
an N-terminal pre-sequence [14]. This pre-sequence can consist of
10–80 amino acid residues and is usually cleaved off by the matrix
processing peptidase following localization [15]. However, these
fluorescent proteins can interfere with the function of the native protein
and impede mitochondrial function. As such, non-cytotoxic mitochon-
drial markers are required.

Dictyostelium discoideum is a tractable model system widely used for
research in a range of fields including cell and developmental biology,
evolutionary biology, as well as in immunology and molecular phar-
macology studies. In cell and developmental biology, D. discoideum is
often used to improve our understanding of cell motility [16,17]. In
molecular pharmacology research, D. discoideum has been used to in-
vestigate mechanisms of action of pharmaceutical drugs including
treatments for epilepsy [18–20] and neurodegenerative disorders
[21,22]. Other studies investigate mechanisms of action of bioactive
natural products such as curcumin, naringenin and a range of bitter
tastants [23–25]. One recent study, identifying a mitochondrial protein,
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GcvH1, involved in the cellular function of cannabinoids on the glycine
cleavage system [26], highlights the presence of an N-terminal mi-
tochondrial localization sequence and thus raises the possibility of
using this sequence for mitochondrial tagging in D. discoideum. To
further these studies, a non-cytotoxic mitochondrial marker is required
that can be used in D. discoideum without affecting cellular respiratory
function.

In this study we created a novel expression plasmid (REMIT; red
mitochondria) for real time visualization of mitochondria in D. dis-
coideum. The REMIT plasmid allows the expression of an enhanced RFP
protein (mRFPmars) [27] with a mitochondrial localization sequence
situated at its N-terminus. We show that transfection of REMIT into D.
discoideum cells facilitates the localization of mRFPmars to the mi-
tochondrial matrix. We also show that the presence of mRFPmars
within the mitochondria has no effect on mitophagy or cellular re-
spiratory function. We therefore present a method that allows the real
time visualization of mitochondria within D. discoideum cells with no
deleterious effects.

2. Methods

2.1. Creation of the REMIT plasmid and over-expression D. discoideum cell
lines

Primers (fwd: ATAGAATTCATGTTAAAAACCTTAAGATTTG and
rev: TATGGATCCCCATTCATGATCG) complementary to the 5’ region of
gcvH1 were used to amplify the 99-bp mitochondrial localization se-
quence (Fig. 1). The PCR product was digested with EcoRI and BamHI
and cloned into the extra chromosomal plasmid pDXA-389-2 [27,28].

The PCR product was inserted into the multiple cloning site located
immediately 5’ of the mRFPmars gene, and sequenced to confirm that
no mutations were introduced. Insertion of the PCR product at this
location enabled expression of a 27 kDa mRFPmars with a 33 amino
acid residue localization sequence linked to its N-terminus via a 6
amino acid residue linker region (Fig. 1). The resulting plasmid was
transfected into wildtype (AX3) cells and selected using geneticin
(10 μg/ml) to create a REMIT over-expression cell line [29]. The
GREMIT plasmid was based upon the same targeting region inserted
into the GFP vector pDM1209 [30].

2.2. Fluorescence and live-cell microscopy

For immunolabeling, cells expressing REMIT were plated on round
12-mm glass coverslips, and after 20 min were fixed with 15% picric
acid/2% paraformaldehyde in 10 mM PIPES, pH 6.0, for 20 min and
post-fixed with 70% ethanol for 10 min [31]. Cells were then washed
three times in PBS, once with 10 mM PIPES, and twice with PBS/1%
glycine, and incubated in blocking buffer (PBS plus 2% bovine serum
albumin) for 1 h at room temperature (RT). After blocking, the cells
were washed three times with PBS and incubated with primary anti-
bodies (2 μg/ml mouse monoclonal anti-porin antibody (Develop-
mental studies hybridoma bank (DSHB); 70-100-1) [32], and 1:1000 rat
anti-RFP (6G6 anti-red rat mAb, Chromatek) for 2 h, followed by the
incubation with secondary antibodies (1:1000 Alexa 488-conjugated
goat anti-mouse IgG (Invitrogen; A28175) and 1:1000 rabbit anti-rat
(Alexa fluor® 488 rabbit anti-rat IgG, Life technologies), for 1 h. After
immunostaining, samples were washed three times in PBS and em-
bedded using Fluoromount-GTM, with DAPI (1:1000 of 1 mg/ml DAPI
dissolved in methanol; Invitrogen, 00-4959) to stain DNA. For live-cell
microscopy, cells were seeded in μ-dishes (Ibidi, 80606), or open
chambers as described previously [28].

Confocal microscopy was performed at the Bioimaging core facility
of the Biomedical Center (LMU Munich) using an inverted Leica TCS
SP8 equipped with lasers for 405, 488, 552, and 638 nm excitation.

Fig. 1. REMIT plasmid construction. The mitochondrial localization sequence
was ligated into the pDXA-389-2 plasmid 5’ of the mRFPmars gene using EcoRI
and BamHI restriction sites. Actin 6 promoter, A6P; actin promoter 15, AP15;
Ampicillin resistance cassette, APr; monomeric red fluorescence protein,
mRFPmars; actin terminator 8, A8T; Geneticin resistance cassette, G418r. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 2. Fixed-cell imaging of REMIT localizing to the mitochondria. (A) D.
discoideum cells expressing REMIT-mRFPmars (red), were fixed and im-
munolabelled using an anti-porin antibody (green), and stained with DAPI to
visualize DNA (blue). Confocal single plane imaging showed red fluorescent
protein localizing to mitochondria in D. discoideum. Scale bar correspond to
5 μm. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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Images were acquired with a HC PL APO 63x/1.40 oil PH3 objective.
Recording was sequential to avoid bleed-through. Alexa-488, and RFP
were recorded with the hybrid photo detectors, DAPI with the con-
ventional photomultiplier tube.

High resolution live-cell imaging was performed using an inverted
Zeiss LSM 900 Airyscan 2 microscope [33]. Images were acquired with
a Plan-Apochromat 63x/1.40 oil DIC objective with a GaASP-PMT de-
tector (450–700 nm) in the MPCX SR-4y modus at an excitation of
558 nm. Z-stacks (25 corresponding to 4.32 μm) were recorded over
time (2.55 s per z-stack). 3D reconstructions of single z-stacks were
performed using the Imaris software package (Bitplane, Zurich, Swit-
zerland).

2.3. Western blot analysis to monitor mitochondrial loading

Cell lysates (30 μg) were separated by gel electrophoresis, trans-
ferred to nitrocellulose membranes (Merck Millipore, IPFL00010), and
analysed by Western blotting. A mouse anti-porin primary antibody
(0.2 μg/ml, DSHB, 70-100-1) and a goat anti-mouse secondary antibody
(1:10000, Li-Cor, 926–32210) were used to confirm the presence of
porin. A streptavidin conjugate (1:5000, Invitrogen, S21378) which
binds to the mitochondrial protein MCCC1 (mitochondrial 3-methyl-
crotonyl-CoA carboxylase α [34]) was used to measure the levels of this
mitochondrial protein. Blots were analysed using Odyssey software.
Total protein loaded was stained with Revert 700 Total Protein Stain
(Li-Cor, 926–11010) and imaged and quantified on the Odyssey CLx.

2.4. Mitochondrial respirometry function

The effects that REMIT expression may have on mitochondrial stress
were investigated in real time [35]. In these experiments, a Seahorse
XFe24 Extracellular Flux Analyzer was used to measure mitochondrial
respirometry within REMIT expressing cells, wildtype cells and cells
expressing mRFPmars lacking the mitochondrial localization sequence.
Mitochondrial respirometry was measured in terms of the basal O2

consumption rate, the O2 consumption rate devoted to the synthesis of
ATP, the maximum O2 consumption rate, the contribution of Complex I
to the maximum O2 consumption rate, the contribution of Complex II to
the maximum O2 consumption rate, and the O2 consumption rate de-
voted to mitochondrial function other than ATP synthesis, i.e. “proton
leak”.

2.5. Statistical analysis

The distribution of all experimental data was tested using the
Anderson-Darling test for normality. All data that showed a Gaussian
distribution were analysed using parametric tests. Data from two
groups not showing a Gaussian distribution were analysed using a
Mann-Whitney T-test. The one-way analysis of variance (ANOVA) sta-
tistical test was used to test for significance between the means of three
or more independent groups of normally distributed data.

3. Results and discussion

The D. discoideum mitochondrial localization sequence (MLS)
(Fig. 1) was derived from the GcvH1 protein, a member of the mi-
tochondrial glycine cleavage system enzyme complex [26]. The glycine
cleavage system is located within the mitochondrial matrix and has a
loose affiliation with the inner mitochondrial membrane. We cloned the
GcvH1 MLS onto the N-terminus of mRFPmars [27] to form the REMIT
vector that was then transfected into wildtype D. discoideum cells. To
validate the mitochondrial localization of mRFPmars in these cells,
mRFPmars fluorescence was examined in fixed cells [36] (Fig. 2),
showing highly localised distribution in mitochondrial-like structures.
Since porin is localised in the outer mitochondrial membrane, we ex-
amined this localization, indicating REMIT mRFPmars in the mi-
tochondrial matrix with porin surrounding this labelling (Fig. 2). We
then assessed the use of REMIT mRFPmars for labelling mitochondria in
live cell imaging experiments. By using live-cell confocal microscopy,
REMIT-expressing cells revealed a highly discrete labelling of mi-
tochondria in real time (Fig. 3, and Supplementary movies 1,2), also
visible using under-agar inverted fluorescence microscopy (Supple-
mentary movie 3). A similar localization was found using a GFP-en-
coding vector, GREMIT (Supplementary Fig. 1). We also employed high
resolution live-cell imaging to monitor mitochondrial dynamics (Sup-
plementary movie 4), and this enabled 3-dimensional reconstruction of
mitochondrial distribution in live cells (Supplementary movie 5).

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.bbrep.2020.100751

In order to maintain a healthy population of mitochondria within
the cells, all mitochondria experiencing damage or dysfunction will
undergo mitophagy. This process results in defective mitochondria
being targeted to the lysosome for autophagic degradation, thereby
maintaining cell health [37]. Because transfection with REMIT leads to
the localization of mRFPmars to the mitochondria we investigated
whether this resulted in mitochondrial damage or dysfunction,

Fig. 3. Live-cell imaging of REMIT localizing to the mitochondria. (A) Time lapse single plane imaging on a confocal microscope showing D. discoideum cells
transfected with REMIT-mRFPmars. The upper panel shows phase contrast images, the lower panels the intensity of the mRFPmars signal according to grey levels
depicted in colour-mode fire [38], scale bar 5 μm. Images correspond to Supplementary movie 1. Similar live cell imaging using red fluorescence are provided in
Supplementary movie 2, using under agar inverted fluorescence in Supplementary movie 3, Z stack imaging in Supplementary movie 4, and 3D reconstruction of live-
cell imaging in Supplementary movie 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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resulting in mitophagy, or alternatively increased mitochondrial load
(the mitochondrial protein content). To assess mitochondrial loading,
we compared levels of a mitochondrial protein, mitochondrial 3-me-
thylcrotonyl-CoA carboxylase α [34], in wildtype cells and cells trans-
fected with REMIT using Western blot analysis (Fig. 4A). From this
analysis, no change in mitochondrial load was identified following
REMIT transfection.

The requirement of mitochondria to carry out normal respiratory
function is fundamental to maintaining a healthy cell. Any deleterious
effect on respiratory function as a result of REMIT transfection would
result in downstream processes being disrupted. Thus, it is necessary to
confirm that mitochondrial respiratory function is not disrupted.
Mitochondrial respirometry function was therefore measured in terms
of the basal O2 consumption rate, the O2 consumption rate devoted to
the synthesis of ATP, the maximum O2 consumption rate, the con-
tribution of complex I to the maximum O2 consumption rate, the con-
tribution of complex II to the maximum O2 consumption rate, and the

O2 consumption rate devoted to mitochondrial function other than ATP
synthesis, i.e. “proton leak” (Fig. 4B). These data were obtained from
cells transfected with REMIT, cells transfected with REMIT lacking the
MLS, and untransfected wildtype cells. For all six conditions no sig-
nificant difference (P > 0.05) was found between the three cell lines.
This shows that mitochondrial function is not affected despite the
presence of mRFPmars localised within the mitochondrial matrix.

These experiments thus show that transfection of D. discoideum cells
with REMIT provides a quick, cheap and convenient method to visua-
lize mitochondria in real time. The use of REMIT would be advanta-
geous in studies involving the need for both visualization and normal
respiratory function. These studies can include investigation into mi-
tochondrial fission and fusion events, mitochondrial dynamics and
mitochondrial morphology.
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