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Abstract: Double- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical
properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of
these sandwiches depend on their conformational state, which is determined via the skew angle of
the phthalocyanine ligands. Thus, in the present work we report the comprehensive conformational
study of substituted terbium(III) and yttrium(III) trisphthalocyaninates in solution depending on
the substituents at the periphery of molecules, redox-states and nature of solvents. Conjunction of
UV-vis-NIR spectroscopy and quantum-chemical calculations within simplified time-dependent DFT
in Tamm–Dancoff approximation provided the spectroscopic signatures of staggered and gauche
conformations of trisphthalocyaninates. Altogether, it allowed us to demonstrate that the butoxy-
substituted complex behaves as a molecular switcher with controllable conformational state, while the
crown-substituted triple-decker complex maintains a staggered conformation regardless of external
factors. The analysis of noncovalent interactions within the reduced density gradient approach
allowed to shed light on the nature of factors stabilizing certain conformers.

Keywords: triple-decker phthalocyaninates; conformation; UV-vis-NIR spectroscopy; simplified
Tamm–Dancoff approximation; noncovalent interactions; reduced density gradient; quantum theory
of atoms in molecules

1. Introduction

Sandwich double- and triple-decker lanthanide (Ln) complexes with phthalocyanine
(Pc) ligands possess numerous useful properties [1–3]. Among them, the single molecule
magnetism of Tb(III), Dy(III) and Er(III) complexes is particularly attractive [4,5], rendering
these complexes as valuable building blocks in molecular memory devices and spintronic
technologies [6]. Moreover, the sensitivity of magnetic properties to external stimuli affords
their application as molecular switches, i.e., components of smart materials [7].

The characteristic structural features of sandwich complexes which have particularly
pronounced effects on their magnetic properties are the interligand distance d and skew
angles θ between stacked ligands (Figure 1a–c). The d value can be described as a separa-
tion between N4 centroids of tetrapyrrolic ligands, and it dictates the ligand field strength
which in turn determines the height of magnetization relaxation barrier [8]. The θ value
defies the symmetry of lanthanide ion coordination surrounding and affects the magne-
tization relaxation mechanisms [9,10]. While the distance d is clearly governed mainly
by the size of the bridging metal center [11] and the overall redox-state of the sandwich
complex [12], the skew angle θ reveals trickier dependence on structural [13], electronic [14]
and supramolecular factors [15].

One example of such intricate behaviour relates to the widely studied triple-decker
Ln(III) phthalocyaninates with alkoxy- and crown-ether substituents [16]. In the following
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paper, we will discuss this behaviour on the examples of octa-n-butoxy- and tetra-15-crown-
5-substituted Pc ligands (Figure 1d).
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The authors noted the dramatically different appearance of the UV-vis spectrum of the 
triple-decker complexes in dichloromethane (broad Q-band with several unresolved in-
flexions) and benzene (sharp Q-band with well-resolved Q1 and Q2 components). 

Moreover, similar solvatochromism was observed on the examples of various classes 
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[19,20] and bisphthalocyaninates with µ-nitribo-diiron and µ-carbido-diruthenium cores 
[(AlkO)8PcM]2(µ-X), M = Fe, X = N [21] and M = Ru, X = C [22]. Detailed NMR characteri-
zation of siloxane bisphthalocyaninates allowed to explained the difference in spectral 
properties in terms of conformers with different skew angles [20]. Thus, the gauche (g-) 
form with D4 symmetry and the skew angle θ ≈ 30° was stabilized in chloroalkanes. The 
staggered (s-) form with D4h symmetry and the angle of θ ≈ 45° was stabilized in aromatic 
solvents. The preferable formation of one or another conformer was only tentatively ex-
plained by the difference in attractive interactions between solvent molecules and aro-
matic systems of Pc ligands. TD-DFT calculations of siloxane dimers allowed to differen-
tiate their s- and g-conformers [23,24]. 

The gauche form was always found by XRD in all crystals of neutral M2[(BuO)8Pc]3, 

M = Gd [25], Tb [26], Dy [27]. However, in 2020, Horii et al. described the crystal structure 
of the dicationic complex {Tb2[(BuO)8Pc]3}2+(SbCl6-)2, where two electrons were removed 
from π-orbitals of Pc ligands. In contrast to the parent neutral complex, triple-decker di-
cation adapted the staggered conformation [14]. Importantly, oxidation caused decrease 
of interligand distance by 0.067 Å, which resulted in decrease in the magnetic anisotropy 

Figure 1. (a) Structural characteristics d and θ, which determine coordination surrounding of lan-
thanide ion sandwiched between two Pc ligands; (b,c)—staggered (s-) and gauche (g-) confor-
mations of Pc ligands in sandwich complexes; (d)—trisphthalocyaninates studied in the present
work—M2[(BuO)8Pc]3—diterbium(III) or diyttrium(III) tris(octa-n-butoxyphthalocyaninates) and
M2[(15C5)4Pc]3—diterbium(III) or diyttrium(III) tris(tetra-15-crown-5-phthalocyaninates).

The first synthesis and characterization of triple-decker complexes M2[(BuO)8Pc]3,
based on octa-n-butoxy-phthalocyanine was reported by Takahashi et al. in 1993 on the
examples of sandwiches formed by Dy(III), Yb(III), La(III), and Lu(III) complexes [17,18].
The authors noted the dramatically different appearance of the UV-vis spectrum of the triple-
decker complexes in dichloromethane (broad Q-band with several unresolved inflexions)
and benzene (sharp Q-band with well-resolved Q1 and Q2 components).

Moreover, similar solvatochromism was observed on the examples of various classes of
alkoxy-substituted Pc sandwiches, including siloxane dimers RO[(AkO)8PcSiO]2R [19,20]
and bisphthalocyaninates with µ-nitribo-diiron and µ-carbido-diruthenium cores
[(AlkO)8PcM]2(µ-X), M = Fe, X = N [21] and M = Ru, X = C [22]. Detailed NMR charac-
terization of siloxane bisphthalocyaninates allowed to explained the difference in spectral
properties in terms of conformers with different skew angles [20]. Thus, the gauche (g-)
form with D4 symmetry and the skew angle θ ≈ 30◦ was stabilized in chloroalkanes. The
staggered (s-) form with D4h symmetry and the angle of θ ≈ 45◦ was stabilized in aromatic
solvents. The preferable formation of one or another conformer was only tentatively ex-
plained by the difference in attractive interactions between solvent molecules and aromatic
systems of Pc ligands. TD-DFT calculations of siloxane dimers allowed to differentiate their
s- and g-conformers [23,24].

The gauche form was always found by XRD in all crystals of neutral M2[(BuO)8Pc]3,
M = Gd [25], Tb [26], Dy [27]. However, in 2020, Horii et al. described the crystal structure of
the dicationic complex {Tb2[(BuO)8Pc]3}2+(SbCl6

−)2, where two electrons were removed
from π-orbitals of Pc ligands. In contrast to the parent neutral complex, triple-decker
dication adapted the staggered conformation [14]. Importantly, oxidation caused decrease
of interligand distance by 0.067 Å, which resulted in decrease in the magnetic anisotropy as
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evidenced from both theoretical calculations and ac magnetic susceptibility measurements.
Altogether, these results suggest that the conformational state of alkoxy-substituted triple-
deckers can be influenced either by solvation or by redox-transition.

Different conformational behaviour was observed in the case of crown-substituted
triple-deckers. Although their UV-vis spectra in aromatic solvents were not studied, the
spectra in chloroalkanes were typical for s-conformer [22,28–32] in clear contradiction
with spectra of BuO-substituted counterparts. Moreover, X-ray diffractometric studies of
crown-trisphthalocyaninates single crystals evidenced that pairs of [(15C5)4Pc] ligands
always adapt staggered conformations [31–34]. Only in the case of the heteroleptic com-
plexes [(15C5)4Pc]M*[(15C5)4Pc]M(Pc) could the coordination polyhedron of the M* metal
centre be switched from square-antiprismatic to square-prismatic via intercalation of potas-
sium cations between crown-substituted ligands forcing the formation of the eclipsed
conformation [15].

Thus, in the present work, we aimed at a comparative study of the conformational
behaviour of alkoxy- and crown-substituted Tb(III) and Y(III) trisphthalocyaninates de-
pending both on the solvent and oxidation degree of the complexes. Time-dependent DFT
calculations in simplified Tamm–Dancoff approximation (sTDA) were used to rationalize
the observed spectral behaviour.

Although the chosen metal centres have essentially different electronic nature (Tb([Xe]f9s2)
and Y([Kr]d1s2), the synthesized complexes exhibit almost identical optical properties.
Thus, Y(III) complexes were used as references for quantum-chemical calculations which
could be reliably extrapolated to Tb(III) complexes having advantageous magnetic prop-
erties. Altogether, it provided a comprehensive summary of factors affecting the spectral
properties of substituted trisphthalocyaninates, which revealed spectral signatures indica-
tive of the conformational states of the complexes in solution.

2. Results and Discussion
2.1. Synthesis of Trisphthalocyaninates

Although the synthesis of Tb(III) and Y(III) trisphthalocyaninates with BuO- and
15C5-substituted ligands is already documented, we were able to improve synthetic pro-
tocols, which allowed faster procedures and higher yields. Previously, 1-octanol or 1-
chlofornaphthalene were used as solvents which were used for the interaction between
H2[(BuO)8Pc] or H2[(15C5)4Pc] with corresponding acetylacetonates affording target triple-
deckers in ~20% [26] and ~50% [35] after 4 h and 1.5 h of reaction mixture refluxing respec-
tively. Herein, we found that application of a 9:1 vol. mixture of 1,2,4-trichlorobenzene and
1-octanol as a solvent allowed to increase the yields of Tb2[(BuO)8Pc]3 and Tb2[(15C5)4Pc]3
to 90% and 68% respectively. The yields for Y(III) counterparts were 75% and 79% respec-
tively. Importantly, the reaction times were reduced to 30 min. Analytical characteris-
tics of thus synthesized complexes were in agreement with the previously reported data
(Figures S1–S8).

2.2. Solvatochromic Behaviour of Trisphthalocyaninates Depending on the Nature of Substituents
and Redox State

UV-vis spectra of the synthesized Tb(III) and Y(III) trisphthalocyaninates were mea-
sured in dichloromethane and benzene (Figure 2). The pronounced difference in the spectral
appearance of M2[(BuO)8Pc] in aliphatic and aromatic solvents is in line with the previous
report [17,18]. However, in the case of M2[(15C5)4Pc]3, only a negligible difference can be
noted. To the best of our knowledge, this feature of crown-substituted complexes has never
been reported before, and this result can be used as a marker of invariance of conformational
state of the latter complex on either the aliphatic or aromatic nature of solvent.
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Figure 2. Normalized UV-vis spectra of M2[(BuO)8Pc]3 and M2[(15C5)4Pc]3, M = Tb and Y in
benzene and dichloromethane.

The subtle difference in Q-bands wavelengths of Tb(III) and Y(III) complexes is ex-
plained by small variations in ionic radii of metal centres which govern the interligand
distance and intramolecular interactions between stacked ligands [36,37].

Further study of oxidation of complexes in CH2Cl2 or C6H6 was performed using
phenoxathiinylium hexachloroantimonate, OxSbCl6 as a mild oxidant which has already
been used for the stepwise oxidation of tetrapyrrolic sandwiches [14,38–40].

Figure 3 show the UV-vis-NIR spectra of the neutral, one- and two-electron oxidized
forms of the complexes Tb2[(BuO)8Pc]3 and Tb2[(15C5)4Pc]3, analogous spectra for Y(III)
complexes are shown in Supporting information (Figure S9). Whereas in the spectra of
neutral trisphthalocyanates there is no absorption in NIR region, the presence of absorption
band at ca. 2300–2500 nm is characteristic for monocations of these complexes (accurate
determination of the maximum of this band is hampered by the overlap with the solvent
absorption bands). The second oxidation leads to a hypsochromic shift of the NIR band to
1700–1800 nm. The trend in the shift of the Q-band upon oxidation is opposite—removal
of one and two electrons is followed by bathochromic shift of this band. Oxidation of
triple-decker complexes is also followed by the appearance of new bands at 450–530 nm.
While the near-IR region has already been recognized as the informative region for the
identification of the redox states of sandwich complexes [36,41,42], we found that the bands
in this region can be also used to identify the conformational state of complexes.

Unfortunately, the oxidized forms of the crown-substituted complex rapidly precip-
itated from benzene solution, therefore their high-quality spectra could not be acquired,
however the aforementioned assumption of the conformational rigidity of this complex al-
lowed us to use the spectral patterns of its redox-forms in CH2Cl2 as markers for staggered
conformations. Thus, we compared the UV-vis-NIR spectra of the 1e-oxidized complexes
Tb2[(BuO)8Pc]3

+ and Tb2[(15C5)4Pc]3
+ in CH2Cl2, where parent neutral complexes exist

in gauche and staggered conformations respectively. In addition to the notable difference in
the shape of the Q-bands of the complexes, the striking difference in the shape and number
of absorption bands in the NIR region must also be noted—while in the spectrum of the
crown-substituted complex one wide band with a maximum at 2450 nm is observed, in the
spectrum of butoxy-substituted complex contains additional weak bands at 1250–1750 nm.
Moreover, the UV-vis-NIR spectrum of Tb2[(BuO)8Pc]3

+ in benzene shows only one broad
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band at 2650 nm. Assuming that benzene stabilizes staggered conformations, we can
attribute the bands at 1250–1750 nm to the marker of the gauche conformation.
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To the contrast, the shape and appearance of spectra of dicationic forms of both com-
plexes in CH2Cl2 are nearly identical, suggesting the uniformity of their conformational
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state, and it is reasonable to ascribe the observed spectral pattern to the staggered confor-
mation based on crystallographic characterization of {Tb2[(BuO)8Pc]3}2+(SbCl6

−)2 [14].

2.3. Quantum-Chemical Modelling of Conformation- and Redox-Dependent UV-vis-NIR Spectra of
Trisphthalocyaninates

Altogether spectral observations suggest that 1e-oxidation of M2[(BuO)8Pc]3 in CH2Cl2
does not cause switching of its conformation from gauche to staggered, however 2e-oxidation
does result in such switching. The complex M2[(15C5)4Pc]3 is assumed to be conformation-
ally invariant. To support these conclusions, we performed quantum-chemical calculations
to predict UV-vis-NIR spectra of redox forms of triple-deckers depending on their con-
formational state. With this aim, we optimized s- and g-conformers of neutral, cationic
and dicationic forms of Y(III) trisphthalocyaninates where butoxy- and crown-substituents
were truncated and replaced with MeO-groups.

Optimization was performed in ORCA 5.0.3 package [43] using BP86 DFT functional,
def2-SVP basis set for light atoms and def2-ECP for yttrium. Although this computational
level can be considered as a relatively modest, it was previously shown that it provides
sufficiently accurate geometries for prediction of spectral properties of phthalocyanines
and related compounds [15,44,45] which is particularly attractive from the viewpoint of
the computational cost of large molecules.

Importantly, Grimme’s atom-pairwise dispersion correction and Becke–Johnson damp-
ing (D3BJ) was used to reproduce the intramolecular interactions between stacked Pc
ligands in sandwich complexes [46]. In the absence of this correction, geometrical optimiza-
tion of sandwich phthalocyaninates lead to structures with severely concaved Pc ligands
which clearly contradicts X-ray data [47]. On the other hand, it has already been reported
that the applied D3BJ correction overestimates the stabilisation of the g-conformations of
alkoxy-substituted sandwiches even in cases where such conformation can be excluded on
the basis of experimental data [48].

Indeed, in our case neutral molecules and both oxidized forms converged to g-
conformers, so the s-geometries could be obtained only by imposing the geometrical
constrains setting the skew angles to 45◦. BP86/def2-SVP gas-phase energies of the con-
verged geometries were always larger for the gauche forms for each redox-state, although
the difference ∆E between energies of gauche and staggered conformers systematically
decreased with the increase of the molecular charge. Accounting for solvation with benzene
and dichloromethane using the implicit SMD model [49] neither changes the geometry nor
affected the relative stability of certain forms.

For more accurate evaluation of relative stabilities of conformers, we performed single-
point calculations for the converged geometries using r2SCAN-3c [50], a “Swiss army
knife” composite electronic-structure method, which shows a spectacular performance and
robustness for reaction and conformational energies as well as non-covalent interactions. A
comparison of energies, calculated for gas-phase and implicit SMD surrounding, suggests
gradual destabilization of g-conformations upon stepwise oxidation making s-conformation
the most stable in all media, making the s-dication the most stable form in both solvents,
which correlates well with the aforementioned spectroscopic data (Table 1). However, even
the advanced r2SCAN-3c method cannot reproduce other features, including the existence
of neutral and cationic alkoxy-substituted trisphthalocyaninates in s-forms in aromatic
media and g-forms in chloroalkanes. As there is no explicit solvation in our calculations,
we can make the cautious assumption that these results can evidence of the role of specific
solvation due to weak solvent/solvate interactions, which may involve hydrogen bonds
and π-π stacking.
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Table 1. Difference of energies of gauche and staggered conformers (∆E = Eg − Es) of Y2[(MeO)8Pc]3

according to r2SCAN-3c single point calculations for geometries optimized at BP86/def2-SVP level
of theory. Accounting for solvation was made within SMD for benzene and dichloromethane.

∆E(gas), kcal/mol ∆E(C6H6), kcal/mol ∆E(CH2Cl2), kcal/mol

Y2[(MeO)8Pc]3 −13.3 −3.8 −2.5
Y2[(MeO)8Pc]3

+ −5.6 3.2 3.8
Y2[(MeO)8Pc]3

2+ 2.4 10.0 10.0

Analysis of structural characteristics of the optimized geometries (Figure 4) evidence
that oxidation results in gradual contraction of Y . . . Y and N4 . . . N4 distances (Table 2).
The fair agreement of computational results with crystallographic data for reported triple-
decker complexes justifies the adequacy of the selected structural model. The noteworthy
difference in structures of s- and g-conformers is the systematic contraction of the metal-
metal distance in the latter case which may have impact on f -f interactions in trisphthalo-
cyaninates bearing two paramagnetic lanthanide centres. This impact is yet to be studied
experimentally.
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Figure 4. Top and side views on geometries of staggered (a) and gauche (b) conformations of
Y2[(MeO)8Pc]3 according to BP86/def2-SVP calculations.

Table 2. Selected structural features of redox-forms of Y2[(MeO)8Pc]3 according to BP86/def2-SVP
calculations. The values in brackets correspond to experimental XRD data.

d(Y . . . Y), Å d(N4 . . . N4), Å θ, ◦ d(Y . . . Y), Å d(N4 . . . N4), Å θ, ◦

s-Conformer g-Conformer
Y2[(MeO)8Pc]3 3.403 (3.429) 2 2.923 (2.952) 2 45 1 (43.9) 2 3.486 (3.517) 4 2.983 (3.028) 4 22.6 (33.0) 4

Y2[(MeO)8Pc]3
+ 3.385 2.898 451 3.459 2.97 23.0

Y2[(MeO)8Pc]3
2+ 3.366 (3.435) 3 2.873 (2.980)3 45 1 (44.2) 3 3.442 2.956 22.7

1 The angle of 45◦ comes from geometrical constraints imposed during geometry optimization. 2 Data taken
from X-ray structure of [(15C5)4Pc]Y[(15C5)4Pc]Y(Pc), N4 . . . N4 and θ values are averaged (CCRC ITUJEP, [15]).
3 Data taken from X-ray structure of Tb2[(BuO)8Pc]3

2+(SbCl6
−)2 (CCDC FURGUX, [14]). 4 Data taken from X-ray

structure of Tb2[(BuO)8Pc]3 (CCDC CAMXUL, [26]).

Optimized structures were used to predict the energies of vertical excitations in UV-vis-
NIR spectra of trisphthalocyaninates within the simplified Tamm–Dancoff approximation
(sTDA) [51–53] with CAM-B3LYP functional [54], def2-SVP basis set for light atoms and
def2-ECP for yttrium. Previously, both simplified TDA and TDDFT were demonstrated to
afford spectacular orders of magnitude speedup of calculations in comparison with full
TDDFT without loss of accuracy or even providing more accurate results for prediction of
UV-vis-NIR spectra of huge molecules, and they were widely applied for phthalocyanines
and related compounds [45,55–57]. Herein, we used this method for the first time to treat
triple-decker complexes, thus contributing to the history of successful use of simplified
time-dependent DFT approximations.

Frontier molecular orbitals responsible for the appearance of bands in UV-vis-NIR
spectra of trisphthalocyaninates are formed from linear combinations of Pc-centred orbitals,
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i.e., HOMOs and pairs of degenerate LUMOs [36,58,59]. Depending on the molecular
symmetries, the contributions of parent ligand orbitals can form bonding, nonbonding,
and antibonding combinations (Figure 5). Thus, both conformations have the bonding
and antibonding nature of HOMO-2 and HOMO respectively. However, HOMO-1 of
g-conformer also becomes a bonding orbital with a significant contribution from the inner
ligand, while the contribution from this ligand in s-form is zero. The antibonding nature of
the neutral triple-decker HOMO is responsible for the decrease of the interligand distance
upon the stepwise removal of electrons from this orbital.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 18 
 

 

phthalocyanines and related compounds [45,55–57]. Herein, we used this method for the 
first time to treat triple-decker complexes, thus contributing to the history of successful 
use of simplified time-dependent DFT approximations. 

Frontier molecular orbitals responsible for the appearance of bands in UV-vis-NIR 
spectra of trisphthalocyaninates are formed from linear combinations of Pc-centred orbit-
als, i.e., HOMOs and pairs of degenerate LUMOs [36,58,59]. Depending on the molecular 
symmetries, the contributions of parent ligand orbitals can form bonding, nonbonding, 
and antibonding combinations (Figure 5). Thus, both conformations have the bonding and 
antibonding nature of HOMO-2 and HOMO respectively. However, HOMO-1 of g-con-
former also becomes a bonding orbital with a significant contribution from the inner lig-
and, while the contribution from this ligand in s-form is zero. The antibonding nature of 
the neutral triple-decker HOMO is responsible for the decrease of the interligand distance 
upon the stepwise removal of electrons from this orbital. 

 
Figure 5. Appearances of highest occupied molecular orbitals of parent Pc2ࢤ ligand and neutral 
Y2[(MeO)8Pc]3 according to single-point CAM-B3LYP/def2-SVP calculations for geometries opti-
mized at BP86/def2-SVP level of theory. 

Excitation from the three highest occupied MOs to three pairs of LUMOs is responsible 
for Q-bands observed in the visible range. Sequential oxidation of the complex leads to new 
vacant orbitals, the electronic transitions to which give rise to bands in the near-infrared 
region. Although these trends are common for both conformations, the comparison of dia-
grams of frontier MOs evidence that altering the molecular symmetry strongly affects the 
energies occupied orbitals (Figure 6), which inevitably has a profound effect on energies and 
configurations of vertical excitations (Tables S1–S3). 

Figure 5. Appearances of highest occupied molecular orbitals of parent Pc2− ligand and neutral
Y2[(MeO)8Pc]3 according to single-point CAM-B3LYP/def2-SVP calculations for geometries opti-
mized at BP86/def2-SVP level of theory.

Excitation from the three highest occupied MOs to three pairs of LUMOs is responsible
for Q-bands observed in the visible range. Sequential oxidation of the complex leads to new
vacant orbitals, the electronic transitions to which give rise to bands in the near-infrared
region. Although these trends are common for both conformations, the comparison of
diagrams of frontier MOs evidence that altering the molecular symmetry strongly affects
the energies occupied orbitals (Figure 6), which inevitably has a profound effect on energies
and configurations of vertical excitations (Tables S1–S3).
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A comparison of the spectra, calculated for the s-conformers of neutral and oxidized
forms of Y2[(MeO)8Pc]3 and experimental spectra of redox-forms of Y2[(15C5)4Pc]3 in
CH2Cl2, evidences their excellent agreement (Figure 7). Thus, BP86 structural model with
further CAM-B3LYP sTDA treatment is a fortunate computational combination which
accurately reproduces spectral features of trisphthalocyaninates, including the Q-bands
bathochromic shift upon oxidation, the appearance of the NIR band in 1e-oxidized complex,
and the hypsochromic shift of NIR band upon 2e-oxidation. The errors in positions of
Q-band NIR bands are in the ranges of 0.08–0.18 eV and 0.03–0.04 eV respectively, which
does not exceed the typical errors in TD-DFT calculations of phthalocyanines and related
compounds [54]. Moreover, the analogy between spectral appearances of complexes with
different metal centres allows us to extrapolate the results obtained for the Y(III) complexes
to Tb(III) counterparts.
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Figure 7. Comparison of experimental spectra of neutral and oxidized Y2[(15C5)4Pc]3 in CH2Cl2 and
calculated UV-vis-NIR spectra of s-Y2[(MeO)8Pc]3 according to single-point sTDA CAM-B3LYP/def2-
SVP calculations for staggered conformations of respective redox-forms optimized at BP86/def2-SVP
level of theory. The shapes of calculated spectra are given with 0.1 eV half-width.

The excellent agreement between simulated and measured spectra validates sTDA
model and justifies it for further prediction of the experimentally unobtainable spectrum
of the dicationic gauche complex. Modelling suggests that this spectrum should have
dramatically different appearance in NIR range—the band at 3500 nm is expected instead
of absorbance at 1800 nm (Figure 8). Interestingly, such exceptionally low-lying π-π* excited
states of sandwich phthalocyaninates were observed previously by Fukuda and Ishikawa
et al. in spectra of oxidized forms of quadruple-decker phthalocyanine complexes [39].
However, in that case, the appearance of this band was not related to conformational effects
but was ascribed to the consolidated conjugation through the huge molecules composed of
four stacked ligands.
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Figure 8. Comparison of experimental spectrum of Y2[(BuO)8Pc]3
2+ in CH2Cl2 and calculated UV-

vis-NIR spectrum of g-Y2[(MeO)8Pc]3
2+ according to single-point sTDA CAM-B3LYP/def2-SVP

calculations for geometry optimized at BP86/def2-SVP level of theory. The shape of calculated
spectrum is given with 0.1 eV half-width.

2.4. Analysis of Noncovalent Interactions Stabilizing Conformations of Trisphthalocyaninates

With the CAM-B3LYP/def2-SVP wave functions of the trisphthalocyaninates in hand,
we tried to identify factors that stabilise their conformations. For this purpose, we per-
formed graphical visualisation of noncovalent interaction (NCI) isosurfaces based on
reduced gradient density (RDG, Equation (1)) [60].

RDG(r) =
1

2(3π2)
2/3 ·

[∆ρ(r)]

[ρ(r)]4/3 (1)

Here ρ is electron density and r is coordinate vector. Isosurface map of RDG at low
electron density area gives illustrative image of noncovalent interactions where areas of
strong attraction and repulsion are typically coloured into blue and red, green colour
corresponds to weaker Van der Waals interactions (Figure 9). According to the NCI-RDG
method, the strength and type of interaction can be identified by sign(λ2)ρ, where sign(λ2)
is the sign of the second largest eigenvalue of electron density Hessian matrix at position
r. Thus, sign(λ2)ρ will be positive for repulsive interactions and negative for attractive
interactions. Plotting the RDG value vs. sign(λ2)ρ gives scattered plots where spikes
with different signs and magnitudes correspond to noncovalent interactions ranging from
H-bonding to van der Waals interactions and steric repulsion.

RDG isosurfaces plotted for Y2[(MeO)8Pc]3 clearly show that the area of attraction
between stacked ligands is wider for the g-conformer which correlates with stronger
overlap between these ligands. Moreover, this region spreads to the peripheral substituents
of the molecule, whereas in the case of the s-conformer it breaks off without reaching
the periphery.

Complementary calculations within quantum theory of atoms in molecules (QTAIM)
were also performed to find the critical points corresponding to certain noncovalent inter-
actions [61]. They suggest that methoxy-groups are involved in stabilization of the gauche
form as there are numerous (3,−1) critical points corresponding to CH...O contacts, and
these points lie on the attractive regions NCI isosurfaces. To the contrast, in the case of the
staggered form, only weak H . . . H interactions can be identified according to QTAIM.

RDG vs. sign(λ2)ρ plots for two conformations of neutral Y2[(MeO)8Pc]3 (Figure 10)
show that contributions from attractive interactions in g-conformer are larger than in s-
forms, and an additional spike is observed in the near-zero region of the formed plot.
Analogous plots drawn for other redox forms (ESI) reproduce the same trends but they
are not sufficient for the definitive identification of interactions which cause the switching
of conformers.
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Altogether, these results again confirm that the effects responsible for the stabilization
of certain conformers are relatively subtle. Thus, the applied truncated models which do
not include the explicit interaction of substituents in trisphthalocyaninates with solvent
molecules can only be cautiously used for the description of the conformational behaviour
of these sandwich complexes. However, in conjunction with spectroscopic data, these
models can provide reliable information about the conformational state of complexes
in solution.
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3. Materials and Methods
3.1. Physical-Chemical Measurements

All solvents were distilled over appropriate drying agents prior to use. All starting
reagents were applied from commercial suppliers. Phthalocyanines H2[(BuO)8Pc] and
H2[(15C5)4Pc] [62] and the oxidizing agent phenoxathiinylium hexachloroantimonate,
OxSbCl6 [38], were synthesized according to the previously reported procedures.

UV–vis–NIR spectra in the range of 250–3000 nm were measured using a spectropho-
tometer V-770 (JASCO) in quartz cells with 1 cm optical path. Matrix-assisted laser des-
orption ionization time-of-flight (MALDI-TOF) mass spectra were measured on a Bruker
Daltonics Ultraflex spectrometer. Mass spectra were registered in positive ion mode using
2,5- dihydroxybenzoic acid as a matrix. MALDI-TOF mass spectra of synthesized com-
plexes are provided in Supplementary Information (Figures S1, S3, S5 and S7). NMR spectra
were recorded using a Bruker Avance III spectrometer with 600 MHz proton frequency in
CDCl3 at ambient temperature with the use of the residual solvent resonance as internal
reference. NMR spectra of synthesized complexes are provided in Supplementary Infor-
mation (Figures S2, S4, S6 and S8). Analytical characteristics of the synthesized complexes
were in agreement with the previously reported data [63,64].

3.2. Synthesis and Characterization of Phthalocyanines

Diterbium(III) tris(octa-butoxy-phthalocyaninate) Tb2[(BuO)8Pc]3. Terbium acety-
lacetonate (140 mg, 0.29 mmol) was added to a boiling solution of octa-butoxy phthalo-
cyanine H2[(BuO)8Pc] (107 mg, 98 µmol) in a mixture of 4.5 mL of 1,2,4-trichlorobenzene
(TClB) and 0.5 mL of 1-octanol in an argon atmosphere and the reaction mixture was
refluxed for 30 min. After cooling, the reaction mass was transferred to a chromatographic
column filled with aluminium oxide in a mixture of chloroform/hexane 3:2 vol. Elution
with the same mixture allowed separation of trichlorobenzene. Further, a mixture of chlo-
roform/hexane 4:1 vol. was used to isolate the target triple-decker complex in mixture
with octanol. After evaporation of volatile solvents, 25 mL of methanol was added to
the obtained oily mixture. The resulting suspension was kept in an ultrasonic bath for
30 min, and the target complex was filtered off and dried at 80 ◦C overnight, affording
Tb2[(BuO)8Pc]3 as a dark blue fine-crystalline powder (106 mg, 90%). MALDI TOF: m/z
calcd for C192H240N24O24Tb2 3585.7, found 3585.9 [M+]. UV–Vis–NIR (benzene) λmax (nm)
(log ε): 293 (5.18), 362 (5.29), 644 (5.52), 692 (4.70). UV–Vis–NIR (CH2Cl2) λmax (nm) (log ε):
293 (5.17), 352 (5.20), 554 (4.52), 643 (5.04).

Diyttrium (III) tris(octa-butoxy-phthalocyaninate) Y2[(BuO)8Pc]3. The complex (32
mg, 75%) was synthesized using the aforementioned procedure starting from octa-butoxy-
phthalocyanine H2[(BuO)8Pc] (40 mg, 37 µmol) and yttrium acetylacetonate (42 mg, 0.11
mmol). MALDI TOF: m/z calcd for C192H240N24O24Y2 3445.6, found 3445.4 [M+]. UV–Vis–
NIR (benzene) λmax (nm) (log ε): 293 (5.15), 361 (5.28), 643 (5.44), 698 (4.70). UV–Vis–NIR
(CH2Cl2) λmax (nm) (log ε): 293 (5.17), 352 (5.22), 547 (4.52), 643 (5.13).

Diterbium(III) tris(tetra-15-crown-5-phthalocyaninate) Tb2[(15C5)4Pc]3. Terbium
acetylacetonate (112 mg, 2.46 mmol) was added to a boiling solution of tetra-15-crown-5-
phthalocyanine (104 mg, 0.82 mmol) in a mixture of 4.5 mL of 1,2,4-trichlorobenzene (TClB)
and 0.5 mL of 1-octanol in an argon atmosphere and the reaction mixture was refluxed
for 30 min. After cooling, the reaction mass was transferred to a chromatographic column
filled with aluminium oxide in a mixture of chloroform/hexane 3:2 vol. Elution with the
same mixture allowed the separation of trichlorobenzene followed by octanol. Further,
a mixture of chloroform + 1.75 vol.% MeOH was used to isolate the target triple-decker
complex. After evaporation of volatile solvents, the residue was dried at 80 ◦C overnight
affording Tb2[(15C5)4Pc]3 as a dark blue powder (72 mg, 68%). MALDI TOF: m/z calcd
for C192H216N24O60Tb2 4137.3, found 4138.1 [M + H]+. UV–Vis–NIR (benzene) λmax (nm)
(log ε): 292 (5.14), 362 (5.25), 645 (5.45), 693 (4.66). UV–Vis–NIR (CH2Cl2) λmax (nm) (log ε):
292 (5.02), 363 (5.11), 644 (5.22), 698 (4.61).
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Diyttrium(III) tris(tetra-15-crown-5-phthalocyaninate) Y2[(15C5)4Pc]3. The complex
(42 mg, 79%) was synthesized using the aforementioned procedure starting from tetra-
15-crown-5-phthalocyanine H2[(15C5)4Pc] (51 mg, 40 µmol) and yttrium acetylacetonate
(48 mg, 0.12 mmol). MALDI TOF: m/z calcd for C192H216N24O60Y2 3997.3, found 3997.2
[M]+. UV–Vis–NIR (benzene) λmax (nm) (log ε): 293 (5.16), 362 (5.28), 644 (5.43), 699 (4.71).
UV–Vis–NIR (CH2Cl2) λmax (nm) (log ε): 293 (5.12), 363 (5.22), 642 (5.32), 705 (4.68).

3.3. Spectrophotometric Investigation of Trisphjthalocyaninates Oxidation

Aliquots of solutions of complexes in CH2Cl2 or C6H6 (ca. 10−5 M) were placed into
quarts cells with Teflon stoppers, and solution of phenoxathiinylium hexachloroantimonate,
OxSbCl6 in CH2Cl2 (3.7 mM) was added stepwise in 5 µL portions. UV-Vis-NIR spectra
were measured after each addition in the range of 250–3000 nm. Each oxidation was
characterized by its own set of isosbestic points evidencing the stepwise conversion of
neutral forms to cations followed by the oxidation of cations to dications.

3.4. Quantum-Chemical Modelling

All calculations were performed using ORCA 5.0.3 quantum chemical package [43]
for yttrium complexes where all peripheral substituents were truncated to methoxy-groups.
Thus, the structures of the resulting model complexes Y2[(MeO)8Pc]3 in neutral, mono-,
and dicationic forms were optimized using BP86 functional and def2-SVP basis set [65].
Geometrical constraints were imposed to obtain geometries with staggered conformations,
gauche conformations were optimized without any constraints.

The geometry optimization was performed using Grimme’s atom-pairwise dispersion
correction and Becke–Johnson damping (D3BJ) [66]. The energies within the range of
0–5 eV and oscillator strengths of vertical excitations were calculated using simplified
Tamm–Dancoff approximation [45,51–53] with CAM-B3LYP functional and def2-SVP ba-
sis set. Optimization and sTDA calculations were performed in gas phase, as well as
dichloromethane or benzene media. Solvation effects were accounted for by using the
solvation model based on density (SMD) [49]. However, both gas-phase and SMD calcula-
tions showed that accounting for solvation has a negligible effect on geometries, excitation
energies and oscillator forces.

Gabedit 2.3.0 program was used to prepare the input files and to follow the progress
of the calculations [67], and the Chemissian 4.65 program (by L. Skripnikov) was used to
analyse and visualize the results of the quantum chemical calculations. For the current
version, see www.chemissian.com, accessed on 1 September 2022.

Reduced density gradient (RDG) analysis and calculations within Quantum theory
of atoms in molecules (QTAIM) were performed using Multiwfn 3.8 (dev) [68] and VMD
1.9.4 [69] was used for visualization. Calculations were performed using CAM-B3LYP/def2-
SVP wavefunctions.

4. Conclusions

The main outcome of our work is the establishment and interpretation of spectroscopic
signatures that can be used to determine the conformational states of trisphthalocyaninates
in solution in visible and near-IR ranges. The influence of skew angles of phthalocyanine
ligands in such complexes on their physical-chemical properties, including single-molecule
magnetism [9,10] or nonlinear optical behaviour [70], justifies the value of these correlations
as solutions are commonly used to produce Pc-bases materials. On the other hand, our
work highlights the need to critically evaluate the results of quantum chemical calculations
of nonrigid molecules, where combining spectroscopic data and appropriate theoretical
models is particularly important.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196498/s1, Figures S1–S8 and S2—MALDI-TOF
mass-spectra and 1H-NMR spectra of synthesized complexes. Figure S9—UV-vis-NIR spectra of
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neutral forms of Y2[(BuO)8Pc]3 and Y2[(15C5)4Pc]3 and their mono- and dicationic forms, obtained
by 1e- and 2e-oxidation with OxSbCl6. Figure S10—NCI plots for s- and g-conformers of neutral
and oxidized Y2[(MeO)8Pc]3; Tables S1–S6—results of sTDA calculations for s- and g-conformers of
neutral and oxidized Y2[(MeO)8Pc]3; Tables S7–S12—Cartesian coordinates of s- and g-conformers
of neutral and oxidized Y2[(MeO)8Pc]3.
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