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INTRODUCTION 
 

Esophageal cancer is the seventh most common cancer 

and the sixth leading cause of cancer death in the world 

[1]. Traditionally, esophageal cancer is subdivided into 

two histologic types, esophageal squamous cell carcinoma 

(ESCC) and esophageal adenocarcinoma (EAC), of which 

88% of the cases are ESCC. The survival rate of both 

histologic types is extremely poor because of the late 

stage at diagnosis for most patients. The risk factors and 

molecular characteristics of ESCC and EAC are different 

[2]. The risk factors for ESCC include smoking and 

alcoholic beverages [3]. EAC is associated with obesity,  

 

gastric reflux and Barrett’s esophagus (BE) [4]. BE is a 

precursor lesion for EAC, where the squamous epithelium 

of the tubular esophagus is replaced by specialized 

intestinal-type columnar epithelium [5]. Genome 

sequencing studies have revealed that two histologic types 

of esophageal cancers exhibit distinct molecular profile at 

both genomic and epigenomic levels [6–8]. Genetic 

makers, such as somatic mutations, may be below the 

detection limit due to a low tumor load in early stages of 

cancer, and represent multiple cancer types and non-tumor 

conditions [9, 10]. Hence, genetic makers are thought to 

lack of specificity and sensitivity for a particular type of 

cancer. Epigenetic markers, especially DNA methylation, 
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ABSTRACT 
 

The early diagnosis and accurate prognosis prediction of esophageal cancer is an essential part of improving 
survival. However, these diseases lack effective and specific markers. A total of 1,744 samples of 
HumanMethylation450 data were integrated to identify and validate specific methylation markers for 
esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) as well as for Barrett’s 
esophagus (BE) using The Cancer Genome Atlas and the Gene Expression Omnibus. The diagnostic and 
prognostic methylation classifiers were constructed by moderated t-statistics and the least absolute shrinkage 
and selection operator method. The diagnostic methylation classifier using 12 CpG sites was constructed in 
training set (377 samples) that could effectively discriminate samples of BE, EAC, and ESCC from normal tissue 
(AUC = 0.992), which achieved highly predictive ability in both internal (187 samples, AUC = 0.990) and external 
validation (184 samples, AUC = 0.978). The prognostic methylation classifier with 3 CpG and 2 CpG sites for EAC 
and ESCC respectively, could accurately estimate the prognosis of an individual patient and improved the 
predictive ability of the tumor node metastasis staging system. Overall, our study systematically analyzed large-
scale methylation data and provided promising markers for the diagnosis and prognosis of esophageal cancer. 
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is thought as an ideal marker for early detection of cancer, 

as it has advantages of cancer-specific methylation 

patterns, occurrence in early cancer stages, biological 

stability, and technical repeatability [11]. However, type-

specific epigenomic markers for diagnosis and prognosis 

of esophageal cancer have not been systematically 

compared and identified. 

 

Aberrant methylation is common in various types of 

cancers, including esophageal cancer, which contributes 

to carcinogenesis [12]. Methylation-based markers have 

shown great potential for the diagnosis and survival 

prediction of solid tumors. In a previous study, a panel of 

DNA methylation markers differentiated tumor tissue and 

normal tissue in four common cancer types of breast, 

colon, liver, and lung, with an accuracy of more than 95% 

in two validation cohorts [13]. DNA hypermethylation in 

tumor suppressor genes have been observed in esophageal 

cancers including EAC and ESCC as well as in the EAC 

precursor lesion BE. Numerous methylation-based 

markers have been identified as potential biomarkers for 

diagnosis of BE and esophageal cancers, or predicting 

treatment response and prognosis of esophageal cancers 

[14, 15]. Remarkably, noninvasive methods based on 

nonendoscopic cell sampling devices have been used for 

seeking methylation markers for detecting BE and 

esophageal cancer [16, 17]. When a noninvasive device 

was applied to collect samples for detecting TFPI2 

hypermethylation for BE diagnosis, the sensitivity and 

specificity were 82.2% and 95.7%, respectively [18]. A 

study found that VIM gene methylation is a highly 

sensitive biomarker for BE, which could be detected in 

esophageal brushings [19]. Moreover, using a novel 

swallowable balloon-based device that captures DNA 

samples for methylation analyses, a two marker panel of 

CCNA1 and VIM methylation for detecting BE and EAC 

from normal tissues provided more than 90% sensitivity 

and specificity [20]. However, previous study has 

suggested that ESCC has a stronger resemblance to head 

and neck squamous cell carcinoma (HNSC) than to EAC, 

and EAC more closely resembled to stomach 

adenocarcinoma (STAD) than ESCC [6]. Current studies 

focused on binary classification between tissues of BE 

and/or EAC, or ESCC with normal esophageal tissues. 

Although the samples from nonendoscopic devices may 

contain contaminations from nearby tissues, no previous 

studies have considered whether similar methylation 

patterns of the normal and cancerous tissues from adjacent 

organ may lead to misdiagnosis. Hence, tissue-specific 

methylation markers are absent and are needed to improve 

diagnosis. 

 

In this present study, we aimed to identify diagnostic 

methylation markers for multiclass diagnosis of BE and 

two types of esophageal cancer from normal tissues, and 

prognostic methylation markers for survival prediction of 

esophageal cancer. Firstly, we identified tissue-specific 

methylation markers by removing the similar methylation 

patterns from the normal and cancerous tissues of adjacent 

organ. Then, we built a diagnostic methylation classifier 

for distinguishing these diseases. The diagnostic classifier 

was further validated in external datasets to assess the 

transportability and generalizability. Finally, we 

constructed prognostic methylation classifier for patients 

with esophageal cancer. 

 

RESULTS 
 

Diagnostic methylation classifier 

 

The overall workflow and clinical characteristics of all 

patients is described in Supplementary Figure 1 and 

Supplementary Table 1. To identify tissue-specific 

methylation markers of normal squamous esophagus 

(NSE), BE, EAC, and ESCC, we included 564 samples 

of 4 tissue types of esophagus. To avoid the noise 

caused by the normal and cancerous tissues from 

adjacent organ, we also included 996 samples from 

HNSC and STAD. A total of 122,302 CpG sites was 

defined as tissue-specific markers for 4 tissue types of 

esophagus (Supplementary Figure 2). After feature 

selection by the least absolute shrinkage and selection 

operator (LASSO) model using 10 times random 

partitions and 10-fold cross-validation, we identified 

458 CpG sites with different frequencies 

(Supplementary Figure 3). Twelve CpG sites with 

frequency greater than or equal to 9 were selected to 

construct the diagnostic methylation classifier (Table 1).  

 

To evaluate the discriminative ability of 12 CpG-based 

diagnostic classifier, a multinomial logistic regression 

model (Supplementary Table 3) was built in training set 

(N = 377), which achieved total accuracy rate of 93.9% 

(95% confidence interval [CI]: 91.0%–96.1%, Table 2) 

and the micro-average Receiver Operating Characteristic 

(ROC) curve with an Area Under Curve (AUC) of 0.992 

(Figure 1B). Then, the model derived from the training set 

was applied in test set (N = 187). The total accuracy rate 

was 93.1% (95% CI: 88.4%-96.3%, Table 3) and the 

micro-average AUC was 0.990 in the test set (Figure 1D). 

Next, we further evaluated the performance of the 

diagnostic classifier in validation set (N = 184). 

Consistently, the diagnostic classifier could effectively 

predict group membership in 159 (86.4%, 95% CI: 

80.6%-91.0%) of 184 samples (Table 4), with a decreased 

but high AUC of 0.978 (Figure 1F). For 12 CpG sites, the 

distribution of methylated levels in the validation set was 

consistent with those in the training and test set 

(Supplementary Figure 4). 

 

Overall, these results demonstrate that the diagnostic 

methylation classifier has a stable classification ability 
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Table 1. Genomic information of 12 CpG sites for diagnostic methylation classifier. 

CpG Gene symbol Chromosome Genomic coordinate Relation to island UCSC refgene group 

cg10078335 CAPN10 chr2 241535845 Island Body 

cg13257812 NA chr3 27525884 Island NA 

cg04607372 NA chr5 54523900 Island NA 

cg13441766 NA chr5 134376442 Island NA 

cg13927501 TRIM31 chr6 30079090 OpenSea Body 

cg08858649 TRIM15 chr6 30139903 Island Body 

cg18080046 CLIC1 chr6 31704844 N_Shelf TSS1500 

cg14534279 NA chr10 3329966 OpenSea NA 

cg06966660 TACC2 chr10 123923066 Island Body 

cg08436756 SHANK2 chr11 70781118 OpenSea Body 

cg01025720 ATP11A chr13 113346439 S_Shore Body 

cg03474687 XRCC3 chr14 104179160 N_Shelf 5'UTR 

 

Table 2. Confusion matrix of training set. 

Hypothesized class 
True class 

NSE BE EAC ESCC Total 

NSE 90 2 3 1 96 

BE 2 64 4 0 70 

EAC 3 3 143 2 151 

ESCC 1 0 2 57 60 

Correct 90 64 143 57 354 

Total 96 69 152 60 377 

Accuracy rate (%) 93.75  92.75  94.08  95.00  93.90  

to predict the group membership of NSE, BE, EAC, and 

ESCC, and can eliminate the possible effect from 

normal and cancerous tissues of HNSC and STAD. 

 

Prognostic methylation classifier 

 

The prognostic ability of methylation markers was 

determined for EAC (N = 79) and ESCC (N = 90). 

Firstly, a list of differential methylation CpG sites 

(DMCs) for EAC and ESCC was defined based on 

moderated t-statistics (|Δβ| > 0.2 and false discovery 

rate [FDR] < 0.05, Supplementary Figure 5A and 5B). 

Then, independent prognostic methylation markers were 

identified using multivariable Cox regression (Adjusted 

P < 0.05, Supplementary Figure 5C and 5D). Results 

that only one CpG site was overlapped between the 

independent prognostic markers of EAC (N = 3,980) 

and those of ESCC (N = 1,204), revealed that two types 

of esophageal cancer had distinct sets of prognostic 

methylation markers. Lasso-Cox model was utilized to 

select informative markers by resampling and cross-

validation. Ultimately, prognostic methylation 

classifiers were constructed with 3 CpG sites for EAC 

and 2 CpG sites for ESCC (Table 5). The patients were 

classified into high-risk group and low-risk group based 

on the median of the risk score of classifiers (Figure 2A 

and Figure 2B). The Kaplan-Meier survival curve 

showed a significant difference in survival time 

between the two groups (Log-rank P < 0.0001, Figure 

2C and Figure 2D). The 3 CpG-based and 2 CpG-based 

prognostic classifier for EAC (Hazard ratio [HR] = 

5.164, Table 6) and ESCC (HR = 6.603, Table 7) 

respectively, were independent risk factors by 

multivariate Cox regression adjusting clinical risk 

factors. Time-dependent ROC curve analysis indicated 

that the predictive performance of the prognostic 

methylation classifiers was superior to those of clinical 

risk factors (Supplementary Table 4).  

 

Currently, tumor-node-metastasis (TNM) staging 

system remains the most valuable tool to predict 

prognosis for EAC and ESCC. Next, we assessed the 

association between our classifier and prognosis 

according to different TNM staging system. The results 

of the study showed that the high-risk group had poor 

prognosis in both early stage (stage I/II, Supplementary 

Figure 6A and 6B) and advanced stage (stage III/IV, 

Supplementary Figure 6C and 6D). In the risk 
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stratification by combination of prognostic classifier 

and tumor stage, patients were divided into 4 risk levels 

of G1 (low-risk and early-stage), G2 (low-risk and 

advanced-stage), G3 (high-risk and early-stage), and G4 

(high-risk and advanced-stage). Kaplan-Meier curves 

showed that patients in the different levels of risk 

stratification demonstrated significantly different 

prognoses (Log-rank P < 0.0001, Figure 3A and Figure 

3B). A multivariable Cox model adjusted for clinical 

factors was built to determine whether the risk 

stratification was an independent prognostic factor, and 

groups of G3 and G4 were significantly different in 

overall survival compared with the reference group of 

G1 (Figure 3C and Figure 3D). In particular, patients 

had worse prognoses as risk levels increase (P for  

trend < 0.0001).  

 

Overall, these results demonstrate that the prognostic 

methylation classifier can effectively predict the 

survival outcomes and improved risk stratification of 

patients with EAC and ESCC.  

 

DISCUSSION 
 

In the present study, we systematically analyzed 

genome-wide methylation data from 1,744 samples to 

identify and validate specific diagnostic methylation 

markers for BE, EAC, and ESCC by eliminating

 

 
 

Figure 1. Diagnostic methylation classifier can differentiate for NSE, BE, EAC, and ESCC. Unsupervised hierarchical clustering and 

heatmap of 12 methylation markers selected for constructing diagnostic methylation classifier in (A) training (N=377), (C) test (N=187), and 
(E) validation set (N=184). ROC curve showing the high AUC in predicting four tissue types in (B) training, (D) test, and (F) validation set. 
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Table 3. Confusion matrix of test set. 

Hypothesized class 
True class 

NSE BE EAC ESCC Total 

NSE 45 2 1 0 48 

BE 1 29 2 0 32 

EAC 1 3 71 1 76 

ESCC 0 0 2 29 31 

Correct 45 29 71 29 174 

Total 47 34 76 30 187 

Accuracy rate (%) 95.74  85.29  93.42  96.67  93.05  

 

Table 4. Confusion matrix of validation set. 

Hypothesized class 
True class 

NSE BE EAC ESCC Total 

NSE 60 4 0 0 64 

BE 4 59 1 1 65 

EAC 1 6 22 7 36 

ESCC 1 0 0 18 19 

Correct 60 59 22 18 159 

Total 66 69 23 26 184 

Accuracy rate (%) 90.91 85.51 95.65 69.23 86.41 

 

Table 5. Genomic information of CpG sites for prognostic methylation classifier. 

CpG Gene symbol Chromosome Genomic coordinate Relation to island UCSC refgene group 

EAC      

cg01192745 NA chr3 31239040 OpenSea NA 

cg19801256 ITGA1 chr5 52166469 OpenSea Body 

cg18276155 MCC chr5 112504356 OpenSea Body 

ESCC      

cg14387626 NA chr14 106331803 N_Shore NA 

cg04777726 PLEKHA4 chr19 49340489 Island 3'UTR 

 

contamination from the adjacent organ of head and neck 

and stomach. A panel of DNA methylation markers, 

selected by the LASSO method, achieved a highly 

predictive ability for distinguishing BE and EAC and 

ESCC from normal tissues in both internal and external 

validations. Prognostic methylation classifier for EAC 

and ESCC specifically was developed to classify the 

patients into high risk and low risk, which could 

accurately estimate the prognosis of an individual 

patient 

 

Methylation-based markers researches for esophageal 

cancer have mainly been focused on hypermethylation 

in promoter region CpG island of numerous tumor 

suppressor genes, such as APC and CDKN2A, which 

thus were thought to be potential biomarkers for the 

diagnosis of BE and esophageal cancer [14, 15]. 

However, these methylation-based markers were not 

specific and sensitive as hypermethylation also occur 

frequently in other cancer types. Other studies have 

evaluated the utility of genome-wide methylation data 

to discovery methylation-based markers for esophageal 

cancer. A study examined the methylation status of 

27,578 CpG sites in 94 normal esophageal, 77 BE and 

117 EAC tissue samples [21]. Results suggested that the 

AUCs for discriminating BE and EAC from normal 

esophageal tissue were 0.965 and 0.973, respectively, 

but the difference between the BE and EAC tissues was 

less clear. A study with 112 samples of 

HumanMethylation450 data identified five 
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hypermethylated CpG sites as candidate biomarkers for 

ESCC (AUC = 0.85), which were further validated in 

94 pairs tumor and adjacent normal tissues using the 

targeted bisulfite sequencing method [22]. However, 

most of these studies only focus on binary 

classifications and compared a single disease of BE or 

EAC or ESCC, or a combination of BE and EAC, to 

normal esophageal tissue. Moreover, considering the 

limitations in the numbers and types of samples 

included in these studies, there is need for further study 

on novel methylation-based markers for BE and 

esophageal cancer. In this study, we analyzed a large 

scale of genome-wide methylation data to identify 

tissue-specific methylation markers of BE and two 

types of esophageal cancer. The diagnostic methylation 

classifier constructed by the LASSO method, achieved 

high accuracy in the internal and external validation, 

and had a better performance compared with previous 

markers. Our diagnostic methylation classifier is the 

only one for multinomial classification that can 

effectively distinguish BE and two types of esophageal 

cancer from normal tissues. 

 

Endoscopy is the gold standard for the detection and 

diagnosis of BE and esophageal cancer but is not a cost-

effective or feasible and noninvasive screening method. 

Given the need of cost-benefit, nonendoscopic cell-

collecting devices have been developed by capturing 

samples from the esophagus to identify molecular 

biomarkers. One of such devices is named Cytosponge, 

which is widely used to sample cells from the 

esophagus [23]. The captured samples are analyzed for 

molecular markers that show a diagnostic accuracy 

comparable to endoscopy. This procedure suggests that 

the samples from such devices may contain 

contaminations from nearby tissues when the sampling 

device is withdrawn from the stomach to the mouth. In 

this regard, our study identified sets of tissue-specific 

methylation markers for BE and esophageal cancer by 

removing the similar methylation patterns from the 

normal esophageal tissues and adjacent cancer types of 

HNSC and STAD. Our diagnostic methylation classifier 

has clinical applicability for screening BE and 

esophageal cancer by these noninvasive devices, which 

required tissue-specific and effective markers. 

 
 

Figure 2. Prognostic methylation classifier can predict overall survival of EAC and ESCC. Waterfall plots show the risk scores of 
prognostic methylation classifier between high-risk and low risk patients for (A) EAC and (B) ESCC. The dash lines represent the median of the 
risk score. Kaplan-Meier curves were used of overall survival in high and low risk groups for (C) EAC and (D) ESCC. The cutoff values for the 
high and low risk groups were based on the median of the risk score. 



www.aging-us.com 11646 AGING 

Table 6. Univariate and multivariate Cox regression analysis of the 3-CpG prognostic methylation classifier and 
clinical factors with overall survival of EAC. 

Risk factor 
Univariate Cox   Multivariate Cox 

HR (95% CI) P value   HR (95% CI) P value 

Age (> 60 vs ≤60) 0.986(0.962-1.009) 0.2283   0.986(0.960-1.014) 0.3275  

Gender (male vs female) 0.847(0.299-2.400) 0.7553   0.552(0.158-1.928) 0.3520  

BMI (> 25 vs ≤25) 1.019(0.983-1.058) 0.3056   1.063(1.015-1.112) 0.0093  

Smoking (yes vs no) 1.133(0.606-2.117) 0.6953   1.317(0.681-2.547) 0.4138  

Alcohol use (yes vs no) 0.516(0.281-0.948) 0.0330   0.616(0.304-1.245) 0.1771  

Tumor stage (III/IV vs I/II) 2.238(1.151-4.351) 0.0176   2.028(0.930-4.420) 0.0753  

Methylation classifier (high vs low risk) 5.661(2.639-12.145) < 0.0001   5.164(2.199-12.130) 0.0002  

 

Table 7. Univariate and multivariate Cox regression analysis of the 2-CpG prognostic methylation classifier and 
clinical factors with overall survival of ESCC. 

Risk factor 
Univariate Cox 

 
Multivariate Cox 

HR (95% CI) P value 
 

HR (95% CI) P value 

Age (> 60 vs ≤60) 1.763(0.826-3.765) 0.1428 
 

1.536(0.681-3.463) 0.3011 

Gender (male vs female) 10.290(1.358-78.001) 0.0241 
 

3.508(0.407-30.207) 0.2533 

BMI (> 25 vs ≤25) 0.727(0.283-1.868) 0.5082 
 

1.211(0.453-3.240) 0.7031 

Smoking (yes vs no) 2.113(0.939-4.754) 0.0706 
 

1.257(0.526-3.003) 0.6066 

Alcohol use (yes vs no) 2.169(0.750-6.277) 0.1530 
 

4.562(1.311-15.880) 0.0171 

Tumor stage (III/IV vs I/II) 2.987(1.432-6.230) 0.0035 
 

1.980(0.873-4.492) 0.1020 

Methylation classifier (high vs low risk) 7.354(2.962-18.257) < 0.0001 
 

6.603(2.407-18.116) 0.0002 

 

 

 

Figure 3. Risk stratification combining prognostic methylation classifier and tumor stage in relation to overall survival of EAC 
and ESCC. Kaplan-Meier curves of four risk levels for (A) EAC and (B) ESCC. Multivariate Cox model of four risk levels for (C) EAC and (D) ESCC 

adjusting for age, gender, BMI, smoking, and alcohol use. 
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Furthermore, as our diagnostic methylation classifier 

used a small number of markers with precise genomic 

position, further studies could detect methylation level 

of these markers in clinical samples using the cheaper 

technique such as targeted bisulfite sequencing rather 

than expensive microarrays. 

 

Among our methylation signatures, some genes have 

been reported in the onset and progression of BE and 

esophageal cancer or the prognosis of esophageal 

cancer, such as TRIM15, TACC3, SHANK2, and MCC 

[24–28]. For example, one of the diagnostic CpG sites 

(cg08858649) was within CpG island of TRIM15 gene, 

and single gene methylation had a c-statistic of 0.91 

(95% CI: 0.88-0.99) in discriminating the combination 

of EAC and BE from normal mucosa [24]. A prognostic 

methylation marker (cg18276155) for EAC was located 

at a classic tumor suppressor gene of esophageal cancer, 

MCC gene. Several reports have described high rates of 

loss of heterozygosity at MCC in esophageal cancer 

[27, 28]. Although the link between aberrant 

methylation and gene alterations is not yet known, our 

study suggested that aberrant methylation of MCC gene 

might contribute to progression of EAC via epigenetic 

regulation. Further mechanism studies are warranted to 

offer a better understanding of the biological roles of 

these CpG sites on the molecular pathogenesis, and 

ultimately improve the diagnosis and prognosis of 

esophageal cancer. 

 

To the best of our knowledge, this is the first attempt to 

build a diagnostic classifier with a high predictive 

ability to differentiate EAC and ESCC as well as EAC 

precursor lesion BE from normal tissues and adjacent 

cancer types of HNSC and STAD. Our study also has 

some limitations. First, the discriminative ability of 

diagnostic methylation classifier in external validation 

set was slightly decreased compared to those in internal 

validation. Meanwhile, prognostic methylation classifier 

was constructed based on a small sample size, and not 

verified in external datasets because of the limited 

available data. Further studies with more samples are 

needed to enhance the statistical power and predictive 

accuracy. Second, the mechanistic contributions of 

some methylation signatures to the development and 

progression of esophageal cancer remain unknown, 

further validation efforts on their biological functions 

may provide novel pathogenic mechanisms and 

therapeutic targets. 

 

In summary, panels of methylation markers have the 

potential for diagnosis and prognosis of Barrett’s 

esophagus and esophageal cancer. Although substantial 

studies are still required to verify potential values of 

these methylation markers in noninvasive detection 

before this can be implemented into clinical practice, 

our study provided a methodology of choice for 

constructing diagnostic and prognostic methylation 

classifier for esophageal cancer. 

 

MATERIALS AND METHODS 
 

Data source 

 

DNA methylation data from HumanMethylation450 

were obtained from The Cancer Genome Atlas (TCGA, 

https://cancergenome.nih.gov/) and the Gene 

Expression Omnibus (GEO, https://www.ncbi. 

nlm.nih.gov/geo/) datasets. The level 3 DNA 

methylation data from three TCGA projects of ESCA, 

HNSC, and STAD were downloaded from the legacy 

archive of the Genomic Data Commons (GDC, 

https://portal.gdc.cancer.gov/). Six datasets were 

downloaded from GEO datasets, with the GEO 

accession numbers GSE52826, GSE72874, GSE74693, 

GSE79366, GSE81334, and GSE104707 [29–35]. Three 

TCGA projects, GSE72874, and GSE104707 were used 

for identifying tissue-specific methylation markers and 

constructing diagnostic methylation classifier, including 

143 NSE, 103 BE, 228 EAC, 90 ESCC, 528 HNSC, 50 

normal tissues of HNSC, 395 STAD, and 23 normal 

tissues of STAD. External validation sets of GSE52826, 

GSE74693, GSE79366, and GSE81334 were used to 

validate the predictive performance of the diagnostic 

classifier, including 66 NSE, 69 BE, 23 EAC, and 26 

ESCC. The methylation levels of each CpG site was 

represented by beta-value, which was the ratio of the 

methylated probe intensity and the overall intensity (the 

sum of the methylated and unmethylated probe 

intensities). The CpG sites that were from the X and Y 

chromosomes, or were known to have common SNPs, 

or were cross-hybridized with multiple genomic loci, 

were removed. 

 

Diagnostic methylation classifier 

 

Firstly, we identified to a list of tissue-specific markers for 

NSE, BE, EAC, ESCC, HNSC, normal tissues of HNSC, 

STAD, and normal tissues of STAD in discovery dataset. 

Differential methylation analysis of each CpG site was 

tested by pairwise-comparisons using moderated t-

statistics. For each pairwise-comparison, the differentially 

methylated CpG sites were defined as those having FDR 

with the Benjamini-Hochberg procedure of less than 0.05. 

The CpG sites, that in a specific tissue type were 

significantly different in all the comparisons with the 

other 7 tissue types, were defined as tissue-specific 

markers. The tissue-specific markers and samples of NSE 

BE, EAC, and ESCC were retained for the subsequent 

analysis. The LASSO was applied to select the panel of 

tissue-specific markers for constructing diagnostic 

classifier. The full dataset was randomly partitioned into 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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training and test sets, at a 2:1 ratio, and the procedures for 

the random partitions were repeated 10 times to generate 

10 different training-test sets to minimize the random 

error. In each training set, a multinomial logistic 

regression was built using a grouped lasso penalty, with 

the estimated tuning parameters. The optimal tuning 

parameters were evaluated using a 10-fold cross-

validation in the training set, and a lambda with an 

accuracy that was one standard error below the maximum 

accuracy was adopted. Markers with a frequency greater 

than or equal to 9 were chosen to build the diagnostic 

classifier for multiclassification. Then, a multinomial 

logistic model was built in training set and evaluated in 

the test set. The built model was further applied to the 

validation set to verify the transportability and 

generalizability of diagnostic methylation classifier. A 

confusion matrix and a ROC using one-vs-all approach 

were generated in all datasets. The performance of the 

diagnostic classifier was evaluated by AUC.  

 

Prognostic methylation classifier 

 

Prognostic prediction was performed for EAC and ESCC. 

First, we used the moderated t-statistics to identify the 

DMCs between cancer and normal samples, with an 

absolute value of differential methylated levels (|Δβ|) 

greater than 0.2 and an FDR < 0.05. Among these DMCs, 

independent prognostic methylation markers (P < 0.05) 

were defined using Cox proportional hazards model by 

adjusting for age, gender, BMI, smoking, alcohol use, and 

American Joint Commission on Cancer (AJCC) tumor 

stage. Then, we adopted LASSO-Cox models by 

repeating 100 times of subsampling 75% of the patients 

without replacement and 5-fold cross-validation to select 

prognostic markers. The selected markers with frequency 

more than 30 were used to construct the prognostic 

classifier, and the patients were categorized into high and 

low groups based on the median risk score of the 

prognostic classifier. The Kaplan-Meier log-rank test, 

multivariable Cox model and time-dependent ROC 

analysis were performed to evaluate the predictive ability 

of prognostic methylation classifier. 

 

Statistical analysis 

 

All the statistical tests were two-sided, and a P value < 

0.05 was considered statistically significant unless 

otherwise specified. All the analyses were implemented 

in R version 3.5.1. The R packages used in the analyses 

are listed in Supplementary Table 2. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Overall workflow of the various analyses performed in this study. Construction of (A) diagnostic 
methylation classifier and (B) prognostic methylation classifier. 
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Supplementary Figure 2. Statistics of tissue-specific methylation markers for four tissue types of esophagus. Numbers of 

tissue-specific methylation markers were identified by moderated t-statistics for group of (A) NSE, (B) BE, (C) EAC, and (D) ESCC. Tissue-
specific markers were defined as overlapping CpG sites (orange bar) that were significantly differential methylated (FDR < 0.05) in all the pair-
wise comparisons (black bar) with the other seven tissue types. 
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Supplementary Figure 3. The heatmap showing the methylation levels of 458 diagnostic CpG sites selected by LASSO in 
training and test set across four tissue types of esophagus. Row represents specific markers (N = 458). Column represents four types 

of samples (N = 564). 
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Supplementary Figure 4. Distribution of methylation levels of 12 diagnostic CpG sites across four tissue types of esophagus 
in training, test, and validation set. Symbols indicate statistical significance of one-way analysis of variance: ns, p > 0.05; *, p ≤ 0.05; **, p 
≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001. 
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Supplementary Figure 5. Identification of prognostic methylation markers for EAC and ESCC. Different methylated CpG (DMC) 

sites in tumor and normal samples by moderated t-statistics (|Δβ| > 0.2 and FDR <0.05) for (A) EAC and (B) ESCC. Independently prognostic 
CpG sites by multivariable Cox regression (P < 0.05) for (C) EAC and (D) ESCC. Numbers of prognostic CpG sites in DMC for (E) EAC and (F) 
ESCC. 
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Supplementary Figure 6. Prognostic methylation classifier and overall survival in early stage and advanced stage. Overall 

survival curves of (A) EAC patients and (B) ESCC patients in early stage. Overall survival curves of (C) EAC patients and (D) ESCC patients in 
advanced stage. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical characteristics of included samples (N = 1,744). 

Characteristic 
Esophagus    HNSC   STAD 

NSE BE EAC ESCC   Normal Tumor   Normal Tumor 

Total (n) 209 172 251 116   50 528   23 395 

Age (Mean ± SD) 
63.0 ± 

13.3 

64.3 ± 

12.8 

65.0 ± 

11.3 

59.8 ± 

10.5 
 62.6 ± 

10.7 

61.4 ± 

11.9 
 64.3 ± 

11.7 
65.7 ± 10.7 

Gender -NO. (%)           

  Female  
39 

(18.7%) 

30 

(17.4%) 

24  

(9.6%) 

14 

(12.1%) 
 12 

(24.0%) 

142 

(26.9%) 
 4 

(17.4%) 

136 

(34.4%) 

  Male  
163 

(78.0%) 

138 

(80.2%) 

222 

(88.4%) 

90 

(77.6%) 
 38 

(76.0%) 

386 

(73.1%) 
 19 

(82.6%) 

259 

(65.6%) 

  Missing data  
7  

(3.3%) 

4  

(2.3%) 

5  

(2.0%) 

12 

(10.3%) 
 0  

(0.0%) 

0  

(0.0%) 
 0  

(0.0%) 
0 (0.0%) 

Smoking - NO. (%)           

  No  
29 

(13.9%) 
4 (2.3%) 

76 

(30.3%) 

39 

(33.6%) 
 40 

(80.0%) 

230 

(43.6%) 
 8(34.8%) 0 (0.0%) 

  Yes  
55 

(26.3%) 

11  

(6.4%) 

118 

(47.0%) 

51 

(44.0%) 
 10 

(20.0%) 

298 

(56.4%) 
 13 

(56.5%) 
0 (0.0%) 

  Missing data  
125 

(59.8%) 

157 

(91.3%) 

57 

(22.7%) 

26 

(22.4%) 
 0 (0.0%) 

0  

(0.0%) 
 2 (8.7%) 

395 

(100.0%) 

Alcohol use - NO. 

(%) 
          

  No  
15  

(7.2%) 
1 (0.6%) 

55 

(21.9%) 

24 

(20.7%) 
 13 

(26.0%) 

165 

(31.2%) 
 9 

(39.1%) 
0 (0.0%) 

  Yes  
51 

(24.4%) 

14  

(8.1%) 

111 

(44.2%) 

64 

(55.2%) 
 36 

(72.0%) 

352 

(66.7%) 
 12 

(52.2%) 
0 (0.0%) 

  Missing data  
143 

(68.4%) 

157 

(91.3%) 

85 

(33.9%) 

28 

(24.1%) 
 1 (2.0%) 

11 

 (2.1%) 
 2 (8.7%) 

395 

(100.0%) 

AJCC stage -NO. 

(%) 
          

  I  - - 
8  

(3.2%) 
6 (5.2%)  - 

27  

(5.1%) 
 - 52 (13.2%) 

  II  - - 
21 

 (8.4%) 

56 

(48.3%) 
 - 

74 

(14.0%) 
 - 

125 

(31.6%) 

  III  - - 
26 

(10.4%) 

29 

(25.0%) 
 - 

82 

(15.5%) 
 - 

174 

(44.1%) 

  IV  - - 
5  

(2.0%) 
7 (6.0%)  - 

270 

(51.1%) 
 - 33 (8.4%) 

  Missing data  - - 
191 

(76.1%) 

18 

(15.5%) 
  - 

75 

(14.2%) 
  - 11 (2.8%) 
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Supplementary Table 2. R packages used in various analyses. 

R packages Function in analyses 

minfi Data pre-processing 

limma Moderated t-statistics 

IlluminaHumanMethylation450kanno.ilmn12.hg19 Annotation of CpG sites 

pheatmap Hierarchal clustering and heatmap 

glmnet LASSO 

nnet Multinomial logistic model 

multiROC ROC curves across multi-class classifications 

survival Cox model 

timeROC Time-dependent ROC analysis 

 

Supplementary Table 3. Coefficients of multinomial logistic model derived from training set. 

  BE EAC ESCC 

(Intercept) -17.53  -20.18  -33.93  

cg06966660 2.99  0.41  6.80  

cg08436756 -1.40  -5.09  -13.01  

cg08858649 5.02  13.08  6.05  

cg10078335 -4.93  6.01  7.78  

cg13257812 35.65  -25.59  -0.86  

cg01025720 0.32  -3.91  0.21  

cg03474687 17.26  17.39  10.93  

cg04607372 3.64  -2.61  -3.08  

cg13441766 11.80  8.66  6.92  

cg13927501 4.39  20.38  42.16  

cg14534279 3.32  -0.74  0.63  

cg18080046 -4.07  -13.41  -2.01  

 

Supplementary Table 4. Estimation of time-dependent AUC of clinical factors and prognostic methylation classifier 
for EAC and ESCC. 

Risk factor 
EAC   ESCC 

3 year-AUC (%) SE   3 year-AUC (%) SE 

Age  43.73 11.52   74.80 9.62  

Gender 50.52  5.24   82.34  13.72  

BMI  54.26  9.51  1.04 1.16 

Smoking  54.41  8.31  53.09 14.55  

Alcohol use 42.04  8.40  39.80  5.27  

Tumor stage  75.14  8.32  69.55 16.08  

Methylation classifier 93.82  3.24   97.47  3.18 

 

  


