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Abstract. The tumor suppressing capacity of the 
retinoblastoma protein (p110 Ra) is dependent on inter- 
actions made with cellular proteins through its 
carboxy-terminal domains. How the pl l0 RB amino- 
terminal region contributes to this activity is unclear, 
though evidence now indicates it is important for 
both growth suppression and regulation of the full- 
length protein. We have used the yeast two-hybrid sys- 
tem to screen for cellular proteins which bind to the 
first 300 amino acids of pll0 ~ .  The only gene iso- 
lated from this screen encodes a novel 84-kD nuclear 

matrix protein that localizes to subnuclear regions 
associated with RNA processing. This protein, p84, 
requires a structurally defined domain in the amino 
terminus of pll0 ~ for binding. Furthermore, both in 
vivo and in vitro experiments demonstrate that p84 
binds preferentially to the functionally active, hypo- 
phosphorylated form of p110 RB. Thus, the amino ter- 
minus of pl l0 RB may function in part to facilitate the 
binding of growth promoting factors at subnuclear 
regions actively involved in RNA metabolism. 

M 
UTATIONAL inactivation of the retinoblastoma 
(RB) I susceptibility gene has been found in a va- 
riety of human neoplasms; cells derived from 

these tumors consistently display reduced tumorigenicity 
following reintroduction of a wild-type RB allele demon- 
strafing the tumor suppressing ability of the encoded protein 
(Bookstein and Lee, 1991). Growth suppression assays of 
cultured cells suggest that the COOH-terminal half of the 
retinoblastoma protein is sufficient for this function. Specifi- 
cally, microinjection of an amino-terminally truncated form, 
p56 ~,  into cells early in the GI phase of the cell cycle 
blocks their progression into S phase (Goodrich et al., 
1991). These results were confirmed in an independent 
growth retardation assay (the "flat cell assay") following 
transfection of various RB constructs (Qin et al., 1992). 
While these experiments establish the growth suppressing 

M. A. Mancini and T. Durfee are equal first authors. 
Address all correspondence to W.-H. Lee, Center for Molecular Medi- 

cine/Institute of Biotechnology, The University of Texas Health Science 
Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245. Ph.: 
(210) 677-6350. Fax: (210) 677-6377. 

1. Abbreviations used in this paper: BCIP, 5-bromo-4-chloro-3-indolyl- 
phosphate; CSK, eytoskcletal buffer; GST, glutathione S-transferase; NBT, 
nitro blue tetrazoliurn; nt, nucleotide; snRNP, small nuclear RNP; RB, 
retinoblastoma; SC, synthetic complete; T-ag, T-antigen; 3-AT, 3-amino- 
triazole. 

capabilities of the RB protein, a concise mechanistic picture 
of how this occurs remains elusive. 

The RB gene product (pll0 ~) is a ll0-kD nuclear pro- 
tein (Lee et al., 1987) that is phosphorylated on both serine 
and threonine residues (Buchkovich et al., 1989; Ludlow et 
al., 1989; Shew et al., 1989). These modifications occur in 
a cell cycle-dependent manner (Buchkovich et al., 1989; 
Chen et al., 1989; DeCaprio et al., 1989), and are hypothe- 
sized to be important in negatively regulating the protein. 
During the G1 phase of the cycle, pll0 RB is hypophosphor- 
ylated and in an active state. At some point later in Gt, it 
becomes hyperphosphorylated, likely by a member of the 
CDK family of kinases (l.e, es et al., 1991; Lin et al., 1991), 
inactivating its growth suppressing function(s). Dephos- 
phorylation of the RB protein occurs during mid-M phase, 
activating the protein prior to the next cell cycle. Evidence 
strongly implicates the type 1 protein phosphatase as being 
critical for this process (Alberts et al., 1993; Durfee et al., 
1993; Ludlow et al., 1993). 

The RB protein is also known to bind the oncoproteins of 
several DNA tumor viruses: the adenovirus E1A protein 
(Whyte et al., 1988), the SV-40 large T-antigen (T-ag) 
(DeCaprio et al., 1988), and the HPV E7 protein (Dyson et 
al., 1989). All three of these viral oncoproteins bind prefer- 
entially to the hypophosphorylated isoform of p110 R~ 0mai 
et al., 1991; Ludlow et al., 1989; Templeton et al., 1991), 
and require regions of pll0 RB for binding which are affected 
by most known naturally occurring mutations (Hu et al., 
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1990; Huang et al., 1990; Kaelin et al., 1990). These do- 
mains, the T/EtA domains, lie near the carboxy-terminal 
portion of the molecule, and are necessary for the growth 
suppressing activity of the protein. Although precisely how 
these domains function is unclear, they are required for inter- 
acting with a variety of cellular proteins in complexes be- 
lieved to be essential for the growth-suppressing activity of 
the RB protein (for review see Goodrich and Lee, 1993). 

Like many other nuclear antigens, p110 RB is concentrated 
in multiple foci in the nuclei of intact cells (Szekely et al., 
1991; Mancini, M. A., and W.-H. Lee, unpublished results). 
The highest concentrations of pll0 ~ exist in regions of low 
DNA density (actively transcribed euchromatin) (Szekely et 
al., 1991). This heterogeneous distribution suggests that a 
structure exists for spatially organizing pll0 ~ within the 
nucleus. The best candidate for such a structure is the nu- 
clear matrix, biochemically and morphologically defined as 
the chromatin-free, insoluble framework of the nucleus. It is 
upon this scaffolding that many functional subdomains of the 
nucleus are organized, including those involved in replica- 
tion, RNA transcription and splicing (Jackson and Cook, 
1988; Nickerson et al., 1993; Carter et al., 1992, 1993). 
Hypophosphorylated pll0 ~ has also been shown to "tether 
to the nuclear structure" (Mittnach and Weinberg, 1991), and 
in fact, under more rigorous conditions can be shown to as- 
sociate with the nuclear matrix (Mancini et al., 1994). In- 
terestingly, the three viral oncoproteins which interact with 
pll0 ~ are also found in association with the nuclear matrix 
(Chatterjee and Flint, 1986; Greenfield et al., 1991; Schrim- 
beck and Deppert, 1989). The fact that matrix association 
is specific for the active isoform of pll0 ~,  and is abolished 
by naturally occurring RB mutations, argues that the protein 
may normally function, at least in part, within the architec- 
tural framework of the nucleus (Mancini et al., 1994; Mitt- 
nach and Weinberg, 1991; Templeton et al., 1991). Cur- 
rently, the mechanism by which pll0 aB associates with the 
nuclear matrix is poorly understood, although anchoring 
through interaction with matrix proteins is a strong possibil- 
ity. pll0 R8 has been shown to bind lamins A and C in vitro 
(Mancini et al., 1994; Shah et al., 1992), which may con- 
tribute to the preferential binding of hypophosphorylated 
pll0 ~ to isolated nuclear shells (Templeton, 1992). How- 
ever, as the spatial distribution of nuclear matrix-associated 
pll0 ~B is more widespread than that of the lamins (Mancini 
et al., 1994), it seems certain that the RB protein will inter- 
act with additional nuclear maatrix factors, perhaps also in 
a region-specific manner. 

Whereas carboxy-terminal domains of p110 ~ are clearly 
important in growth suppression (Goodrich et al., 1991; Qin 
et al., 1992), evidence pointing to a functional role for the 
amino-terminal region in this process is only now emerging. 
First, small deletions affecting the amino-terminal segment 
of pll0 ~ block the ability of transfected RB to inhibit 
growth in the fiat cell assay (Qian et al., 1992; Hinds et al., 
1992). Interestingly, these mutants do not qualitatively block 
the ability of the resultant RB protein to bind the transcrip- 
tion factor E2F, or the EtA protein (Qian et al., 1992), indi- 
cating an additional activity is required. More recently, a RB 
mutation has been isolated from a retinoblastoma tumor, 
which is predicted to specifically remove only exon 4 (amino 
acids 126-166) (Hogg et al., 1993). This is the first example 
of a clinical specimen With an inactivating mutation affecting 
only the amino-terminal domain. Structurally, two protease- 

resistant domains reside in this region of the protein, some 
portion of which can physicallY interact with the carboxy- 
terminal half of pll0 ~8 (Hensey et al., 1994). Deletion 
studies also indicate that amino-terminal sequences are 
necessary for the hyperphosphorylation of the full-length 
molecule (Hamel et al., 1990; Qian et al., 1992; Hinds et 
al., 1992). It is not clear, however, whether this is due to a 
structural defect, or the loss of important cdc2 sites located 
therein (Lees et al., 1991; Lin et al., 1991). The severe func- 
tional and structural consequences of amino-terminal muta- 
tions clearly demonstrate the importance of this domain in 
the context of native pll0 ~,  and warrant further investiga- 
tion into the activity of this part of the molecule. 

Evidence now suggests that the RB protein exerts its func- 
tion through interaction with other cellular proteins. To 
ascertain whether cellular proteins capable of binding to the 
pll0 ~ amino terminus exist, we conducted a screen using a 
modified version of the yeast two-hybrid system (Fields and 
Song, 1989; Durfee et al., 1993). This and other variations 
have proven effective in isolation of interacting proteins from 
cDNA expression libraries in the yeast S. cerevisiae (Chien 
et al., 1991; Dalton and Treisman, 1992; Durfee et al., 
1993; Yang et al., 1992). The only gene isolated from this 
screen encodes a novel nuclear matrix protein which inter- 
acts specifically with the amino-terminal region of hypo- 
phosphorylated pll0 RB. This protein, p84, localizes to 
regions of the nucleus known to be sites of RNA processing. 
This interaction may provide a link between pll0 ~ and 
RNA processing centers in the nucleus. 

Materials and Methods 

Strains and Media 
E. coli DH5 (F-, recAl, endAl, hsdRl7, supE44, thil, gyrA, re/A1) was the 
transformation recipient for all plasmid constructions. JA226 (hsdR, hsdM, 
leuB6, Iopll, thi, recBC, strR) (the gift of M. Hoerkstra, ICOS, Seattle, 
WA) was used to recover expression plasmids from yeast. The E. coil B 
strain BL21-LysS (Studier et al., 1990) was used for the expression of GST 
fusion proteins. Y153, MATc~ leu2-3,112, ura3-52, trpl-901, his3-A200, 
ade2-101, gal4A, gal8OA, URA3 : :GAL-IacZ, LYS2 : :GAL-HIS3 was the yeast 
strain used in all experiments. 

For drug selections, LB plates were supplemented with ampieillin (50 
/~g/ml). Minimal media plates for E. coil, lacking leucine and containing 
ampicillin, were prepared as described (Miller, 1972). Yeast YEPD and 
synthetic complete (SC) media was prepared as described (Rose et al., 
1990). 

Plasmids 
pAS/N-RB construction was described in Durfee et al. (1993). pAS/N-HBg 
was generated by digesting BKS/N-RB (Durfee et al., 1993) with HpaI, 
ligating with 12-bp BglH linkers (New England Biolabs, Beverly, MA), 
recleaved with BglII, and self ligating. The BamHI-SalI fragment was then 
ligated into pAS1 (Durfee et al., 1993). pAS/N-EBg was constructed by 
digesting pRB-N with EcoRV, and repeating the same steps with the BglII 
linker as pAS/N-HBg. Details of the remainder of the deletion series con- 
struction are available upon request. 

Library Screening and Plasmid Recovery 
Screening was performed as described in Durfee et al. (1993). Briefly, Y153 
was transformed to Trp prototrophy with pAS/N-RB by the method of 
Schiestl and Gietz (1989). A single colony was grown in SC-trp media and 
transformed with library DNA using total yeast RNA as carrier. The mix 
was then plated on 15 cm petri dishes containing SC media lacking trypto- 
phan, leucine and histidine but including 25 mM 3-aminotriazole (3-AT; 
Sigma Chemical Co.), and incubated at 30°C for 3-5 d. His + colonies 
were then screened for ~-galactosidase activity using a filter lift assay 
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(Breeden and Nasmyth, 1985; Durfee et ai., 1993). The time required for 
color development ranged from 30 min to overnight. Colonies correspond- 
ing to positives in this screen were then patched onto a master plate and 
further analyzed. 

Total DNA from yeast was prepared using the method of Hoffman and 
Winston (1987), and used to transform JA226 via electroporation using a 
BioRad GenePulser according to the manufacturer's specifications. Trans- 
formation were plated on minimal media lacking leucine and containing 
ampicillin. 

Quantitation of ~-Galactosidase Activity in Yeast 
2.5 ml cultures were grown in the appropriate selecting media to ODt00 
1.0-1.2. Ceils were then prepared and permeabilized as described 
(Guarente, 1983). For qnantitation the same procedure as in Guarente 
(1983) was followed except cell pellets were resuspoaded in 900 ml H buffer 
(100 mM Hepes, 150 mM NaCI, 2 mM MgC12, 1% BSA, pH 7.0), 100 ml 
50 mM chlorophenyl-red-b-o-galactopyranoside (CPRG; Boehringer Mann- 
heim Biochemicais, Indianapolis, IN) was added following permeabiliza- 
tion, and the amount of liberated CPR was determined by OD~74. 

Sequence Analysis 
Clones were sequenced using dideoxy-NTPs and Sequenase 2.0 according 
to the manufacturer's specifications (United States Biochemical, Cleveland, 
OH). Sequence analysis and homology searches were performed using 
DNASTAR software (DNASTAR, Inc., Madison, WI). 

Construction of GST Fusions, Protein Preparation, 
and In Vitro Binding 
To construct GST-N5, the N5 yeast plasmid was digested with BglII and the 
0.9-kb insert fragment subcloned into the BamHI site pGEX-3X. One 
resulting clone had the N5 eDNA insert in reverse orientation with respect 
to the GST coding sequences, and was designated GST-R5N. GST-Tag has 
been described previously (Durfee et al., 1993). Expression of proteins in 
E. coli, and in vitro assays were identical to those in Durfee (1993). 

Antibody Preparation, Eukaryotic Cell Extracts, and 
Protein Detection 
Antisera were raised in female BALB/c mice injected subcutaneously with 
80/~g GST-N5 bound to glutathione beads in 75/zl sterile PBS. Mice were 
boosted with 100 #g GST-N5/beads after 2 wk and again after 2 mo. An 
additional boost was given 6 wk later, 3 d before spleenic fusion with NS1 
cells (American Type Culture Collection, Rockville, MD) according to 
standard protocol. Fus.ed cells were screened by ELISA against GST-N5 or 
GST. After three rounds of screening for N5-specific clones, supernatants 
were collected, evaluated by immunoblotting and immunostaining, and then 
frozen at -80°C. 5El0 was the most reactive clone and was subsequently 
single cell cloned. 

For antibody preparations which were preabsorbed before use, 10 #g of 
the appropriate GST fusion protein was incubated with 1 #g of antibody se- 
rum in 250 buffer (50 mM Tris, pH 7.4, 250 mM NaC1, 5 mm EDTA, 0.1% 
NP-40, 50 mM NaE 1 mM PMSE 1 ~g leupeptin per ml, 1 /zg antipain 
per ml) for 60 min at 40C. Glutathione-coated Sepharose beads were added, 
and the mix incubated for an additional 30 min at 4°C while rotating. Fol- 
lowing centrifugation, the supernatant was used for immunoprecipitation. 

Yeast cell extracts were prepared by growing 5 ml of cells to stationary 
phase under the appropriate selecting conditions. Cells were then pelleted 
by centrifugation, and lysed by boiling in loading buffer for 30 rain. Ali- 
quots representing equivalent cell numbers (',,5 × 106 cells) were then 
separated on 8 % SDS-polyacrylamide gels and transferred to Immobilon 
membranes. Monkey kidney CV-1 extracts were prepared by lysing approxi- 
mately 1 × 107 cells in lysis 250 buffer, subjecting extracts to three 
freeze/thaw (liquid nitrogen/37*C) cycles and clearing by centrifugation 
(14K, 2 min at room temperature). Immunoprecipitates were separated by 
SDS-PAGE, and Western blotted. Various tissues from 2-mo-old mice were 
ground using a mortar and pestle under liquid nitrogen. The samples were 
then extracted in lysis buffer containing 250 mM NaC1, 50 mM Tris-HCI 
(pH 7.5), 0.125% Na-dcoxycholate, 0.375% Triton X-100, 0.15% NP-40, 4 
mM EDTA, 10 mM aprotinin, 50 mM leupeptin, and 1 mM PMSE After 
one freeze/thaw cycle, the lysates were cleared as described above. The 
same amount of total protein from each tissue was subsequently used for 
immunoprecipitation and immunoblotting analysis. 

For all Western blots, following addition of the appropriate primary anti- 
body and an alkaline phosphatase-conjngated secondary antibody, bound 
protein was visualized with 5-bromo-4-chloro-3-indolylphosphate to- 
luidinium and nitro blue tetrazolium (BCIP, NBT; Promega Biotec, Madi- 
son, WI). 

Cell Cycle Synchronization 
and Co-Immunoprecipitation 
CV-1 cells were synchronized to early (31, mid-S, and mid-M phase of the 
cell cycle. Lovastatin was used at 40 mM for 48 h to arrest the cells in early 
(31. A double block of hydroxyaa'ea, followed by a 5-h release, synchronized 
cells to mid-S phase. Mitotic cells were collected by shake-off following a 
24-h exposure to 1.0/~g/mi nocodazole. At each time point, cells were 
washed twice with PBS and immediately lysed as described previously 
(Chela et al., 1989). Following four freeze/thaw cycles and centrifugation 
at 14K for 10 min at 4"C, supernatants were immunoprecipitated with 
mAbs to RB protein (llDT) or p84 (5El0). Protein A-Sepharose was used 
to pellet the immunocomplexes. After extensive washing in L250 buffer, 
samples were boiled for 5 min in SDS sample buffer. Complexes were sepa- 
rated by 8% SDS-PAGE; immunoblotting was done with l iD ' /and 5El0 
mAbs. 

lmmunocytochemistry and Image Analysis 
CV1 cells were fixed either in cold methanol for 10 min at -20°C, or in 
4% formaldehyde prepared in cytoskeletal buffer (CSK; 0.01 M Pipes, pH 
6.7, 100 mM NaC1, 300 mM sucrose, 1.0 mM EGTA, 3 mM MgCI2) for 
30 min at room temperature. Formaldehyde-fixed cells were permeabilized 
in CSK containing 0.5% Triton X-100 for 5 min either prior to fixation, or 
afterwards. All three fixation protocols yielded similar staining patterns. All 
antibody and washing solutions were made in 0.1 M Tris-HCl, pH 7.4, 
0.15 M NaC1, 0.1% Tween-20, 5% (wt/vol) dry milk, and 0.1% sodium 
azide. Co-localization of pl l0  ~ and p84 was performed using a polyclonal 
rabbit anti-pll0 ~ antibody (0.47) mixed with the 5El0 IgG mAb to p84; 
the respective antigens were visualized with goat anti-mouse IgG con- 
jugated to Texas red and goat anti-rabbit conjugated to FITC. Co- 
localization of p84 with an IgM mAb to the B1C8 nuclear matrix antigen 
(generously provided by S. Penman, Massaehnsetts Institute of Technology, 
Cambridge, MA; Wan et al., 1994), which localizes to sites involving in 
RNA processing (snRNP- and SC35-positive speckles; Blencowe et al., 
1994), was performed by mixing both primary antibodies as above, followed 
by goat anti-mouse IgG (Texas red) and goat anti-mouse IgM (FITC). The 
Sm human autoantibody sera (kindly provided by P. Sharp, Massachusetts 
Institute of Technology) was detected with goat anti-human IgG (FITC). 
Controls included omission of the primary antibody, and in the case of p84, 
5El0 mAb was pre-incuhated with excess GST-N5 fusion protein (not 
shown). Confocal optical sections were obtained with a Zeiss 310 LSM, 
equipped with Ar and HeNe lasers. Digital images of FITC or Texas red 
fluorescence, or of Normarski differential interference contrast, were over- 
laid for multichannel recording. Co-localization was performed either by 
the LSM software, or by merging the individual channels from a single Z 
section with VoxelView-ULTRA 2.1 and VoxelMath 2.0 software (Vital- 
Images, Inc., Fairfield, IO). Intensity-hased thresholding was performed 
with the multi-channel rendering capability of VoxelView-ULTRA 2.1. All 
images were kernel filtered (N = 3) by VoxelMath 2.0 using an average 
smoothing operation. Pseudo-color tables, contrast and opacity were op- 
timized for each channel, before merging and thresholding, to visualize low 
levels of fluorescence. 

Nuclear Matrix Preparation 
The procedure of He et al. (1990) was followed as described, except that 
antipain, leupeptin, and aprotinin (l-/zg/ml each), and sodium fluoride (5 
mM), were added to all extraction solutions. 

Results 

Isolation of cDNAs Encoding p110 RB 
Amino-terminal-binding Proteins 
To screen for proteins able to bind the amino-terminal re- 
gion of pl l0  ~ ,  a modified version of the yeast two-hybrid 
system was utilized (Durfee et al., 1993). In this assay, co- 
transformants of a yeast strain, Y153, which are phenotypi- 
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Figure 1. Expression vector 
for Gal4-RB fusion and 
screening results. (,4) Struc- 
tures of RB and yeast expres- 
sion vector. Bar represents the 
RB coding sequence with en- 
coded protein domains and 
amino acid coordinates indi- 
cated. The region (encoding 
amino acids 1-300) fused to 
the Gal4 DNA-binding do- 
main is bracketed, and the 
map of the resulting expres- 
sion vector, pAS/N-RB, is 
shown. (B) Summary of the 
screening and rescreening 
results. The number of total 
transformants was estimated 
by plating an aliquot of each 
transformant on media se- 
lecting only for the presence 
of the plasmids (SC-trp-leu). 
The approximate number of 
His + positive colonies was 
determined following plating 
of the transformation on SC- 
trp-leu-his + 25 mM 3-AT. 
The presence of/3-galactosi- 
dase activity was detected us- 
ing the colony filter lift meth- 
od (Breeden and Nasmyth, 
1985). N-RB dependency was 
determined by transforming 
Y153 with the isolated library- 
derived plasmid alone or to- 
gether with either pAS/N-RB, 
pASRB2, or pAS/SNF1. Acti- 
vation domain-tagged hybrids 
which interacted specifically 
with the Gal4-N-RB fusion 
only were counted as posi- 
fives. 

cally His + and blue following the selection-screening proce- 
dure, are considered as positives, and further assessed for 
their reproducibility and dependence on RB protein expres- 
sion. A yeast expression plasmid, pAS/N-RB, containing RB 
eDNA encoding the first 300 amino acids of the protein 
fused in-frame to sequences for the Gal4 DNA binding do- 
main was used to transform Y153 (Fig. 1 A). A resulting 
transformant was then co-transformed with an activation 
domain-tagged human eDNA library created in the hACT 
vector (Durfee et al., 1993). Of the approximately one mil- 
lion transformants tested, 21 were phenotypically His + and 
blue in the initial screen, and six of those were reproducible 
and dependent on presence of pAS/N-RB, as shown in a 
rescreen using purified plasmids (Fig. 1 B). Sequence data 
eliminated four of these clones as encoding either a cytoplas- 
mic protein or short peptides translated from eDNA in the 
reverse orientation. The remaining two clones, N5 and N11, 
encode the same gene whose protein product bound strongly 
to the amino-terminal domain of pl l0  RB. This gene was 
characterized further. 

A Structurally Defined Amino-terminal Domain of 
pllO ~ Is Required for N5 Binding 
To define the sequences of the RB protein needed for binding 
N5, a series of amino-terminal mutations were created and 
subcloned into pAS1. These mutants were then used to co- 
transform Y153 with N5-expressing plasmid DNA, and the 
resulting colonies were analyzed for/3-galactosidase activity 
(Fig. 2). Deletion mutants which affect a structurally defined 
amino-terminal domain (amino acids 8-262; Hensey et al., 
1994), abolished N5 binding. In addition, a linker insertion 
mutant (pAS/N-HBg), resulting in a 5-amino acid insert at 
residue 76, also blocked the ability of the RB protein to in- 
teract with N5. However, another linker insertion mutant 
(pAS/N-EBg) at position 181 had no effect on N5 associa- 
tion. Thus, a largely intact domain in the NH2 terminus is 
required for interaction and a small perturbation caused by 
an insertion at amino acid 76 can block this binding. The 
Pvu-C mutant, which contains RB protein sequences from 
246-928 and binds T-ag in this system (data not shown), does 
not bind the N5 protein. 
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Colony Units of  

color -~alar, lardamt 
Gal4 DBD 

N-Rb (1-300) "/111/  blue 17.5 + 0.2 

N-HE (del 76-181) ~ ' f l l / J m ~ i - " ' " ~  white 0.7 + 0.2 

N-BP (1-246) " f l l f /  white 0.4 _+ 0.1 

N-BE (1-181) r / I l l ,  I white 0.5 + 0.2 

N-HR (76-300) ¢ / / / / f " " ~  white 0.4 + 0.I 
4v, pLg. 

N-HBg (ins 76) r l / / / , ,  white  0.5 _+. 0.2 
..__~Lhg.P 

N-EBg (ins 181) "/ ,¢// /-  blue 44.1 _+. 23.7 

Pvu.C (246-928) ~ ' / l l l , 4 1 1 1 1 1 1 1 ~ . l l l l l l l l l l l l l l l  white 0.4 + 0.1 

All Gal4-RB fusions were expressed, as determined by immunoblotting (data not shown). Colony color 
lift assay. CPRG quantitation of/3-galactosidase activity was done in triplicate for each transformation. 

Figure 2. Detection of interac- 
tions between N5 and RB mu- 
tants in vivo. The Gai4 DNA 
binding domain (amino acids 
1-147; striped box) fused to 
various RB mutants is shown 
schematically. RB amino 
acids present in the fusion are 
denoted, except in the case of 
linker insertions (ins) and an 
internal deletion (del), where 
the affected amino acid(s) 
within the N-RB fragment are 
indicated. Inserted amino 
acids are shown in single let- 
ter code. Y153 was co-trans- 
formed with the indicated 
panel of Gal4-RB mutants and 
the N5 expression plasmid. 
was determined by the colony 

NS-encoded Protein Binds pllO ~ In Vitro 

The ability of the N5-encoded protein to bind native full- 
length RB protein was tested using an in vitro binding assay. 
The cDNA fragment present in the N5 clone was fused to 
sequences for glutathione S-transferase (GST) (Smith and 
Johnson, 1988) present on an E. coli expression vector to 
create GST-N5. The fusion protein was expressed and then 
bound to an affinity matrix. The resulting complex was then 
incubated with cell extracts from a RB reconstituted WERI 
cell line, 3G10 (Chen et al., 1992). Complexes were washed, 
separated by SDS-PAGE, and immunoblotted with an anti- 
RB protein mAb. Fig. 3 shows that RB protein was retained 
in the GST-N5 column, comparable to the amount bound to 
the positive control column, GST-T-ag. No significant bind- 
ing was seen in the GST column (Fig. 3). N5 also binds pref- 
erentiaUy to the hypophosphorylated form of the RB protein 
(Fig. 3), analogous to T-ag binding (Ludlow et al., 1989). 
Together, these data demonstrate that the N5-encoded pro- 
tein can bind full-length p l l0  ~ and this association is 
specific for the hypophosphorylated pl l0  ~ isoform. 

Analysis o f  N5 Sequence 

Northern blot analysis using the N5 cDNA as a probe shows 
the mRNA for this gene to be ~2.1 kb in length (data not 
shown). To obtain a full-length eDNA clone of this gene, a 
human lymphocyte eDNA library (Elledge et al., 1991) was 
screened, and several overlapping clones were isolated. The 
resulting 2,100-nucleotide (nt) sequence has a single large 
open reading frame (nt 15-1985) which can encode an ex- 
tremely acidic (pI = 4.85) 657 amino acid protein with a 
predicted molecular weight of 75,633 D (Fig. 4). The pre- 
dicted protein has no significant homology with any protein 
in the present databases. The ATG at nt 15 has a canonical 
purine in the - 3  position (Kozak, 1989), and thus likely 
serves as the initiator codon; however, the lack of an up- 
stream in-frame stop codon, together with the unknown na- 
ture of additional 5' sequences, prevents its unambiguous as- 
signment. The 107-nt 3' untranslated region contains a 

canonical poly adenylation site, AAUAAA, followed by a 
polyA tail. 

Placing the N5 fragment isolated in the original screen 
within this sequence limits the region of the encoded protein 
necessary for pl l0  ~ binding. Sequencing reveals that the 
original N5 fragment spans nucleotides 1,132-2,066 of the 
near full-length cDNA, and encodes amino acids 374-657 

Figure 3. In vitro binding of N5 and pll0 ~.  Glutathione S-trans- 
ferase (GST) and in-frame GST fusions with eDNA encoding N5 
and the NH2-terminal 273 amino acids of T-antigen (GST-T) were 
expressed in E. coli. GST and GST fusions were bound to 
glutathione-sepharose beads and washed extensively. Samples were 
quantitated by Coomassie blue staining of SDS-PAGE gels and 
equivalent protein amounts used in each lane. Extracts made from 
3GI0 cells (Cben et al., 1992) were mixed with the bound samples 
for 30 min at room temperature. Following extensive washing, 
complexes were separated by SDS-PAGE and transferred for immu- 
noblotting. The amount of RB protein present and the extent of its 
phosphorylation in 3(310 cells was determined by immunoprecipi- 
tation with the 11D7 antibody (lane 1). The blot was probed with 
an anti-RB protein monoclonal antibody, 11D7, and visualized by 
enzymatic color reaction. 
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A 

GGCCTTCGTCGAAGATGTCTCCGAcGCCGCCGCTCTTCAGTTTGCCCGAAGCGCGGACGCGGTTTACGAAGTcTACCAGAGAG~CCTTGAACAACAAAAA 1~ 
M S P T P P L F S L P E A R T R F T K S T R E A L N N K N  

CATCAAGCCATTGTTAAGTACCTTCAGCCAGGTAcCTGGCAGTGAAAATGAAAAAAAA~GTACC~T~GACCAAGCTTT~AGAGG~ATTC~AGAA~AAGAA 200 
I K P L L S T F S Q V P G S E N E K K C T L D Q A F R G I L E E E  

ATTATAAATCATTCATCATGTGAAAACGTTTTAGCTATTATTTCT~TTGCTATTGGGGGAGTAACTGAAGGTATTTGTACCGCATCTACA~CTTTTGTAT 3~ 

I I N H S S C E N V L A I I S L A I G ~ V T E G I C T A S T P F V  

TGTTGGGAGATGTTTTGGATTGTCTTCCTTTGGATC~TGTGACACAATATTCACTTTTGTCGAAAAAAAT~TT~T~TTGGAAATCAAATAC~TTCTA 4~ 

L L G D V L D C L P L D Q C D T I F T F V E K N V A T W K S N T F Y  

TGCTGcTGGGAAAAATTACTTACTACGTATGTGCAATGATCTCCTAAGAAGATTGTCTAAAT~CCAGAATACAGTCTTCTGTGGACGGATTCAGCT~TTT 500 

A A G K N Y L L R M C N D L L R R L S K S Q N T V F C G R I O L F 

TTGG~CAGGCTTTTCCCTCTGTCTGAGAAATCAGGTCTTAACTTG~AGAGTCAGTTTAATCTGGAAAATGTCACTGTTTTCAATACAAATGAGCAGGAAA 600 
L A R L F P L S E K S G L N L Q S Q F N L E N V T V F N T N E O E  

GCACCCTGGGTCAGAAGCACACTGAAGATAGAGAAGAAGGAAT~ATGTAGAAGAAGGCGAAATG~GAGATGA~AAG~TCCAACAA~GT~CTCTATTCC 7~ 

S T L G O K H T E D R E E G H D V E E ~ E M G D E E A P T T C S I P  

AATTGATTACAACCTGTATCGAAAATTCTGRTCACTTCAGGATTACTTCA~GAACCcTGTGcAATGCTATGAGAAGATTTCATGGAAAACTTTTCTCAAG 8~ 

I D Y N L Y R K F W S L O D Y F R N P V O C Y E K I S W K T F L K  

TATT~TGAA~AA~TTTTAGCTGTTTTTAA~AGTTATAAATTA~ATGAT~TCAGGCCTCAAGAAAAAAGATG~AAGAATTGAAAACAGGAGGAGAACAT~ 900 

Y S E E V L A V F K S Y K L O D T O A S R K K f l E E L K T G G E H  

TATATTTTGCAAAATTTTTAACAAGTGAAAAGCTGATGGATTTACAACTGAGTGACAGTAACTTTCGTCGACACATCcT~TTGCAGTATCTCATTTTATT 1000 

V Y F A K F L T S E K L M D L O L S D S N F R R H I L L O Y L I L F  

CCAATATCTCAAGG~GCAGGTCAAATTCAAAA~TTCAAACTAT~TTTTAACTGATGA~CAATCACTTTGGATT~AAGATAc~ACAAAATCAGTTTATCAA 11~ 
O Y L K ~ O V K F K S S N Y V L T D E O S L W I E D T T K S V Y O  

CTACTATCTGAAAACCCCCCC~AT~GAGAAAGATTTTCAAA~ATG~TAGA~CATATATTAAACACTGAAGAAAACTGGAACT~GTG~AAAAATGAAGGTT 12~ 
L L S E N P P D G E R F S K M V E H I L N T E E N W N S W K N E G  

GCCCAAGTTTTGTGAAAGAAA~AACATCAGATACCAAACCTACGAGAATAATTCGGAAGAGAAcAGCACCCGAGGACTTCCTAGGGAAAGGACCCAcCAA 1300 

C P S F V K E R T S D T K P T R I I R K R T A P E D F L G K ~ P T K  

AAAAATTCTGAcGGGAAATGAGGAGTTAACAAGGCTTTGGAATCTTTGCCCTGATAATATGGAAGCC~GTAAATCAGAGA~AAGGGAACACA~CCCACT I ~  
K I L T G N E E L T R L W N L C P D N M E A C K S E T R E H M P T  

TTGGAG~AATTCTTTGAAGAAGCCATTGAACAGGCAGACCCTGAAAATATGGCGGAAAATGAATATAAGGCTATGAACAATTCAAATTATGGTTGGAGAG 15(]0 

L E E F F E E A I E O A D P E N H A E N E Y K A M N N S N Y G W R  

CCCT~AAACTATTA~CA~GA~AAGC~CTCACTTCTT~CA~cCAACCAACCAG~AGTTTAAAAGTTTA~AA~AA~ATCTTGAAAATATG~TAATAAAGCT 1600 

A L K L L A R R S P H F F O P T N O O F K S L O E Y L E N M V I K L  

AGCCAAGGAATTACC~cCT~CTTCTGAA~AAATAAAAAcAGGT~AGGATGAA~ATGA~GAAGATAATGATGCTCTACTGAAGGAAAATGAAA~TcCTGAT 17~ 

A K E L P P P S E E I K T G E D E D E E D N D A L L K E N E S P D  

GTTcGGC~AGACAAACCTGTAACAGGA~AACAAATAGAGGTATTTGCCAACAA~TGGGTGAACAATG~AA~ATTCTGGCTCC~TACTTGGAAATGAAAG 18® 

V R R D K P V T G E O I E V F A N K L G E Q W K I L A P Y L E M K  

ACTCAGAAATTAGG~AGATTGAGTGTGACAGTGAA~ACATGAAGATGAGAGCTAA~AGCTCCT~TT~CCTG~CAAGATCAA~AG~GAGTTCATGCAAC Ig(]O 
D S E I R Q I E C D S E D M K ~ R A K O L L V A W O D Q E G V H A T  

A~CTGAQAATCTGATTAATG~ACTGAATAA~T~T~ATTAA~T~ACCTTQCA~AAA~CTAACTAAT~ACAAT~AGACAAATAGTTAGCTTCTTTTTTTT 2000 
P E N L I N A L N K S G L S D L A E S L T N D N E T N S  

TTCTTTTTATTAAAA~TGT~ATA~ATTTT~TTA~AA~CAG~ATTTGATAA~AG~TCCACTG~TTTT~GTAAA~-~ATTTTTATAA~AAAAAAAA 21® 

B 
XbaI Sail EcoRI 

374 657 

Rb binding 

Figure 4. Nucleotide and 
predicted amino acid se- 
quence of full-length N5. (,4) 
Amino acids are shown in sin- 
gle letter code, and the first in- 
frame stop codon is indicated 
with an asterisk. The polyade- 
nylation signal, AAUAAA, is 
boxed. (B) Schematic of the 
full-length N5 sequence. 
cDNA is depicted as a line, 
with the p84 coding region in- 
dicated with a black bar. The 
pl l0  RB binding domain is 
overlaid on the coding region 
as a hatched box. Nucleotide 
and amino acid coordinates 
are shown above and below 
the sequence, respectively. 
The asterisk represents the 
polyadenylation signal, and the 
poly A tail is shown as A,. 
These sequence data are avail- 
able from EMBL/GenBank/ 
DDBJ under accession num- 
ber L36529. 
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(Fig. 4 B), a highly negatively charged region of the protein. 
That this region binds to the pll0 RB amino-terminal do- 
main, which is itself slightly acidic, may suggest hydropho- 
bic interactions are involved. 

Anti-N5 Antibodies Detect an 84-kD Protein from 
Mammalian Cells 

The GST-N5 fusion protein was used as an antigen to im- 
munize mice and generate polyclonal antibodies. The result- 
ing antisera specifically detected the GST-N5 antigen pro- 
duced in E. coli (data not shown). The ability of the antisera 
to recognize the N5 polypeptide was further demonstrated 
using yeast extracts producing the Gal4 activation do- 
main-N5 fusion. A polyclonal antibody, aN5-3, recognizes 
a protein of the correct molecular weight only in the N5- 
expressing cells (Fig. 5 A, lanes 4-6). No protein was de- 
tected with preimmune serum (lanes 1-3). In addition, a 
monoclonal antibody, 5El0, generated from the same anti- 
gen, produced identical results (lanes 6--9). 

To identify the authentic N5 protein in mammalian cells, 
CV-1 cell extracts were prepared and used for immunopre- 
cipitation with either the t~N5-3 antibody or controls. Im- 
munoprecipitates were separated by SDS-PAGE, and im- 
munoblotted with the 5El0 mAb (Fig. 5 B). The antibody 
recognizes an 84-kD protein from these cells which is lack- 
ing in the precipitates of both the preimmune serum and 
those of an irrelevant anti-mouse IgG (compare lanes 1-3). 
Depletion of the ctN5-3 serum by preincubation with the 
GST-N5 fusion protein abolishes recognition of the 84-kD 
protein; incubation with GST alone or GST-R5N (containing 
the N5 sequences in reverse orientation) has no effect (lanes 
4 and 5). Thus, the anti-N5 antibodies specifically detect an 
84-kD protein from mammalian cells, in reasonable agree- 
ment with the predicted molecular weight from sequence 
data. Therefore, this protein will be referred to as p84 for 
the remainder of this report. 

p84 Is a Nuclear Protein That Co-localizes with pllO RB 

The cellular localization of p84 was determined by confocal 
immunofluorescence microscopy. CV-1 cells were fixed by 
several methods (see Materials and Methods), reacted with 
the 5El0 antibody and subsequently visualized via a fluores- 
cently labeled secondary antibody. All fixation methods re- 
vealed p84 to be localized within t~e nucleus (Fig. 6), con- 
sistent with the subcellular localization of pl l0 ~ (Lee et 
al., 1987). p84 is organized into multiple discrete foci and 
is not detected in the nucleolus (Fig. 6). An identical result 
was obtained with the c~N5-3 antibody (data not shown). To 
assess the amount of colocalization of Rb and p84 in the nu- 
cleus, the distribution of both proteins in double labeled cells 
were assessed using the VoxelView-ULTRA and VoxelMath 
visualization software packages (Vitallmages, Inc.). The 
opacity, contrast, and color tables were identically adjusted 
for each set of images to maximize visualization of low level 
fluorescence. When the full range (100%) of detected 
fluorescence was rendered individually, it was clear that Rb 
(Fig. 7 a, green) was more widespread in the nucleus than 
p84 (Fig. 7 b, red); however, many hot spots of Rb did over- 
lap with punctate spots of p84 (Fig. 7 c, yellow). In an effort 

Figure 5. Anti-N5 antibodies specifically detect an 84-kD protein 
from mammalian cells. (A) Characterization of anti-N5 antibodies. 
Yeast cell extracts were made from Y153 (lanes 1, 4, and 7), Y153 
transformed with pSE1107 (Durfee et al., 1993) (lanes 2, 5, and 8), 
or Y153 transformed with N5 (lanes 3, 6, and 9), separated by 
SDS/PAGE, and immunoblotted. Lanes 1-3 were probed with pre- 
immune mouse serum, lanes 4-6 with a mouse anti-N5 polyclonal 
serum, aN5-3, and lanes 7-9 with a monoclonal antibody, 5E10, 
derived from aN5-3. Reacting proteins were visualized by enzy- 
matic color reaction. (B) Detection of endogenous N5 protein from 
mammalian cells. CV-1 ceils were lysed, and subjected to immuno- 
precipitation with antibody preparations as indicated. Preabsorp- 
tion of the serum was performed as described in Materials and 
Methods. Precipitates were separated by SDS-PAGE, and prepared 
for immunoblotting. Blots were probed with 5El0, and visualized 
by enzymatic color reaction. 

to assess, and visualize, the amount of Rb that colocalized 
with p84, we used thresholding (based upon intensity) to re- 
move all but the top 10% of both channels (Fig. 7, d-f). The 
top 10% Rb signal (Fig. 7 d, green) and the top 10% p84 
signal (Fig. 7 e, red) were largely confined to overlapping 
or adjacent regions (Fig. 7f, yellow). It is interesting to note 
that some regions of mutually exclusive label is seen for both 
proteins. 

p84 Co-localizes to Nuclear Domains Involved in 
RNA Processing 

Specific regions of the nucleus that are rich in molecules in- 
volved in RNA metabolism have been identified (for recent 
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Figure 6. Immunofluorescent 
localization of p84. The anti- 
p84 Mab 5El0 was used to 
immunolabel unsynchronized 
CV-1 cells which were pre- 
extracted with 0.5% Triton-X 
100 in CSK buffer for 3 min. A 
representative confocal optical 
section of p84 fluorscence was 
merged with a differential inter- 
ference contrast image. Note 
the numerous intranuclear 
speckles and that nucleoli are 
negative. Bar, 10/zm. 

reviews see Spector, 1993; and Xing and Lawrence, 1993). 
To determine whether the p84 speckles are coincident with 
these RNA processing centers, or "transcript domains" 
(Carter et al., 1991; Xing and Lawrence, 1993), we used 
both the Sm autoimmune sera and a novel IgM mAb (B1C8) 
for colocalization with the 5El0 IgG mAb. The Sm autoim- 
mune sera labels multiple bright speckles in the nucleus, and 
a low level of homogeneous staining as well (Spector, 1993), 

which is attributed to recognition of several small nuclear 
ribonuclear proteins (snRNPs) involved in splicing. The 
B1C8 mAb identifies a 180-kD nuclear matrix protein (Wan 
et al., 1994) that principally colocalizes with the bright foci 
labeled by the anti-SM antibody and the SC35 mAb (Fu and 
Maniatis, 1990), and co-immunoprecipitates exon-contain- 
ing RNA from in vitro splicing reactions (Blencowe et al., 
1994). SC35 is an essential non-snRNP splicing factor pre- 

Figure 7. Regions of high pl l0  Ra 
concentration colocalize with 
p84. Methanol-fixed CV1 cells 
double labeled with p84 mAb 
5E10 and rabbit anti-pll0 ~ anti- 
body 0.47. Confocal optical sec- 
tions of both fluorescent channels 
were individually recorded. The 
full spectrum (100%) of fluores- 
cent signals are shown in A-C; by 
thrcsholding out all but the top 
10% of the signals in D-F, in- 
tranuclear regions of intense 
staining for both proteins is high- 
lighted. For each set of images, 
the opacity, contrast and color ta- 
bles were identically adjusted to 
maximize detection of low level 
fluorscence. (.4) p110 gs labeling 
(green) appears widely dis- 
tributed within this plane of nu- 
cleus, with frequent brighter foci 
throughout. (B) p84 (red) ap- 

pears much more punctate. (C) Colocalization of pll0 ~ and p84 is apparent at multiple hot spots (yellow) in this merged image. (D) 
Distribution of the highest fluorescent intensity (concentration) of pll0 ~ (green) is significantly more confined to specific regions. (E) 
Removing 90% of the p84 image (red) results in a similar pattern of intranuclear speckles as in 8. (F) Areas containing high concentration 
of p110 ~ overlap, or are adjacent, with the focal staining of p84 (yellow). Bar, 5 t~m. 
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Figure 8. p84 colocalizes with the 
Sm antigen. A methanol-fixed 
CV1 cell was double labeled with 
mAb 5El0 and the Sm autoanti- 
body sera. The highest concen- 
tration of both p84 (A, red) and 
the Sm antigen (B, green) is found 
in a similar intranuclear speckled 
pattern. The Sm antigen is some- 
what more diffuse in the nucleo- 
plasm compared with p84. When 
the Texas Red and FITC channels 
are overlaid, regions of colocal- 
ization appear as yellow (C). The 
colocalization results are su- 
perimposed with cellular mor- 
phology in D (in this case, B1C8 
is assigned as blue). Bar, 25 #m. 

viously shown to colocalize with snRNP antigens (Fu and 
Maniafis, 1990; Spector et al., 1991), poly-adenylated RNA 
(Carter et al., 1991), and specific gene transcripts (Huang 
and Spector, 1992; Carter et al., 1993). Fig. 8 shows the re- 
sult of colocalization experiments using the 5El0 mAb (Fig. 
8 a, red) and the Sm sera (Fig. 8 b, green). When these chan- 
nels were merged, the majority of the punctate labeling pat- 
tern appears as yellow (Fig. 8 c), indicating a high degree 
of overlap within the optical section. Fig. 8 d shows the p84 
(red) and Sm (in this image, shown as blue) fluorescent sig- 
nals overlaid with a differential interference contrast image 

(green) of the cell morphology. The resulting image shows 
the colocalization as purple, and indicates the relative posi- 
tion of these antigens against the nuclear morphology. These 
data strongly support the idea that p84 is abundant in centers 
associated with RNA processing. 

As the relatively insoluble B1C8 nuclear matrix antigen is 
more specifically confined to regions of RNA processing as 
compared to the Sm antigen, i.e., highly coincident with 
Sc35 (Blencowe et al., 1994) we performed double-labeling 
experiments with 5El0 (IgG) and B1C8 (IgM) mAbs on CV1 
cells briefly preextracted with detergent. When 100 % of the 

Figure 9. p84 colocalizes with the 
BlC8 nuclear matrix antigen. A 
CV1 cell that was briefly pre- 
extracted with 0.5 % Triton X-100 
was fixed and labeled with mAbs 
to p84 (IgG) (A and D, red); and 
the BIC8 (IgM) nuclear matrix/ 
spliced RNA-binding antigen 
(Wan et al., 1994) (B and E, 
green). A-C shows images in 
which the full range (/00%) of 
collected pixels values are repre- 
sented. Images in D-F represent 
only the top 1% (by intensity) of 
each channel. The colocalization 
(yellow) of p84 and B1C8 is 
shown in C and F Note that in 
both the 100 and 1% panels, p84 
and B1C8 are largely overlapping. 
Interestingly, there are areas 
where these antigens are mutu- 
ally exclusive (red only or green 
only). Bar, 5 #m. 
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signal in cells double labeled with p84 (Fig. 9 a, red) and 
the B1C8 antigen (Fig. 9 b, green) are superimposed, a high 
degree of alignment is readily apparent (Fig. 9 c, yellow). As 
an indication of the degree of colocalization between p84 and 
B1C8 based upon fluorescent intensity, when both channels 
were reduced to just 1% of the highest recorded signal, the 
pattern of labeling of p84 (Fig. 9 d, red) and B1C8 (Fig. 9 
e, green) still remained largely overlapped (Fig. 9f, yellow). 
However, as with other matrix antigens found largely within 
RNA processing domains (Blencowe et al., 1994) there are 
instances where both proteins are mutually exclusive (red or 
green in Fig. 9 d). It remains to be determined if these 
smaller, p84-positive speckles represent sites of transcrip- 
tion, identified by Br-UTP incorporation, that are not found 
associated with intensely staining, SC35-rich domains (Wan- 
sink et al., 1993). 

Figure 10. Localization of nuclear matrix-bound p84. (A) Staining 
pattern of p84 in the nuclear matrix prepared by sequential in situ 
extraction with Triton X-100, RNase-free DNaseI, 0.25 M 
(NI-h)SO4, and 2 M NaCI (He et al., 1990). Th~ strong punctate 
staining remains following the removal of 70% of the soluble pro- 
teins and 95% of the DNA (He et al., 1990). The BIC8 antigen (B, 
green) also remains associated with the matrix almost all regions 
containing p84 (C, yellow). Bar, 5/zm. 

p84 IS a Component of  the Nuclear Matrix 

During G1, hypophosphorylated wild type p110 RB has been 
shown to resist low-salt/detergent extraction (Mittnacht and 
Welnberg, 1991) and associate with the nuclear matrix 
(Mancini et al., 1994). Further, pll0 ~ binds in vitro to the 
nuclear matrix proteins, lamins A and C (Mancini et al., 
1994; Shan et al., 1992). Tumor-derived RB mutations, 
which affect the binding of the viral oncoprotelns (Tag, ET, 
and E1A), do not associate with the matrix (Mittnacht and 
Weinberg, 1991; Templeton et al., 1991; Mancini et al., 
1994), nor does an lib protein with a deletion from the sec- 
ond T/E1A domain through the carboxyl terminus bind to 
lamin A in vitro (Mancini et al., 1994). These data strongly 
suggest a functional importance to the association pll0 aB 
with the nuclear matrix. In an effort to identify additional nu- 
clear matrix proteins that bind the RB protein, we have rou- 
tinely examined putative pll0RB-binding proteins for their 
affinity to the nuclear matrix. Accordingly, we tested the 
ability of p84 to withstand not only brief exposure to deter- 
gent (Figs. 6 and 9), but a thorough regiment of well-estab- 
lished extraction procedures that gently reveal the nonchro- 
matin, insoluble system of core filaments and fibrogranular 
components comprising the nuclear matrix (He et al., 1990). 
This procedure removes greater than 85 % of nuclear pro- 
teins and 95 % of the DNA, leaving behind the core filament- 
containing nuclear matrix (He et al., 1990). Fig. 10 is a 
panel of images that show p84 (Fig. 10 a, red) and B1C8 
(Fig. 10 b, green) remain predominantly colocalized (Fig. 
10 c, yellow) in discrete loci following matrix isolation. A 
small amount of p84 is still visibly outside the B1C8 foci 
(Fig. 10 c, red). 

To verify the immunostaining data on extracted cells, the 
5El0 mAb and immunoblot analysis was used to examine the 
protein composition of sequential supernatants from the ex- 
tractions, and the 2 M salt-resistant, insoluble nuclear ma- 
trix pellet. Fig. 11 shows that the extraction procedure, dur- 
ing both Gj and S phases, does not effectively release p84, 
as most of the protein is found in the final, insoluble pellet. 
The confocal immunofluorescence images suggest that p84 
localizes to many foci within the matrix (Fig. 10); however, 
high-resolution ultrastructural localization studies will be 
necessary to specifically identify the structures that contain 
p84. Nevertheless, the in situ localization and the biochemi- 
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Figure 11. Immunoblot analysis of p84 in nuclear matrix fractions. 
CV-1 cells were cell cycle arrested in either G~ by lovastatin (lanes 
1-5), or in mid-S by blocking twice with hydroxyurea followed by 
a 5-h release (lanes 6-10), and then subjected to the extraction pro- 
cedure. Whole cell lysates were compared with the extracted mate- 
rial from each step and the final pellet by SDS-PAGE separation, 
and immunoblotting with the 5El0 antibody. In both the G1 and S 
phase cells, most of the p84 is found in the final insoluble nuclear 
matrix pellet (lanes 5 and 10). Blots were probed with 5El0, and 
visualized by enzymatic color reaction. 

cal fractionation data support the conclusion that p84 is a 
component of the nuclear matrix. 

Tissue Distribution o f  p84  

To investigate the expression pattern of p84, extracts were 
made from various organs of an adult mouse and immuno- 
precipitated with the 5El0 mAb. Irnmunoprecipitates were 
then separated by SDS-PAGE and irnmunoblotted. As seen 
in Fig. 12, p84 is expressed in each tissue examined analo- 
gous to pl l0  ~ (Lee et al., 1987). Similar experiments 
using various human cell lines confirm the ubiquitous ex- 
pression of p84 in humans as well (data not shown). Thus, 
p84 and pl l0  ~ have the same wide tissue distribution indi- 
cating their interaction may have a role in regulating a basic 
function(s) of either or both proteins. 

p84 Co-immunoprecipitates with pllO ~ in a Cell 
Cycle-dependent Manner  

To demonstrate that the p84/p110 ~ association can occur at 
physiological concentrations, and to determine the timing of 
the interaction more precisely, co-immunoprecipitation ex- 
periments using CV1 ceils were conducted. Cultures of CV1 
cells were synchronized either in G~, S, or M phases of the 
cell cycle by addition of appropriate drugs. Direct lysis with 
300 mM salt, followed by several cycles of freezing and 
thawing, effectively solubilizes p84 and pl l0  ~.  Extracts of 
these cultures were then immunoprecipitated by the anti- 
p110 ~ mAb, 11D7 (Shun et al., 1992) or 5E10. After exten- 
sive washing, precipitates were separated by SDS-PAGE, 
and immunoblotted with either l lD' /or  5EI0. p84 is detected 
in the 11D7 immunoprecipitates from G~ cells (Fig. 13), 
consistent with its association with the hypophosphorylated 
form of p l l0  ~ (Fig. 3). The very low level of hypophos- 
phorylated pl l0  ~ present in nocodozole-arrested cells 
(Ludlow et al., 1993), makes detection of any association 
during this time point unlikely. No association was observed 
during S phase (Fig. 13). This cell cycle dependency is not 
due to altered p84 expression as the 5E10 immunoprecipi- 
tates indicate the protein is present at approximately equiva- 
lent levels in GI, S, or M phase (Fig. 13). These results 
demonstrate the interaction is specific for the hypophosphor- 
ylated form of pl l0  ~ and confirms the GST-N5 binding 

Figure 12. Tissue distribution of the p84 protein. Tissue samples 
were obtained from an adult mouse, and used to prepare cell ex- 
tracts. 12.5/zg of total protein per sample was separated by SDS- 
PAGE, and immunoblotted using the anti-N5 mAb, 5El0. Bound 
protein was detected by enzymatic color reaction. 

Figure 13. Cell cycle timing of the p84/p110 as association. CV-1 
cells were synchronized by treatment with Lovastatin (lanes 1 and 
2), a double block with hydroxyurea and a 5-h release (lanes 3 and 
4), or nocodazole (lanes 5 and 6). Cells were then lysed, and im- 
munoprecipitated with either the anti-RB protein monoclonal anti- 
body, liD'/(lanes 2, 4, and 6), or the anti-p84 monoclonal anti- 
body, 5El0 (lanes 1, 3, and 5). Precipitates were then separated on 
an 8% SDS-polyacrylamide gel, and transferred to Imrnobilon. 
One portion of the blot was probed with 111217, while the other was 
probed with 5El0. llD7 mAb to pll0 ~ co-immunoprecipitates 
p84 only during GI. Bound protein was detected by enzymatic color 
reaction. 
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data shown in Fig. 3. The lack of pll0 ~ in the 5El0 im- 
munoprecipitates is likely due to antibody interference with 
the interaction. 

Discussion 

We have used the yeast two-hybrid system to screen for cellu- 
lar proteins that interact with the amino-terminal 300 amino 
acids of the RB protein. In contrast to the carboxy-terminal 
region of p110 ~ which interacts with multiple cellular pro- 
teins (Kaelin et al., 1991; Lee et al., 1991), only a single 
clone was isolated which associates with the amino-terminal 
fragment. The gene encodes a novel nuclear protein of 657 
amino acids with a predicted molecular weight of 75 kD; 
however, when separated on SDS-polyacrylamide gels, the 
native protein isolated from human, monkey, and mouse 
cells migrates more slowly with an apparent molecular 
weight of 84 kD. This nuclear protein, p84, is expressed in 
all tissues examined and throughout the cell cycle, analogous 
to p110 ~ (Lee et al., 1987). Clues to the function of p84 
come from our immunological and biochemical experiments 
which demonstrate that it is concentrated in subnuclear 
regions known to be involved in RNA processing. Further, 
similar to many critical molecules involved in the splic- 
ing/transcription machinery, p84 is a component of the nu- 
clear matrix. As with other proteins which bind the RB gene 
product, p84 preferentially interacts with the hypophosphor- 
ylated isoform ofpl l0  ~,  and does so predominantly during 
G1, the time when pll0 ~ is functionally active (Goodrich 
et al., 1991) and associates with the nuclear matrix (Mancinl 
et al., 1994). We cannot rule out that some interaction be- 
tween p84 and Rb protein may occur during late M phase 
when hypophosphorylated p110 ~ accumulates, p84, there- 
fore, in addition to lamins A and C (Mancini et al., 1994; 
Shan et al., 1992), represents a potential site of interaction 
for p110 ~ on the matrix. 

The nuclear matrix has been implicated in most metabolic 
activities occurring in the nucleus, including replication, 
transcription, and RNA splicing and transport (Berezney 
and Coffey, 1975; Ciejek et al., 1983; Zeitlin et al., 1989). 
Many of the molecular components responsible for these ac- 
tivities have been identified as either constitutively or tran- 
siently associated matrix proteins. We have shown that p84 
colocalizes with the intranuclear speckles labeled by the Sm 
autoantibody, which is often used to identify sites of RNA 
splicing (Spector, 1993). Further, p84 and the more punctate 
B1C8 nuclear matrix antigen (Wan et al., 1994) colocalize 
in both whole nuclei and on the matrix. B1C8 also colocal- 
izes with essential components (snRNPs, SC35) of the RNA 
splicing centers (Blencowe et al., 1994). These splicing do- 
mains are also found to contain, or be adjacent to, sites of 
specific gene transcription (Huang and Spector, 1991; Xing 
et al., 1993). Taken together, the localization data suggest 
a role for p84 in one or more of these functions as well. Con- 
sidering that most p84 foci either overlap or are adjacent 
with "hot spots" of pll0 ~,  p84 may also function to con- 
centrate a portion of the RB protein to these regions. AS im- 
munogold labeling of both nuclear matrix-bound p110 ~ 
(Mancinl et al., 1994) and B1C8 (Wan et al., 1994) are local- 
ized to the fibrogranular masses by resinless section electron 
microscopy, it is highly probable that p84 will also, thus 
identifying the sub-matrix location where p110~/p84 inter- 

actions would occur. Direct resinless section electron micro- 
scopic colocalization of pll0 ~ with p84, and other compo- 
nents of the splicing/transcript domains, will be required to 
substantiate this hypothesis. 

During G1, studies indicate that low-salt/detergent extrac- 
tion leaves some hypophosphorylated RB protein "tethered 
to the nuclear structure" (Mittnacht and Weinberg, 1991); 
mutant RB proteins do not display this property (Mittnacht 
and Weinberg, 1991; Templeton et al., 1991). A portion of 
wild-type hypophosphorylated pll0 ~ can also withstand 
the stringent conditions necessary to reveal the nuclear ma- 
trix (Mancini et al., 1994). Does binding to p84 contribute 
to p110 ~ matrix association during the cell cycle? Whereas 
the amount of matrix-bound p84, and its subnuclear organi- 
zation, appears normal in tumor cells containing RB muta- 
tion (Mancini, M. A,, and W.-H. Lee, unpublished results), 
the fact that mutant RB protein does not tether to the matrix 
(Mittnacht and Weinberg, 1991; Templeton et al., 1991; 
Mancini et al., 1994) suggests that COOH-terminal mu- 
tations may affect binding to p84. Alternatively, the p84/ 
pll0 ~ interaction may not be sufficient for matrix associa- 
tion. Experiments to address this issue are underway. 

The mechanism whereby pll0RB exerts a growth sup- 
pressing affect upon cells is not yet fully understood. How- 
ever, several studies have clearly demonstrated that the 
carboxy-terminal half of the RB protein is essential, and 
when overexpressed, sufficient for this activity (for review 
see Goodrich and Lee, 1993; Hinds et al., 1992). Evidence 
now indicates that, in the context of the full-length protein, 
the amino-terminal domain is also required for growth sup- 
pression (Qian et al., 1992), and the recent isolation of an 
RB mutation affecting only this domain from a retino- 
blastoma tumor (Hogg et al., 1993), further supports this 
conclusion. These results indicate that the amino-terminal 
domain provides a function which is essential under phys- 
iological conditions, but which can be bypassed through 
mass action of the carboxy-terminal region alone. What is 
the function of the amino-terminal domain and how does p84 
binding affect it? As the highest concentrations of p84 are 
found in regions of the nucleus associated with splicing fac- 
tors (Spector, 1993) and specific gene transcription (Huang 
and Spector, 1991; Carter et al., 1993; Xing et al., 1993), 
p84 association could focus a subset of pll0 ~ to these 
areas while still allowing important interactions to occur 
through the carboxy-terminal domains. Association with 
several transcription factors, most notably E2F (Helin et al., 
1992; Kaelin et al., 1992; Shan et al., 1992), through car- 
boxy-terminal sequences, is thought to be essential for 
pll0 ~ function. The additional p84 found outside the re- 
gions labeled with SC35 may also colocalize with sites 
of general transcription, as studies reveal many BrUTP- 
positive foci associate with less-intense regions of SC35- 
staining (Wansink et al., 1993; Jackson et al., 1993). Local- 
ization of pll0 ~ to RNA processing centers is consistent 
with the relatively high RB protein concentrations found in 
areas of low DNA density (Szekely et al., 1991), i.e., the 
transcriptionally active euchromatin, and its proposed role 
in the regulation of several transcription factors. Thus, as- 
sociation with p84 would be an efficient means of concentrat- 
ing the RB protein to subnuclear regions where active forms 
of several target-associated proteins (transcription factors) 
would be located. 
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The p l l 0  Ra amino-terminal domain may also exert a 
regulatory affect on a carboxy-terminal function(s) through 
either inter- or intramolecular interactions. This hypothesis 
is supported by two lines of evidence indicating that the ter- 
tiary structure of pll0 ~ is severely compromised by small 
alterations in its amino-terminal region. First, such muta- 
tions dramatically affect the ability of the protein to be 
hyperphosphorylated (Hamel et al., 1990; Qian et al., 1992; 
Hinds et al., 1992), considered to be an important indicator 
of the structural integrity of the RB protein. Second, amino- 
terminal mutants also disrupt interaction with the carboxy- 
terminal half of p110 RB (Hensey et al., 1994), an interaction 
that appears to be required for oligomerization (Hensey et 
al., 1994). Mutations with such dramatic consequences for 
pll0 Rs structure are likely to interfere with its function 
and/or regulation. As p84 interacts specifically with the ac- 
tive form of pl l0 ~ ,  this association may be a mechanism 
for removing an inhibitory effect by the NH2-terminal do- 
main upon the active carboxy-terminal region. However, this 
switch would be reversible allowing pll0 RB to be inactivated 
when cell division was required. 

A highly complex and interactive mechanism for p110 ~-  
mediated tumor suppression is suggested by the multiple 
proteins it binds, and the spatially and solubility based sub- 
nuclear compartmentation of pll0 ~ itself. Does the associ- 
ation of pll0 ~ with both matrix-bound and soluble binding 
partners, particularly within regions associated with RNA 
processing, represent a unique mechanism whereby the RB 
protein exerts its tumor suppressing activity? To fully ad- 
dress this question, future studies must examine these inter- 
actions in the context of the full-length RB protein, and how 
it interfaces with architecturally based partitioning of nu- 
clear metabolism. 
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