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Abstract: Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from the selective
destruction of insulin-producing β-cells in the pancreas. Up to now, the mechanisms triggering
the initiation and progression of the disease are, in their complexity, not fully understood and imply
the disruption of several tolerance networks. Viral infection is one of the environmental factors
triggering diabetes, which is initially based on the observation that the disease’s incidence follows
a periodic pattern within the population. Moreover, the strong correlation of genetic susceptibility
is a prerequisite for enteroviral infection associated islet autoimmunity. Epidemiological data
and clinical findings indicate enteroviral infections, mainly of the coxsackie B virus family, as potential
pathogenic mechanisms to trigger the autoimmune reaction towards β-cells, resulting in the boost of
inflammation following β-cell destruction and the onset of T1D. This review discusses previously
identified virus-associated genetics and pathways of β-cell destruction. Is it the virus itself which
leads to β-cell destruction and T1D progression? Or is it genetic, so that the virus may activate
auto-immunity and β-cell destruction only in genetically predisposed individuals?
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1. Introduction

T1D (type 1 diabetes) results from a complex interplay of a multi-genetic predisposition and environmental
factors. We have read similar phrases before which are valid for numerous diseases and pathological
mechanisms. Saying this is the same for diabetes as well as for any other autoimmune disease: (1) we do
not really know what the real cause of the disease is and (2) apparently, there is no single cause for
the disease. Thus, this phrase does describe T1D: it results from multiple triggers, which makes
the disease very complex. Research has been able to identify many drivers of the disease in the past,
such as the initiation of autoimmunity, paths of β-cell destruction, genetic mutations associated with
the one (autoimmunity) or the other (β-cell death), or both [1–5].

However, we are still seeking the salient event which finally, through multiple cascades, leads to
β-cell failure, loss in insulin production and secretion and, subsequently, hyperglycemia. Protection
of the β-cell and prevention of diabetes before its clinical manifestation can be achieved only if
the initiators are identified.

What we also know from intensive research is that T1D is a heterogeneous disease. Over the past
decades, childhood T1D has increased worldwide at an estimated average annual rate of 3.9%;
such doubling during the last 20 years is too high to result only from genetic causes [5–7]. Firstly,
the concordance rate between monogenetic twins is only about 50% [8]. Secondly, epidemiological
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studies have shown that the disease’s incidence follows a periodic pattern within the population [5,6,9]
with a significant geographical variation [6].

Support of a putative role for viral infections in the development of T1D comes from
epidemiological studies, which have uncovered the seasonal pattern of disease presentation after
enterovirus epidemics [6]. Specifically, enteroviruses have been made responsible as an initiator of
autoimmunity as well as β-cell failure from epidemiological, pathological and in vitro studies [10–12].

Virus pathology per se commonly shows heterogeneity in its outcome, as it causes severe disease
only in some affected patients. The current SARS-CoV2 pandemic in 2019/2020 is an overwhelming
example of the array of outcomes of virus infection in different people, depending, e.g., on age, genetic
background and pre-existing disease, from asymptomatic to pathologic [13]. There is a bidirectional
relationship between Covid-19 and diabetes [14]. Firstly, several rapid communications have associated
SARS-CoV2 with acute-onset diabetes [14,15], and, secondly, patients with diabetes are at greater risk
for severe Covid-19 illness.

Obviously, T1D is not an acute infectious viral disease, as scenarios of massive infection in
the pancreas have never been observed in T1D. The virus is lytic to β-cells in vitro, but such has
not been detected in vivo, where rather a persistent infection may trigger the immune response.
Most of us have had an asymptomatic enteroviral infection during childhood which did not end
up causing T1D. With their positive-sense single stranded RNA genome, coxsackieviruses from
the family of picornaviridae are widely spread viruses all over the world ranging from 7–22% in Greece
and up to 50% and 80% in Montreal and in parts of China, respectively [16]. They most commonly
cause hand-foot-and-mouth disease, producing flu-like symptoms, but also have the ability to infect
the pancreas, heart and CNS.

Together with an environmental factor, an additional factor is needed to potentiate the susceptibility
to enteroviral infections to finally trigger autoimmunity and β-cell destruction, i.e., a certain genetic
predisposition. Mutations have been found to either impair virus clearance upon infection, or,
oppositely, to increase viral response by inducing a storm of cytokines, which will then destroy
the β-cells which are vulnerable to inflammation.

2. Seasonal Patterns of Viral and Autoimmune Diseases

More than 60 infectious diseases have been associated with seasonal patterns, identified by
a systematic search for “seasonality” from a list of communicable diseases from the Centers for Disease
Control and Prevention (CDC), World Health Organization (WHO), and the European Centre for
Disease Prevention and Control [17]. The flu season in the winter of the Northern Hemisphere is
the most classic. As enteroviruses and especially coxsackieviruses have multiple serotypes, they cause
a broad spectrum of diseases and peak at different times; however, clear seasonality has also been
reported for Coxsackie B3 and B4 [17,18].

The seasonal drive is complex and multifarious. There is not only the seasonal viral exposure,
but also environmental conditions such as climate (temperature, hours of daylight and sunshine)
and human seasonal behavioral, i.e., diet and exercise, which reflects on the host’s immune system
status and makes us more prone to infection, e.g., to flu in the winter.

In the similar way, most autoimmune diseases “go viral” seasonally, e.g., T1D, multiple sclerosis
(MS), systemic lupus erythematosus (SLE), psoriasis, and rheumatoid arthritis (RA), inflammatory
bowel diseases (IBD), autoimmune liver diseases (ALDs), autoimmune thyroid disease (AITD), coeliac
disease, Sjögren’s syndrome (SS) and systemic sclerosis (SSc) [19]. First reported by Franklin Adams
in 1926, disease breaks out in the winter season “immediately after such an infection” [9], and this
has been later confirmed in large studies [20–22]. T1D diagnosis peaks in the colder months of late
autumn to early spring, while it drops in the summer. Such seasonality disappears in regions closer
to the equator. Unfortunately, sparse epidemiological data are available from equatorial regions [23],
which do not allow any speculation on differences in the T1D incidence per se.
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In the Finish DIPP cohort study, the appearance of autoantibodies showed a seasonal pattern
with a significantly higher proportion in the fall and winter [24]. Thus, autoimmunity follows
the same pattern as viral infection and may not just be directly caused by virus infection, but rather by
a combination of unfavorable events at the same time, i.e., higher inflammation in the winter, when
diet often changes to sweeter and fattier food with less exercise outside and low vitamin D levels
because of limited sunlight exposure, which are all factors that have been independently shown to be
associated with T1D [19] (Figure 1). Furthermore, there is the increased risk for another auto-immune
disease [25].
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Figure 1. Not only environmental factors but also gene regulation show seasonal patterns. T1D
(type 1 diabetes) diagnosis peaks in the colder months of late autumn to early spring, where viral
infections come together with less sunlight exposure, less exercise outside, a change in diet together
with an increase in pro-inflammatory cytokines and a change towards pro-inflammatory gene networks.

Each of the single factors as a sole initiator for autoimmunity and T1D have been debated and thus,
such single factor is unlikely to cause T1D. Early studies from Finland within the DiMe and DIPP
cohorts have shown the association of enterovirus infection with autoimmunity and T1D [26–29], while
this is not supported by previous results from the DAISY [30] and BABYDIAB [31] cohorts. Another
example comes from vitamin D: while several studies show a correlation of lower levels of vitamin D
with the onset of T1D [25,32], this was not confirmed by others, and several formulations of vitamin D
supplementation could not reduce disease progression [33]. Crucially, it may be the seasonal change
in vitamin D metabolism together with changes in the expression of its vitamin D receptor [34] that
serve as the additional factors for autoimmune disease predisposition. Using large gene expression
datasets from the German BABYDIET, Australia, United Kingdom/Ireland, United States and Iceland
cohorts, a previous study also shows seasonal patterns in gene regulation [34]. Gene expression of
both the vitamin D receptor and the anti-inflammatory circadian clock regulator transcription factor,
BMAL1 (ARNTL1), is lowest in the winter [34], which promotes inflammation through increased levels
of soluble IL-6 receptor and C-reactive protein [34]. Several studies in mice and isolated islets show
that BMAL1 depletion impairs β-cell survival and disturbs a coordinated insulin secretion which may
trigger the onset of diabetes due to defective β-cell function [35,36]. Conversely, BMAL1 is severely
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depleted in islets from patients with type 2 diabetes (T2D) and disrupted by IL-1β exposure of islets
in vitro [37]. This suggests a direct causative role for depleted BMAL1 in inflammation and β-cell
failure. Physiologically, the circadian clock would inhibit inflammation and also prevent the cell
from hypoxia, as shown in the heart [38]. Thus, reduction in BMAL1 disables the cellular antioxidant
response and increases HIF-1α and ROS accumulation in immune cells, which would further induce
the production of proinflammatory cytokines, i.e., TNFα, IL-1β [39] from macrophages, dendritic cells
as well as from β-cells themselves [40,41]. The direct cross-talk of transcription factors regulating
clock genes (BMAL; ARNTL1) and hypoxia (HIF1α; ARNT) can have fatal consequences. Both belong
to same family of PAS-domain, helix-loop-helix transcription factors and share some overlapping
DNA binding sites [38,42]. HIF-1α mutations have not only been shown for T1D but also for many
other autoimmune diseases [43] and thus again link seasonal changes with genetic predisposition
for autoimmune disease. This is especially deleterious for the β-cell with its very low expression of
antioxidants and high expression of cytokine and Toll-like receptors [44]. Any increased inflammation
may predispose a body to β-cell failure, and thus it may not be the seasonal virus spread alone which
causes auto-immunity but rather the pro-inflammatory environment in the host which potentiatesβ-cell
failure with subsequent diabetes initiation. As such, this may only happen in genetically predisposed
individuals. All three events together (viruses, the pro-inflammatory milieu in the host and the genetic
profile) and their seasonality in their regulation may then initiate β-cell failure and auto-immunity.

3. HLA Class I and Class II Are Major Determiners for T1D

The strongest genetic risk factors for T1D are located in the major histocompatibility complex
(MHC, also called the human leukocyte antigen: HLA) class II on chromosome 6, with the predisposing
HLA class II haplotypes found in around 90% of patients with T1D [45]; the specific combination of
HLA II alleles HLA-DRB1*03 (DR3) or HLA-DRB1*04 (DR4) with DQB1*03:02 (DQ8) confer the highest
risk for T1D (for details on HLA susceptibility please see an excellent previous review [46]).

In addition, susceptibility loci also in the HLA I region contribute to T1D [46–48] and their direct
association with the age of T1D onset has been shown in several studies [46,47,49]. Predisposing alleles
correlate with a younger age, and a protective allele with an older age at onset [47]. Children diagnosed
at a very young age usually have a more severe T1D than those diagnosed as teenagers or young adults.
Early T1D onset (≤5 years) can predict T1D severity, especially for diabetic complications such as
retinopathy [50]. One could assume from these studies that the predisposing HLA class I alleles do not
only correlate with age, but also with diabetes severity, although this has not been directly addressed
in previous studies. For a possible similar correlation of HLA class II risk alleles with age of onset or
severity of disease, only few study results are available. Valdes et al. reported that a DRB1-DQB1 HLA
class II at risk allele contributes to the age at onset of T1D. However, a pure prediction of the disease
onset from HLA alleles alone has been difficult among populations, since many more factors and their
combination, i.e., T1D genetics and auto-antibodies play a major role [47].

The very early appearance of asymptomatic autoimmunity and its strong relationship with age
and disease severity was found in all the large prospective T1D studies: BABYDIAB, DIPP (Diabetes
Prediction and Prevention) and TEDDY (The Environmental Determinants of Diabetes in the Young).
It is detected by any of the ICA, IAA, GAD, IA-2 and ZnT8 auto-antibodies and follows the exponential
decay model starting in the first year of life in genetically at-risk children in affected families with
first-degree relatives with T1D (FDR). Indeed, children who developed autoimmunity in the first year
of life had the highest risk of T1D [51], which is further increased in those children with the high-risk
HLA-DR3-DR4-DQ8 or DR4-DQ8/DR4-DQ8 genotypes [24,51].

The strong correlation of HLA-genetic susceptibility as a prerequisite for enteroviral
infection-associated islet autoimmunity was depicted many years ago in the Finish DiMe study:
children with a high-risk HLA allele converted to ICA positivity during enteroviral infection more
often than those without HLA risk [27]. Further results from the DiMe (Childhood Diabetes in Finland)
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and DIPP studies show increased islet auto-antibody appearance with enterovirus infections during
pregnancy and early childhood and their correlation to T1D progression [27–29].

Confirmed in all three major T1D pancreatic tissue biobanks (EADB, Exeter Archival Diabetes
Biobank; DiViD, Diabetes Virus Detection Study; and nPOD, Network for Pancreatic Organ Donors
with Diabetes), the age of onset determines the number of cases with any left residual beta-cells, i.e.,
an older age of T1D onset strongly correlates with more remaining β-cells and children with diabetes
onset < 7 years have fewer β-cells left than at the onset 7–12, and again fewer than those diagnosed
at >13 years [52]. Usually seen near disease onset, i.e., within the first 7 years of diagnosis and found
located and “hyperexpressed” on the surface of β-cells in T1D [53], HLA I molecules present antigens
to activated cytotoxic CD8 T-cells which then lead to islet infiltration and all together to subsequent
β-cell destruction (Figure 2). It is therefore possible that such HLA I hyperexpression may coincide
with β-cell failure. Although the stimulus for β-cell specific HLA I hyperexpression in vivo is not clear
yet, it is often associated with enteroviral infection, indirectly reported based on viral capsid protein
immunofluorescence in insulin containing islet (ICI) clusters [52] as well as insulitis. Histological
analyses of the human T1D pancreas show all, viral capsid VP1, IFNα, the major cytokine induced
by viral infection, and HLA I expressed in or within the islet proximity [52,53]. Mechanistically
shown in islets in vitro, enterovirus-induced IFNα [54] leads to β-cell upregulation of HLA class
I [55,56]. IFNα-mediated HLA class I induces inflammation and ER stress, but is alone insufficient
to cause beta-cell apoptosis. Additional exposure of islets to the pro-inflammatory cytokine IL-1β
potentiates β-cell apoptosis [56], suggesting the necessity of a complex pro-inflammatory milieu to
induce β-cell failure.
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Figure 2. β-cell destruction in T1D is associated with viral response pathways. β-cells are highly
vulnerable to enteroviral infection. (A) Several genetic mutations in the viral response pathway in
T1D may lead to the potentiation in viral response. (B) A consequent “storm” of pro-inflammatory
cytokines and chemokines lead to HLA I hyperexpression and attract cytotoxic T-cells and macrophages
and subsequently to the loss of β-cells (C) and manifestation of T1D.

It is important to note that the association of HLA was not only identified for T1D, but for many
other autoimmune diseases, i.e., rheumatoid arthritis, celiac disease and multiple sclerosis [19,57]
which assumes that (i) physiological HLA is a prerequisite for a balanced immune regulation and (ii)
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enteroviral infections may lead to disturbance of such balance, through attraction of activated T-cells
towards the virus’ homing tissue.

Based on these large studies, islet autoimmunity in early life is indeed related to genetic factors
and disease severity. The propensity of a very young child, i.e., <1 year to respond to environmental
factors such as enteroviruses may thereby potentiate the risk to T1D progression.

4. Direct Evidence for Enteroviral RNA in the Pancreas

Epidemiological data and clinical findings show a correlation between enterovirus infection
and the onset of T1D [6,58]. In 1969, Taylor’s lab reported the presence of neutralizing
anti-coxsackievirus B4 antibodies in the serum of patients with T1D [59]. Since then, enterovirus
infections, mainly of the coxsackie B virus (CVB) family, were hypothesized as a potential pathogenic
mechanism to trigger the autoimmune reaction to β-cells, resulting in the destruction of β-cells [54,60]
and the onset of T1D [61,62]. Following the isolation of CVB4 from a pancreas autopsy of a 10-year-old
boy with T1D [63], many large studies tried to identify the virus directly from the T1D pancreas.

In newly diagnosed T1D patients of the DiViD study (3–9 weeks after T1D onset), VP1 was detected
in biopsy pancreases in all patients in 1.7% of the islets. It is possible that such a 100% correlation of
VP1 and T1D was observed because of a higher expression at diagnosis, which would decline at later
stages [64], however such a hypothesis would need to be experimentally proven. Furthermore, HLA I
expression was found in all patients. Viral RNA in the frozen pancreas was only found in one T1D
patient and from cultured enriched islets in only 4 of 6 patients at a very low concentration (by PCR, >40
cycles), which shows no evidence of an acute but, if any, rather a low-grade infection. In confirmation
with several previous studies [65], classical RT-PCR was not sensitive enough for the analysis of a viral
infection, which only occurs in few cells within the whole pancreas. RNA sequencing from the whole
pancreas could not identify any viral sequences, again suggesting the threshold of the presence of
viral sequences compared to all other genes as sparse to be identified by classical RNASeq methods.
Nevertheless, several approaches have confirmed the presence of enteroviruses both in the circulation
and in islets of T1D patients [64,66–70], however, because of a very low expression, many attempts
have failed to characterize the localization and the specific enteroviral sequences through PCR-based
methods in the pancreas.

Enrichment strategies are necessary to detect such low-grade infection, e.g., amplification of
viruses by preculturing human leucocytes from patients with T1D and subsequent RT-PCR analysis [71]
or by the elegant viral-capture sequencing methods in which viral sequences are enriched before
sequencing, that enable the identification of enteroviruses in stool samples from islet auto-antibody
positive children [72].

Viruses that have a specific tropism within the islets could cause the onset of the disease not only
by direct cytolysis but also by triggering the host immune response [73]. The presence of several CVB
viruses, including CVB4, together with the Coxsackie-adenovirus receptor (CAR) in the β-cell, support
the connection of viral infection with T1D. Coxsackieviruses induce a persistent, slowly-replicating
infection; this may result from alterations to the viral genome during the progress of infection, such
as naturally occurring 5′-deletions [74–76]. Because of several such limitations to the detection of
enteroviruses, we have previously established an adapted method to target single RNA molecules with
short (~20 nucleotides) fluorescently labeled oligonucleotides in situ. Probes consist of a mixture of 40
short oligonucleotides covering the whole length of the viral genome and anneal to common regions
of the RNA genome of the coxsackievirus family [77]. This enables targeting single RNA molecules.
Short labeled oligo RNA probes are more resistant to RNAse, and RNA detection is less affected
by target RNA degradation and fragmentation. Through the availability of the well-characterized
cohort of human pancreatic donor tissue established by nPOD [78], viral mRNA can be detected
in the T1D pancreas with high sensitivity, specificity and accuracy and at lower viral loads than by
classical immunostaining and even PCR [77,79]. Further ongoing studies of pancreas sections revealed
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remarkable significance of viral RNA expression in T1D pancreata, compared to controls without
T1D [80].

Using this method, we have analyzed whole pancreas sections and quantified enteroviral mRNA
by unbiased scans and identified viral mRNA distributed not specifically within or in proximity to
islets; enteroviral mRNA was evident through individual dots in single cells throughout the pancreas
(Figure 3). Such observation is in contrast to VP1 immunohistochemistry in the pancreas [81],
which mostly detected VP1 positivity in or near islets. Famously referred to as the “streetlight
effect” [82], it is difficult to find what we search for in the dark, and thus, it is possible that several
antibody-based stainings were preferentially observed in islets, although the staining has been carefully
re-evaluated and VP1 correlates with hyperexpression of HLA class I in islets [83]. The commonly
used DAKO-VP1-Ab detects several other antigens in addition to VP1 and/or exocrine enzymes may
degrade enteroviral proteins and thus prevent their detection in the pancreas [84].
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Figure 3. Coxsackieviral RNA in the T1D pancreas. Representative images of T1D donors 6070 and 6211
from the nPOD cohort. Viral RNA was found within the endocrine area (A) and outside the islets (B,C)
shown by co-staining of viral RNA probes (red), insulin (green) and DAPI (nuclei; blue). Tissues were
first probed for viral RNA, and then stained for insulin after a previously established protocol ([77];
Busse et al.). Scale bar depicts 10 µm.

Early studies, where C57BL/6 mice were infected with CVB3, also observed viral infection
localization in the pancreas in the acinar cells, together with severe inflammation and acinar cell
destruction [85]. Despite the well-known differences in enteroviruses’ tropism in the pancreas in mice
and humans [85], such observation is in line with the decreased acinar cell number and acinar tissue
mass reported in numerous studies from human T1D pancreases [86–88].

Rather than from the virus itself, β-cell destruction may result from “bystander” damage [89,90],
where coxsackie virus infection may lead to a storm of inflammation in cells like the β-cell, which
carry an enormous amount of pattern recognition (such as TLR3 and TLR4), cytokine (such as IL-1R1),
and chemokine receptors on their surface [44]. Their activation by viruses and by cellular viral
responses stop viral replication on one hand, but induce tissue damage on the other. In addition,
interferons accelerate expression of surface HLA-I molecules and thus activation of auto-reactive
T-cells against β-cells (Figures 2 and 4). T-cell activation through non-T-cell receptors (“bystander
damage”) [89] is limited to viral infection [91], where β-cell apoptosis is triggered by viral response
products, e.g., cytokines and chemokines [92]. Such a pro-inflammatory environment has also been
shown to alter the composition of the islet extracellular matrix, which may further facilitate T-cell
migration towards pancreatic islets [93]. The specific and severe β-cell destruction then occurs through
their special vulnerability towards an array of cytokines and chemokines such as interleukin (IL)-1β,
interferon (IFN)-γ, tumor necrosis factor (TNF)-α and CXCL10 [94], which induce β-cell destruction in
response to viral infection in human islets [60,95] (Figure 4). It is also possible that multiple infections
during childhood each time contribute to potentiating the immune response and then lead to β-cell
destruction, autoimmunity and T1D.
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Figure 4. β-cell in the storm. Our hypothetical model on how chronic potentiation of
proinflammatory pathways leads to β-cell destruction. Coxsackieviruses enter the β-cell through
the Coxsackie–adenovirus receptor (CAR) and bind to endosomal TLR3. While the virus promotes
the AKT-JNK axis for initial host cell survival, parallel activation of viral response pathways through
PKR-TBK-IRF3 leads to the transcriptional activation of the IFN response and production of interferons,
which increase surface MHCs, recognized by cytotoxic CD8- and CD4-T-cells causing “bystander
damage”, and β-cell apoptosis through a “storm” of cytokines and chemokines, which all find their
receptors on the surface of the β-cell, and a vicious cycle is initiated with the full activation of
the apoptotic machinery including JNK-MST1-Caspase 3-NFκB. Bacterial toxins as well as chronically
elevated free fatty acids (FFA) are also associated with β-cell damage and act through TLR4 activation
and similar downstream pro-inflammatory pathways. While many cells can counteract such damage
cycles with a potent survival machinery, theβ-cell is deficient of the Hippo terminator YAP, which would
balance the viral IRF3 response. Furthermore, Siglec-7, which balances immune activation, is diminished
in a chronic diabetogenic pro-inflammatory milieu in the β-cell.

5. Enteroviral Infection and T1D: Results from the TEDDY Study

Recent results from the large multi-center TEDDY cohort study provided important confirmation of
the association of enteroviral infection and islet autoimmunity [96]. Direct next-generation sequencing
of stool samples as well as analyses subsequent to cell culture amplification of enteroviruses identified
an array of DNA and RNA viruses.

The study confirmed that enterovirus B infections (EVB) were associated with islet autoimmunity,
but also examined the role of length of infection since sequential stools from children were available.
An association with islet autoimmunity was detected with long-duration enterovirus B infections,
indicated by prolonged shedding of the same virus in multiple stool samples. In contrast, multiple
independent short-term enterovirus B infections without prolonged shedding neither correlated with
autoimmunity nor with T1D progression.
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The results of this study indeed reproduce a correlation of enteroviral infection and autoimmunity:
that the duration of the virus load detectable in stool samples determines the progression to
autoimmunity. Mechanistically, one can assume from this and many previous studies that the virus
may trigger autoimmunity, but is not conclusively linked to further T1D progression.

This is in line with data showing that the enteroviral signaling cascade, which leads to the IFN
response, is increased before auto-antibody conversion and T1D (see above) [97], which again suggests
virus infection and the boosted IFN response as primary event toward autoimmunity. It is very
likely that the longer duration of enterovirus abidance in the host is defined by the genes and their
unfavorable seasonal changes.

Once a host is found, the virus creates a variety of smart mechanisms to escape from anti-viral
immune response through persistent infection, e.g., blocking autophagy in order to remain in the cell [16].
Dysfunctional autophagy as a feature of both T1D and T2D [98] supports such hypothesis. Enteroviral
B’s typical 5′ terminal genomic deletions observed in cardiomyocytes [99] and in the pancreas [76] may
lead to a long term stay of viruses in the cell without causing lysis. This probably enables detection of
viral RNA in autopsy pancreata even a long time after occurrence of islet auto-antibodies [80] as well
as after T1D diagnosis [77] in morphologically normal appearing cells.

Highly sensitive virus-captured sequencing methods from stool samples also confirm the association
of enteroviral infection with islet autoimmunity [72], and enteroviral amplification-enrichment cultures
of leukocytes and of cells from duodenal biopsies showed the correlation of enteroviruses B and T1D.
A significant association between enterovirus and subsequent risk of autoimmunity in celiac disease
was also found in TEDDY and other previous studies [57,100], where enteroviral positive stool samples
correlated with celiac disease only after introduction of gluten to the babies’ diet [57], and higher
amounts of gluten consumption potentiated the effect of enteroviruses on the risk of coeliac disease
autoimmunity [100], indicating the necessity of the initial autoimmunity trigger.

6. TLR3 Signaling Leads to Enterovirus-Induced β-Cell Destruction

The innate immune response to virus infection initiates as a fingerprint with the sensing of viral
pathogen-associated molecular patterns (PAMP). Such recognition is mediated by the activation of host’s
pattern recognition receptors (PRR) such as Toll-like receptors (TLR) on the surface of cellular membranes
and cytosolic receptors including RIG-like receptors (RLR), nucleotide-binding domain-leucine-rich
repeat-containing molecules (NLR) and RNA-activated protein kinase R (PKR) [101]. Many studies
show that the onset of diabetes is triggered through PRRs [102–104], and PRRs have been identified
as susceptibility factors for diabetes progression in genetic studies [105–107]. Most of the today’s
described 10 human TLRs, namely TLR2-4 and 6-9 have been associated with T1D or/and T2D [108,109].
There is a strong correlation of the most TLR3 polymorphisms with T1D in several [107,110] but not in
all studies [111].

TLRs are used by the immune system for pathogen clearance. The endosomal receptor TLR3,
found not only in immune but also various non-immune cells such as the β-cell, is one of the signaling
complexes implicated in viral-mediated β-cell death, is highly expressed in the pancreas of patients
with T1D [112] and is found enhanced in human islets by IFN exposure [113]. Once viral RNA is
recognized by TLR3, the TLR3-TANK binding kinase 1 (TBK1)-IFN-regulatory factor (IRF)3/7 signaling
axis is activated [114]; the virus initially induces AKT [60] to make sure that its host survives but later
cross-talks with JNK result in activation and translocation of NF-κB subunits to the nucleus (Figure 4).

Downstream of the viral response pathway is the C-X-C motif chemokine 10 (CXCL10) which
promotes human β-cell apoptosis [94]. CXCL10 is localized in infected islets [115] in both canonical
and fulminant T1D early in disease progression [44,94] and thus is suggested as a clinical marker
for diabetes onset [116]. The cascade finally ends in the secretion of proinflammatory chemokines
and cytokines, which further potentiate inflammation and β-cell apoptosis pathways (Figure 4).

Several studies in mice have shown that TLR3 is an essential element of T1D development
in response to viral infection. As a detector of viral signatures, TLR3 is needed for the anti-viral
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response, and, naturally, will promote cytokine signaling. These two apparent conflicting effects
towards beta-cell survival may provide reasons for various different results in mice and imply that
a highly balanced physiological function of viral sensors is necessary to prevent damage to β-cells.
TLR3 signals contribute to the host’s survival, as CVB4 [117] or encephalomyocarditis virus [118]
infections are highly mortal to TLR3 knockout mice due to the impaired antiviral response machinery.
Although they present a reduced pro-inflammatory milieu, surviving mice develop T1D [117]. Other
studies show that TLR3 knockout in NOD mice has no effect on the incidence of diabetes at a basal
level [119] and that CVB4-infected TLR3 knockout NOD mice show lower diabetes incidence [120].
In the absence of TRIF, a prominent downstream protein in the TLR3 cascade, mice are also protected
from the development of T1D by changing the gut microbiota [121].

In summary, pattern recognition receptors identify viral antigens to trigger the host defense.
TLR3 signaling through multiple loops leads to virus-mediated inflammatory response, and ongoing
inflammation further potentiates the cytokine response through multiple cytokine and chemokine
receptors expressed in the β-cell, and finally to β-cell apoptosis in vitro. However, as many examples
show, mutations in a single PRR, e.g., TLR3, or its activation alone will not ultimately cause T1D, but
may rather act within a pro-inflammatory network to potentiate T1D progression (Figure 4). A future
research target towards prevention could therefore be specific miRNAs, as many of them which are
differentially expressed in T1D patients [122] are involved in the regulation of the innate as well as
the adaptive immunity through TLR signaling [123].

7. IFN-Inducible Genes Link Autoimmunity, Viral Response and β-Cell Failure in T1D

T1D is associated with over 60 genetic risk regions across the human genome, identified by
genome-wide association studies (GWAS) [124], and these T1D-linked SNPs alter the expression of
over 200 genes [125] involved in β-cell inflammation, function and destruction, immune activation
and signaling, including viral response, Toll-like receptor, cytokines and NF-κB signaling. Among
them, several risks as well as protective single nucleotide polymorphisms within the interferon-induced
helicase-1 (IFIH1) gene, which encodes the melanoma differentiation associated protein 5 (MDA5),
have been identified in large studies [106,126]. IFIH1 is a cytosolic sensor of single strand viral RNA
from the picornavirus family. It facilitates the interferon (IFN) response and activates the immune cells
towards viral response downstream of TLR signaling. Importantly, expression of the IFN signature
genes as well as the type 1 IFN response is increased in children before the T1D-associated auto-antibody
conversion [97,127], which suggests a primary role of IFN signals in the activation of autoimmunity
and the potentiation ofβ-cell destruction. Inβ-cells, IFN signaling leads to HLA class I hyperexpression,
which is a well-studied path for T1D initiation [106,128]. IFIH1 is ultimately associated with signals
from enteroviruses; its mRNA expression is increased by CVB3 and CVB4 infection in human islets [114]
and by synthetic double-stranded RNA Poly(I:C) in INS-1E β-cells [129], while IFIH1 silencing potently
lowers the chemokine response in β-cells [129]. Foremost, a diabetes-associated IFIH1 polymorphism
upregulates the IFN signature in human pancreatic islets in response to Coxsackievirus infection [130].

The upregulation of IFN-inducible genes, including IFIH1 in genetically predisposed children,
was also associated with previous upper respiratory tract infections and with increased monocytic
expression of the sialic-acid binding immunoglobulin-like-lectin Siglec-1 [97]. Through the recognition
of specific glycans on the cell surface, Siglecs promote cellular interactions within the immune system
and with sialylated pathogens; they are important regulators of the innate and adaptive immune
systems and serve as checkpoints for immune regulation and autoimmunity [131]. Through their
immunoreceptor tyrosine-based inhibitory motifs (ITIMs), Siglecs balance the immune response [132].
Several members of the Siglec family do not only play a role in immune–cell–pathogen interactions,
but also on the level of the β-cells regulate the inflammatory response. Siglec-7 is down-regulated
in both β-cells in the pancreas from patients with T1D and T2D as well as in activated immune
cells. Overexpression of Siglec-7 in diabetic islets balances the immune response by reducing
cytokine production and monocyte migration, which both facilitate β-cell survival and function [133].



Microorganisms 2020, 8, 1017 11 of 20

The evolving field of Siglecs provides a further target to modulate the excess inflammatory/IFN
response as a major facilitator for autoimmunity and β-cell failure.

8. Why the Beta-Cell? Absence of the HIPPO Effector YAP to Balance Viral Response

Despite certain viral tropisms, viral receptors are distributed in many cells in all organs
and IFN-induced viral defense mechanisms are in place, which (i) hinder viral reproduction and (ii)
attract cytotoxic T-cells. In the largely non-replicative β-cells, such an increase in the IFN response
seems deleterious. The intracellular antiviral defence is initiated by TBK1-IRF3-mediated interferon
production (see Sections 6 and 7 above) [134] and controlled by the Hippo terminators and transcriptional
regulators YAP and TAZ [135–137], which negatively regulate and thus balance the antiviral immune
response. Recent studies have linked YAP/TAZ with antiviral sensing [135–137]. YAP/TAZ associate
with both TBK1 and the inhibitor of nuclear factor kappa-B kinase (IKKε), thereby blocking their
activation and subsequently inhibiting IRF3-stimulated transcription of viral response genes. Thus,
YAP/TAZ, besides their well-known function in the regulation of cellular contact, development, growth
and proliferation as effectors of the Hippo pathway [138], can regulate the host’s cellular response.
In the absence of this YAP regulation, virus sensing would trigger an extremely high and uncoordinated
cytokine response, as happens in T1D, where virus-infected β-cells show highly increased cytokine
production resulting in a vicious cycle and bystander damage ofβ-cells through their cytokine receptors
(Figure 4).

One underlying reason could be the absence of YAP in adult β-cells. During endocrine cell
differentiation, YAP is suppressed as soon as Ngn3 is expressed [139,140]. The lack of YAP expression
correlates with the extremely low rate of β-cell proliferation and β-cell quiescence after birth and their
limited regenerative capability [141]. The Hippo element YAP is sufficient to wake β-cells up
from quiescence; re-expression of constitutively active YAP leads to a robust induction of human
β-cell proliferation [140,142]. Similarly, TAZ is extremely low but detectable in both adult human
and mouse β- and α-cells [143,144]. Bioinformatic analysis identified YAP as a selectively repressed
(“disallowed”) gene in the pancreatic islet [145]; it is more repressed in purified mouseβ-cells compared
to α-cells [146]. Now, we hypothesize this as the reason not only for the much lower proliferative
capacity of β-cells compared to any other endocrine cell type, but also for the extreme and suicidal
viral response. In contrast, the Hippo kinase MST1 represses antiviral signaling and acts as negative
regulator of the antiviral defense by its direct interaction and phosphorylation of IRF3 and inhibition of
TBK1 [137]; however, underlying mechanisms as well as consequences on host survival are not known.
Previous data from our and other labs show that Hippo is an important regulator of β-cell function
and survival [139,140,147], and therefore it may also be involved in the pathological viral response
associated with T1D.

9. Conclusions

There is large evidence for enteroviral infection initiating the auto-immune response
and subsequent β-cell destruction in genetically predisposed individuals, where a viral response is
boosted. As an especially vulnerable cell to inflammatory destruction and apoptosis, autoimmunity is
directed to the β-cell, causing T1D. Although enteroviruses selectively and severely destroy β-cells
in vitro, they are just one stimulating factor in the huge complexity of T1D, and thus, without
an unphysiological genetic predisposition towards immune activation and β-cells’ inability for
compensation, they would probably not cause T1D. Therefore, it is possible that enteroviral vaccination
and antiviral therapies for T1D [148], although they would take away the stimulus, may alone not be
sufficient to cure the disease and require combination with further β-cell protection efficacy. This is
reminiscent of gluco- and lipotoxicity-mediated β-cell failure associated with T2D [149]. Although
highly toxic for the β-cell in vitro, elevated glucose and free fatty acids only induce some alterations
and systemic compensation as long-term consequences of obesity in vivo. However, in genetically
predisposed individuals, they finally lead to T2D [150]. Similarly, neither viral infections alone nor



Microorganisms 2020, 8, 1017 12 of 20

predisposing genetic polymorphisms alone ultimately lead to T1D. As there is no single cause for T1D,
we will probably not be able to successfully cure diabetes with a single drug. Rather, forces need to
join for testing the efficacy of combination therapies, for example antiviral strategies [148] together
with the prevention of T-cell action [151], anti-inflammation [152] and/or beta-cell protection [153].
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