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Abstract: VO2max index has a significant impact on overall health. Its estimation through wearables
notifies the user of his level of fitness but cannot provide a detailed analysis of the time intervals
in which heartbeat dynamics are changed and/or fatigue is emerging. Here, we developed a
multiple modality biosignal processing method to investigate running sessions to characterize in
real time heartbeat dynamics in response to external energy demand. We isolated dynamic regimes
whose fraction increases with the VO2max and with the emergence of neuromuscular fatigue. This
analysis can be extremely valuable by providing personalized feedback about the user’s fitness
level improvement that can be realized by developing personalized exercise plans aimed to target a
contextual increase in the dynamic regime fraction related to VO2max increase, at the expense of the
dynamic regime fraction related to the emergence of fatigue. These strategies can ultimately result in
the reduction in cardiovascular risk.

Keywords: VO2max; cardiovascular fitness; machine learning; multiple modality biosignal process-
ing; personalized medicine; physiological time series; medical technology; medical data analysis in
healthcare; k-means clustering; cardiovascular risk

1. Introduction

VO2max is an index of cardiovascular fitness and aerobic endurance, expressed in
mL/kg·min, which refers to the maximum amount of oxygen that an individual can uptake
during intense or maximum exercise [1–3]. It is directly proportional to the amount of
energy that an individual can produce aerobically: the more oxygen consumed, the greater
the energy produced [4]. Estimation of VO2max is particularly important since it was shown
in several studies that cardiovascular fitness has a significant impact on overall health.
Mounting evidence has firmly established that low levels of cardio-respiratory fitness
are associated with a high risk of cardiovascular disease (CVD) and all-cause mortality,
as well as mortality rates attributable to various cancers, especially of the breast and
colon/digestive tract [5]. Those findings are supported by additional research which
revealed that a 10% increase in VO2max could decrease all-cause mortality risk by 15% [6,7].
In this respect, finding a way to easily measure improvement in cardiovascular fitness is
especially important to reduce cardiovascular risk. Evidence on cardiovascular risk is biased
toward causes rather than prevention techniques, which have yet to be widely reproduced
or supplied at a scale that makes them a viable alternative for public health efforts. Change
is difficult, time consuming, and resource intensive. In this context, technology can aid in
the support and maintenance of healthy behaviors: smart wearable devices can monitor
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and provide feedback on energy intake and expenditure [8]. To accurately measure the
VO2max parameter, tests in which effort and duration put a strain on the aerobic energy
system are required. The most used tests are the cycle ergometer or the treadmill in which
the intensity of the exercise is gradually increased [9]. During the exercises, ventilation,
and the amount of oxygen O2 and carbon dioxide CO2 contained in the inhaled and
exhaled air are calculated. If oxygen consumption remains steady despite an increase in
exercise intensity, VO2max is reached. However, these methods have some disadvantages:
cardiopulmonary exercise test (CPET) or spirometry devices require the intervention of
qualified personnel, continuous maintenance, and they are expensive. Furthermore, being
bulky, they cannot be used in all environments and in everyday life [10,11]. For this
reason, despite their efficiency, their use is limited to sports professionals and clinics.
In recent years, wearable devices, in particular smartwatches and smart bands (i.e., Garmin
Forerunner, Polar V800, Apple Watch) allow the real time and remote monitoring of
physiological parameters. They are used in both medicine [12,13] and sports [14,15].
These devices will make it easier for those who wish to be healthy and change their
lifestyle, as measurement and feedback systems become more refined and individualized.
In particular, these devices can supply a measure of VO2max even outside the laboratory
in everyday life. Some wearable devices estimate it only starting from a continuous
measurement of heart rate in particular conditions (i.e., resting heart rate variability [16])
and require knowledge on gender, age, BMI, and extrapolation of the maximum heart rate
frequency [17]. There are several scientific works that investigate the validity of the VO2max
measurement through wearable devices, in particular wrist-worn activity trackers [18].
Kraft and Roberts [19] did not detect significant differences between the VO2max measured
with spirometry and the Garmin® Forerunner 920XT and reported a correlation coefficient
r = 0.84 between the two signals. In the last white paper [20], Apple® reported that VO2max
estimation by Apple Watch is accurate and reliable relative to commonly used methods
of measuring VO2max, with an average error of less than 1 MET (metabolic equivalent,
with 1 MET = ~3.5 mL/kg·min) and a confidential interval (ICC) of more than 0.85. Overall,
these algorithms are increasingly improving the estimates of VO2max in everyday settings,
with tangible health benefits verifiable by users themselves as an increase in fitness level,
benefits that are strictly correlated with increases in VO2max values [21–24].

There are several algorithms already estimating VO2max through wearable devices.
VO2max is an index of entire running performance that is presented at the end of the run-
ning session. Currently, research is not able to furnish clues to understand the physiological
response at the basis of VO2max improvement, a topic of extreme interest for improving
athletic performance and reducing cardiovascular risk. Traditionally, knowledge of train-
ing methods to enhance endurance performance has evolved by way of trial-and-error
observations of a few pioneering coaches and their athletes [25], with exercise scientists
attempting to explain the underpinning biological mechanisms. Several studies have found
out that interval training (IT) produces improvements in VO2max slightly greater than
those typically reported with continuous training (CT) [21].

A parameter indicating in real time (i.e., during the running session) if the heart rate
response is undergoing muscular, cardiovascular, and neurological adaptations underlying
its improvement in response to the local external energy demand (velocity and altitude
variations) would be valuable both for the user in its daily physical activity, and for clini-
cians to evaluate and plan the personalized training requirements. Indeed, this response
may change from person to person according to genetics, diet, and type and quantity of
individual activity patterns. Within this framework, in this work we introduce a multi-
modal analysis method that indicates if the heart rate response is experiencing the muscular,
cardiovascular, and neurological adaptations that underpin its improvement in response
to the local external energy demand in real time (during the sport session) (velocity and
altitude variations). These physiological responses are at the basis of VO2max improvement.
A k-means clustering algorithm was trained on heart rate, velocity, and altitude features to
classify time series intervals of the running sessions. We show that it is possible to isolate



Sensors 2022, 22, 3974 3 of 16

four intervals characterized by peculiar heart rate dynamics. Among these, a dynamic
range is characterized by a fraction which highly correlates with the VO2max parameter,
and another dynamic range presents some features that can be associated with the emer-
gence of fatigue. This ultimately allows users to understand when, and to what extent,
cardiovascular response is adapting to improve VO2max; thus, providing personalized
real-time feedback about the user’s fitness level improvement.

2. Materials and Methods
2.1. Data Acquisition

This study considered city running sessions of comparable duration performed by a
male non-professional runner over a year (age = 57 years; BMI = (22.63 ± 1.85) kg/m2) who
has shown an improvement in his VO2max value (35.94 ± 1.91 mL/kg·min). The runner
acquired 21 different time series (duration 1 h) using an Apple Watch (A2292) and, for a
subset of the acquisitions the same data were acquired using a smart watch (Garmin Fenix
5x Plus), respectively one on the right wrist and one on the left wrist. Apple Watch provides
heart rate (HR) time series (measured in beats per minute, bpm), speed (v) time series
(measured in meters per second, m/s), and altitude (z) time series (measured in meters, m)
at non equally spaced time intervals (respectively, (5.1 ± 2.6) s, (2.6 ± 1.4) s, (2.0 ± 1.8) s).
Garmin provides heart rate time series (measured in beats per minute, HR) at equally spaced
time intervals (t = 1 s). The reason why we chose to use both sensors is that an equally
spaced signal allowed us to calculate the HR auto-correlation function (ACF), without any
imputing and manipulation on raw data, needed to select the optimal time window to
split up the time series and extract the features for the clustering analysis. Notice that we
obtained a Pearson correlation coefficient r = 0.93 between the time series of apple and that
of Garmin, meaning that they are extremely similar (Supplementary Materials, Figure S1).

2.2. Data Cleaning

For this analysis we focused on the interval including HR values which are related
to intense and maximum physical activity (area of maximum cardiac effort). This interval
will include, therefore, only HR values above 90% of the maximum heart rate, calculated
according to Tanaka formula [26]:

HRmax = 208− 0.7× age (1)

HR time series were further processed by removing outliers due to periodic sensor
malfunctions using z-score with a threshold of 3 standard deviations. Speed time series,
affected by the highest signal to noise ratio due to GPS, were processed with a low pass
Butterworth filter with a cutoff frequency of 0.01 and order 2. The values of these parameters
were chosen following a noise signal analysis. After data cleaning the different time
series were time aligned. As every running session was performed at different altitudes,
we rescaled the altitude timeseries subtracting the relative starting point z0.

2.3. Model
2.3.1. Time Interval as Statistical Unit

We divided each time series in n overlapping point by point time intervals of width
∆t = 90 s, with n being the total number of points in the time series. ∆t was selected by
calculating the ACF cutoff time (tcut) for the HR time series. ACF defines how data points in
a time series are related, on average, to the preceding data points [27]. The red point is the
intersection between ACF and the upper border of the confidence interval. The red point
thus indicates a threshold lag tcut, suggesting that at times higher than tcut a correlation can
be found with a probability less than 5%.

Figure 1 shows an example of the ACF function for a single running session. We can
see that HR values are correlated with lag times until tcut ' 80 s. This value is the one
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corresponding to the point in which the ACF function cuts the upper confidence threshold
(red point in Figure 1) [28].
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Figure 1. ACF plot of HR for a single running session. The blue shaded region is the confidence
interval with a value of α = 0.05 calculated with Bartlett’s formula [29]. Anything within this range
represents a value that has no significant correlation with the most recent value for the HR. In this
case, we observe significant correlations from 0 to 80 s. The red point is the intersection between
the ACF function and the upper confidence threshold. Correlations subsequent to that point are no
longer significant.

Since raw HR time series data were not stationary, we performed a detrending using
the polyfit function in the numpy package [30]. After performing the Dickey–Fuller test for
stationarity [31], we extracted the intersection value between ACF and upper confidence
interval for the subgroup of running sessions acquired with Garmin since, as already
mentioned in the Data Acquisition paragraph, Garmin provides heart rate HR time series at
equally spaced time intervals (∆t = 1 s). We selected 16 running sessions and we performed
a statistical analysis on the intersection values of the ACF with confidence intervals, which
gave us a time window of width (90 ± 26) s. ACF cutoff lags (τACF) are not correlated with
physical fitness (Supplementary Materials, Figure S2).

2.3.2. Feature Selection for the Clustering Algorithm

For each interval with width tcut = 90 s, we selected two features considering HR,
speed v, and altitude z according to the following criteria. These features are two terms
accounting for HR variation (∆HR) and external energy demand variation (∆E). The external
energy demand is described by the term E, resembling mechanical energy: it includes a
potential energy term (V = g(z − z0)) and a kinetic energy term (K = 1

2 v2). The two
energy terms are normalized separately in a range of [0, 1]. In this way, both terms have
comparable weights in the total energy, which can then vary in a range [0, 2].

Our aim is to cluster time intervals with an unsupervised method to classify them
according to the relationship between external energy demand variation and heart rate
variation. To express the variation in the signal and simultaneously guarantee optimal
clustering performances we defined the following features:

∆E = γ0(E) + γ1(E), ∆HR = γ0(HR) + γ1(HR) (2)

where γ0(x) = ( x −x0)
σ , γ1(x) = ∑n

i=1(xi− x )3

σ3 is the skewness index and it is a measure of
the asymmetry of the probability distribution of a real-valued random variable about its
average. In these expressions, σ is the standard deviation, x is the mean value of the feature
in the time interval, and x0 is the initial point of the time interval. We used these features
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since variations are subjected to noise and are not always linear. The first term expresses
the position of the mean of the points in the considered time interval with respect to the
starting point of the interval, and the second is a reinforcing term expressing the skewness
of the distribution. We provide below evidence that these features are able to discriminate
variations in the signals on noisy and non-linear data (paragraph Section 3.1). Note that ∆E
and ∆HR are mass independent since they are normalized to their standard deviation.

2.3.3. Clustering Analysis Algorithm

Once the values of the clustering features chosen were calculated for each interval of
width ∆t, cluster analysis was performed.

Clustering analysis is an unsupervised statistical method for processing data consisting
of the organization of data into groups called clusters, which has many applications as mar-
ket research [32], pattern recognition [33], data analysis [34], and image processing [35,36].
Clustering is measured using intracluster distance, the distance between the data points
inside the cluster, and intercluster distance, the distance between data points in different
clusters. A good clustering analysis minimizes the intracluster distance meaning that a clus-
ter is more homogeneous and maximizes the intercluster distance. We chose the k-means
algorithm [37,38] which tries iteratively to partition the dataset into K predefined distinct
non-overlapping subgroups. k-means represents each of the k clusters Cj by the mean
(or weighted average) cj of its points (centroid). The sum of distances between elements of
a set of points and its centroid expressed through an appropriate distance function is used
as the objective function. We employed the L2 norm-based objective function, i.e., the sum
of the squares of errors between the points and the corresponding centroids, which is equal
to the total intracluster variance:

E(C) =
k

∑
j=1

∑
xj∈Cj

∣∣∣∣xj − Cj
∣∣∣∣2. (3)

The k-means algorithm can be summarized in four main steps:

1. Specify the number of clusters k and initialize centroids C = {c1, c2 . . . ck} by randomly
selecting K data points for the centroids without replacement;

2. For each j ∈ {1, . . . , k}, set the cluster Cj to be the set of points in X that are closer to
cj than they are to cj for all i 6= j;

3. For each j ∈ {1, . . . , k}, set ci to be the center of mass of all points in Cj: cj =
1
|Ci | ∑

x∈Ci

x;

4. Repeat steps 2 and 3 until a stopping criterion is achieved (no reassignments with
tolerance < 10−5).

This version, known as Forgy’s algorithm [38], works with any Lp norm and it does
not depend on data ordering. A weakness of the k-means algorithm is that after a certain
time it will always converge due to a local minimum, and this is strictly connected to
the starting centroid choice. One method to help address this issue is the k-means ++
scheme [39,40] which initializes the centroids to be distant from each other, leading to
probably better results than random initialization.

Unsupervised clustering analysis was performed with Python 3.8.5 [41] and scikit-
learn 1.0.2 package [42].

2.3.4. Choosing the Best k Number

The optimal number of clusters was determined using the silhouette method [43].
The silhouette score is a very useful index for the quality of clustering analysis. It is a

measure of how similar an object is to its own cluster (cohesion) compared to other clusters
(separation). Given a cluster A and any object i in the data set, when cluster A contains
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other objects except i, we can compute the distance of object i with all other points in the
same cluster:

ai =
1

nA − 1 ∑
j∈A,j 6=i

dij, (4)

where nA is the number of points belonging to cluster A and dijis the mean distance between
data points i and j and in the cluster A.

Considering any cluster B which is different from A, we can compute:

bi =
1

nB
∑
j∈B

dij (5)

which gives the smallest mean distance of i to all points in any other cluster of which i is
not a member. With these two distances, we can define the silhouette value for the point i:

si =
bi − ai
{ai, bi}

(6)

which is set to be 0 when cluster A contains a single object. For every object i, the silhouette
value can vary in the range [−1, +1]. A silhouette value near +1 indicates that point i is far
away from the neighboring clusters. A value of 0 indicates that point i is on or very close to
the decision boundary between two neighboring clusters and negative values indicate that
point i might have been assigned to the wrong cluster.

The average of all silhouette values for each point i in the dataset returns the silhou-
ette score:

S =
N

∑
i=1

si. (7)

2.4. Recurrence Quantification Analysis (RQA)

Time series were analyzed in terms of Recurrence Quantification Analysis (RQA)
which can be defined as a graphical, statistical, and analytical tool [44,45] used by sev-
eral disciplines from physiology [46–51] to earth science [52–54] and economics [55–57].
The RQA-based method employed in the analysis of HR time series is widely explained
in earlier papers [49,50]. To perform RQA computation we used a software written in
Python [58]. The RQA input values used are embedding = 7; lag = 1; radius = 5; line = 4;
Euclidean distance.

2.5. Statistics

Differences among clusters were determined by conducting an ANOVA and Kruskal–
Wallis test for the data that were not normally distributed. Normal data distribution was
assessed by visual inspection, variance comparison and Shapiro–Wilk’s test. Subsequently,
we performed a Mann–Whitney–Wilcoxon post-hoc test for non-normal distributions and
Tukey post-hoc test for normal distributions both with Bonferroni adjustment for p-values.
Values of p < 0.05 were considered statistically significant.

3. Results
3.1. K-Means Clustering Reveals Four Dynamic Clusters

The aim of our clustering strategy was to find different dynamical regimes during
running sessions using different metabolic processes. Clustering parameters are rescaled
using as an offset the mean value of the distribution, and as scaling factor αs, where s is
the standard deviation of the distribution and α a tunable parameter. If the distributions
are almost Gaussians, α > 3 ensures that more than 99% of the values are considered. This
was verified by visual inspection and qq-plots. When there are significant deviations from
Gaussians the α factor is adjusted to include at least 99% of values by direct calculation.



Sensors 2022, 22, 3974 7 of 16

The result is a k-means classification with four clusters, that we will call dynamic clusters,
as shown in Figure 2.
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Figure 2. Unsupervised k-means clustering method. (a) Number of clusters vs. average silhouette
score for k-means clustering on sample data. The red dashed line indicates the maximum average
score for k = 4 clusters. (b) Visualization of clustered data for k = 4 in the ∆E vs. ∆HR plane.
The clusters have been named with the respective signs of ∆E and ∆HR variations: +/+ cluster
(yellow), −/− cluster (black), −/+ cluster (blue), and +/− cluster (green). The −/+, +/+, +/−,
and −/− in the figure represent the centroids of the corresponding cluster.

The silhouette plot in Figure 2a displays a local maximum at the chosen k = 4 (high-
lighted by the red dashed line) and has an average silhouette value of 0.54.

Figure 2b shows the clustered data. For simplicity, we indicate the clusters with the
respective signs of the variations: +/+ cluster (yellow), −/− cluster (black), −/+ clus-
ter (blue), and +/− cluster (green). In clusters +/+ (yellow) and −/− (black), ∆HR
and ∆E are directly proportional. The +/+ cluster is characterized by positive ∆HR
(mean ± sd = 1.16 ± 0.52) and positive ∆E (mean ± sd = 1.24 ± 0.46). The −/− clus-
ter is characterized by negative ∆HR (mean ± sd = −1.20 ± 0.58) and negative ∆E
(mean ± sd = −1.25 ± 0.52). Contrariwise, −/+ (blue) clusters and +/− (green) are linked
to inversely proportional regions for ∆HR and ∆E. The −/+ cluster is characterized by
positive ∆HR (mean ± sd = 1.13 ± 0.55) and negative ∆E (mean ± sd = −1.29 ± 0.40).
The +/− cluster is characterized by negative ∆HR (mean ± sd = −1.06 ± 0.60) and positive
∆E (mean ± sd = 1.30 ± 0.32). We can observe these results in Figure 3a,b. In Figure 3c
representative clustered time intervals from a single running session are shown. We can
observe that clustering identifies coherently the areas of growth and decreases in these
quantities: when ∆HR and ∆E are both positive, HR(t) and E(t) are increasing in the con-
sidered time interval; when ∆HR and ∆E are both negative, HR(t) and E(t) are decreasing
in the considered time interval. When they have different signs, the positive signal in-
creases whilst the negative decreases. To show that this is the case, we performed a linear
regression analysis on the same time windows of the clustering analysis. The signs of the
slopes are in good agreement with the signs of the variations in the features identified in
those specific time windows, except for a small fraction (between 10% and 20%) in which
strong non-linearity affects the goodness of linear fits (Figure S3). This happens when ∆E
and ∆HR are very close to zero and/or when HR(t) and E(t) undergo both increases and
decreases in the same time window. However, features reported in Equation (2) can capture
the general tendency of these unfitted data to increase or decrease: while γ0 is in these cases
characterized by a very small value, the skewness γ1 is still relevant and, with exception
of perfectly symmetrical data distributions, the sign of the variation takes into account
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the general tendency of the data to be above or below the average value (which is almost
zero). Figure S4 shows some representative time windows in which the clustering analysis
effectively identifies an increase or decrease in the features.
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Figure 3. (a) ∆HR boxplots for every cluster; (b) ∆E boxplots for every cluster; (c) heart rate (up) and
energy (down) in running fragments belonging to different clusters. The clustering analysis assigns
the belonging of these fragments to different clusters coherently with the sign of both ∆HR and ∆E.
p-value annotation legend: ns: 5.00 × 10−2 < p ≤ 1.00 × 100; **: 1.00 × 10−3 < p ≤ 1.00 × 10−2;
***: 1.00 × 10−4 < p ≤ 1.00 × 10−3; ****: p ≤ 1.00 × 10−4. Color legend: yellow: +/+ cluster; black:
−/− cluster; blue: −/+ cluster; green: +/− (see Figure 2 in Section 3.1).

3.2. Descriptions of the Dynamic Clusters

Table 1 shows general characteristics of statistical quantities in different clusters.
We chose a subgroup of clusters relative to non-overlapping windows to perform a sta-
tistical analysis on independent points. Clusters do not differ for average HR, average
speed, HR standard deviation, speed standard deviation, and altitude standard deviation.
The only significant quantities are then the clustering quantities.

Table 1. General characteristics of the clustered population. p-value annotation legend: ns:
5.00 × 10−2 < p ≤ 1.00 × 100; **: 1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3;
****: p ≤ 1.00 × 10−4.

Clusters Post-Hoc Comparison

Features
Black

+/+
(n = 172) 1

Blue
−/+

(n = 179) 1

Green
+/−

(n = 131) 1

Yellow
−/−

(n = 149) 1

p-Value2

(Kruskall) +/+ vs. −/+ vs. +/− vs.

−/+ +/− −/− +/− −/− −/−

HR mean
(bpm) 162.44 ± 8.33 163.33 ± 8.64 163.97 ± 8.89 161.95 ± 9.89 0.47

V mean
(km/h) 9.24 ± 0.81 9.21 ± 0.77 9.01 ± 0.68 9.05 ± 0.79 0.21

HR St.
Dev.

(bpm)
1.83 ± 1.05 1.99 ± 1.30 1.54 ± 0.72 2.14 ± 1.30 0.06

V St. Dev.
(km/h) 0.17 ± 0.18 0.21 ± 0.14 0.19 ± 0.15 0.16 ± 0.12 0.16

Z St. Dev.
(m) 1.22 ± 0.85 1.10 ± 0.79 1.26 ± 0.97 1.32 ± 0.88 0.43

∆E 1.24 ± 0.46 −1.29 ± 0.40 1.30 ± 0.32 −1.25 ± 0.52 <0.0001
(****)

<0.0001
(****) ns <0.0001

(****)
0.004
(**) ns <0.001

(***)

∆HR 1.16 ± 0.52 1.13 ± 0.55 −1.06 ± 0.60 −1.20 ± 0.58 <0.0001
(****) ns <0.0001

(****)
<0.0001

(****)
<0.0001

(****)
<0.0001

(****) ns

1 Mean ± SD or frequency (%); 2 Fisher’s exact test; Kruskal–Wallis rank sum test.
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3.3. Temporal Mapping of Clusters on Running Sessions

Figure 4 shows cluster frequencies in different running sessions. Bar plots highlight
an upward trend in the number of percentage occupancy of cluster −/+ (blue) and a
downward trend for cluster −/− (black) in four different running sessions acquired three
months apart from each other. The trends agree with the increasing value of the VO2max
parameter over time reported. Values of VO2max and percentage occupation number of
clusters −/+ and −/− in each running session are reported in Table 2.
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Figure 4. Bar plots with bar errors (red) of cluster frequencies in four different running sessions
acquired three months apart from each other. −/+ cluster (blue) and −/− cluster (black) cluster
frequencies seem, respectively, to increase and decrease with time.

Table 2. Cluster +/− and −/− cluster frequency and VO2max.

Date 24 December 2020 12 March 2021 18 June 2021 4 September 2021

VO2max (mL/kg·min) 31.96 34.59 36.7 38.23

% Cluster −/+ (blue) 0.16 ± 0.02 0.26 ± 0.02 0.30 ± 0.02 0.32 ± 0.02

% Cluster −/− (black) 0.29 ± 0.02 0.29 ± 0.02 0.27 ± 0.02 0.19 ± 0.02

3.4. Fraction of Cluster −/+ Is Positively Correlated with VO2max, While Fraction of Cluster −/−
Is Negatively Correlated

In addition to what has been said in the previous paragraph, we can observe in
Figure 5 the correlations between the cluster frequencies for each cluster in the different
running sessions and the VO2max value estimated with the Apple Watch in the same
sessions. Our analysis found a positive correlation between VO2max and cluster −/+
(r = 0.72, Figure 5b) and a negative correlation between VO2max and cluster−/− (r =−0.52,
Figure 5a), though the r value is slightly less. Projections of the clusters on representative
HR, speed, and altitude time series are shown in Figure 6a: as an example, a running
session acquired in June 2021 is reported. The distribution of the clusters along the curve
seems isotropic.
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Figure 5. VO2max vs. cluster frequencies for every cluster: (a) cluster −/−; (b) cluster −/+;
(c) cluster +/−; (d) cluster +/+. A positive correlation between VO2max and cluster −/+ and a
negative correlation between VO2max and cluster +/+ can be observed. Legend: Pearson correlation
coefficient (r), p-value (p). Color legend: yellow: +/+ cluster; black: −/− cluster; blue: −/+ cluster;
green: +/− (see Figure 2 in Section 3.1).

3.5. Temporal Distribution of the Heartbeat Dynamics and Correlation with Neuromuscular Fatigue

To deeply investigate the temporal distribution, we divided the time series into three
equal sections and calculated the percentage concentrations of the clusters in the individual
sections. To compare even slightly different runs in overall duration we normalized time
between 0 (start time) and 1 (end time). We called the three sections “start” (normalized
time interval 0–0.33), “middle” (normalized time interval 0.33–0.66), and “end” (normalized
time interval 0.66–1). Characteristic trends can be seen for the various clusters over time.
Results of this analysis are shown in Figure 6b–e.

Performing a repeated measure ANOVA with a Tukey HSD post-hoc comparison, we
can observe that the cluster frequencies of the−/− cluster in Figure 6b in the “start” section
is significantly higher than the “middle” section. A decreasing trend can be observed for
cluster −/+ in Figure 6c. The cluster frequencies in every section are all significantly
different.

In Figure 6d,e, frequencies for both +/− and +/+ clusters present an increasing trend
from the “start” section to the “end” section: cluster frequencies in the “end” section
are significantly higher than “start” and “middle” section. Values of the cluster frequen-
cies experience a saturation. We performed RQA analysis on the same sections of the
analysis just presented. An important parameter of RQA analysis is determinism (DET)
which is an indicator of the regularity or complexity of the system dynamics. In ear-
lier works, a correlation between high values of DET and fatigue during submaximal
incremental exercise has been found [49,50]. We found an increasing trend for DET in
every running session. Repeated measures ANOVA and post-hoc Tukey with Bonferroni
corrections revealed significant differences between the “end”-“middle” section and “end”-
“start” section. Figure 7a reports boxplots of determinism in the three different sections.
In Figure 7b–d an example of a recurrence plot in the three different sections is shown.
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The number of black points (called recurrence points) from the “start” section to “end”
section increases as the value of the determinism (values of ANOVA and Tukey tests are
reported in Supplementary Materials, Table S1).
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Figure 6. (a) Projection of the clusters along HR, speed, and altitude time series related to a run-
ning session acquired in June 2021. The normalized time between 0 and 1 is shown on the x axis.
The vertical red lines divide the time series into the three sections “start” (from 0 to 0.33), “middle”
(from 0.33 to 0.66), and “end” (from 0.66 to 1). Color legend: yellow: +/+ cluster; black: −/− cluster;
blue: −/+ cluster; green: +/− (see Figure 2 in Section 3.1.); cluster frequency boxplots in the three
different running sections for cluster −/− (b), cluster −/+ (c), cluster +/− (d), and cluster +/+
(e). p-value annotation legend: ns: 5.00 × 10−2 < p ≤ 1.00 × 100; *:1.00 × 10−2 < p ≤ 5.00 × 10−2;
**: 1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3.
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Figure 7. (a) RQA determinism boxplots in three different running sections; a representative RP
of HR time series during an exemplary running session. In “middle” (b) and “end” (c) sections a
larger number of black points (recurrence points) can be seen with respect to the “start” section
(d). p-value annotation legend: ns: 5.00 × 10−2 < p ≤ 1.00 × 100; *: 1.00 × 10−2 < p ≤ 5.00 × 10−2;
***: 1.00 × 10−4 < p ≤ 1.00 × 10−3.

4. Discussion and Conclusions

Several studies have found out that interval training (IT) produces improvements in
VO2max slightly greater than those typically reported with continuous training (CT) [21].
These training approaches are indeed aimed to abruptly change the external energy demand
∆E. In this respect, if during city running abrupt variations in velocity or height due to
the alternation of uphill and downhill slopes with flat areas occur, an improvement in
the cardiovascular systems in copying with these stresses can trigger heart rate dynamics
related to a VO2max increase. To investigate this point, in this manuscript we considered city
running sessions of comparable duration performed by a non-professional runner over a
year. We calculated ∆E and ∆HR features from the raw data extracted from the Apple Watch
in overlapping point by point time intervals of width ∆t = 90 s, because of the statistical
analysis on the intersection values of the ACF with confidence intervals on 16 different
running sessions (Figure 1). The heart rate ACF was decisive for determining the time
window in which heart rate values were still related to previous events. The clustering
analysis identified four different cluster dynamics of heartbeat in response to external
energy demand (+/+, +/−, −/+, −/−). In directly proportional clusters (+/+ and −/−)
an increase (decrease) in the external demand is correlated to an increase (decrease) in
the cardiovascular response to adapting to the cardiac output needed to fulfill increased
oxygen requirements. While these dynamics of the cardiovascular response are standard
and traceable also on longer timeframes, we found two peculiar dynamics grouped in
−/+ and +/− clusters which are not characterized by this straightforward relation. In the
−/+ cluster, ∆HR increases despite ∆E decreasing, i.e., cardiovascular response increases
despite the energetic demand of the environment decreasing (i.e., z and/or v decrease).
We observed a positive correlation with VO2max and the frequency of the −/+ cluster
(r = 0.72, Figure 5a). This increase is at the expense of the −/− cluster whose frequency
inversely correlates with VO2max (r = −0.52, Figure 5b). Moreover, investigation of the
temporal distribution of the clusters by classifying running sessions in three equal time
intervals (“start”, “middle”, and “end”) shows that the −/+ cluster percentage decreases
from the “start” to the “end”. Since the increase in DET measured through RQA analysis
(Figure 7), as described in previous publications, indicates the appearance of neuromuscular
fatigue [49,50], we hypothesize that −/+ dynamics are especially active when the organism
is not experiencing fatigue. Overall, we can hypothesize that the physiological processes
connected to a VO2max increase, such improvement in cellular metabolism of muscular cells
in the mechanisms characterizing oxygen uptake [59], and vascular modifications leading to
a better oxygen distribution, could change cellular responses to stimuli ultimately leading
to a hyper-stimulation of the sympathetic nervous system. This altered response lasts until
the emergence of neuromuscular fatigue occurs. This neuromuscular modification leading
to a new regime of sympathetic stimulation can therefore be connected with the increase
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in frequency of +/− cluster dynamics. The dynamics of the +/− cluster, in which ∆HR
decreases despite ∆E increasing, does not present a significant correlation with VO2max
variation, indicating that it is not related to the physiological improvement. This cluster
may instead be related to a delayed physiological response to an increase in the external
energy request and fatigue. The +/− fraction increase from “start” to “end” can be therefore
related to the fact that a delayed cardiovascular response increases with fatigue.

Overall, the combination of these results can be extremely valuable in providing
personalized exercise plans. Indeed, since it is possible to detect characteristic heartbeat
dynamics, the possibility to provide personalized feedback about the user’s fitness level
improvement is opened: improvements in cardiovascular fitness may be realized develop-
ing personalized exercise plans aimed at targeting a contextual increase in the −/+ fraction,
related to VO2max increase, at the expense of the +/− fraction, related to the emergence of
fatigue. These strategies can ultimately result in the reduction in cardiovascular risk and in
the risk of developing other devastating pathologies such as cancer. This study, by present-
ing a new method of analysis, is limited to a single subject, as the analysis is conceived as
person-centered by extracting features that would be hidden by the variability between
individuals. However, this innovative analysis is widely applicable and has implications
beyond the specific case. Other subjects, analyzed with the same method, could display
similar or differing features according to their medical history, age, sex, and fitness status.
Further research will generalize these results to improve the extraction of cardiovascular
fitness improvement features from wearable devices and the physiological interpretations
of the signals belonging to each cluster.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22113974/s1, Figure S1: Comparison analysis between Heart
Rate acquired by Apple Watch and Heart Rate acquired by Garmin. Linear regression highlights a
Pearson correlation coefficient R = 0.92 and p value << 0.0001 so we can say that the two signals are
highly correlated.; Figure S2: ACF time decay (τACF) values in 16 different running sessions acquired
by Garmin. τACF values have been obtained by calculating the intersection values of the ACF with
confidence intervals. An important result is the independence of the ACF time decay from training
level. The plot in Figure S2 does not show any trend meaning that τACF is not correlated with physical
fitness; Figure S3: Slope distributions obtained from the linear regression analysis relative to the four
clusters and to the two clustering features ∆E and ∆HR are reported. The red bars indicate the slope
values whose sign does not correspond to the sign of the variations in the clustering analysis, ranging
from 8% to 23% of the points; Figure S4: Energy plots representing cases in which the sign of the
variations in the features chosen in our clustering analysis (∆E and ∆HR, according to Equation (7))
and the sign of the slope calculated with the linear analysis are in agreement. The colors of the plots
are equal to the color used to indicate the respective clusters (black for −/− cluster, blue for −/+
cluster, green for +/− cluster, and yellow for +/+ cluster, see Figure 2). In the inserts are instead
reported energy plots representing representative cases in which the value of the variations in the
features chosen in our clustering analysis and the value of the slope calculated with the linear analysis
disagree. For example, in the inset plots in Figure S4a,b the energy variation (∆E) should be negative.
Linear regression, on the other hand, identifies a positive slope. Similarly, in Figure S4c,d ∆E should
be negative but the slopes are positive. This happens when there are particular configurations in
which the variation is very close to zero. In these cases, the slope becomes sensitive to noise. Instead,
in our features the value of γ0 is close to zero and therefore the skewness γ1 becomes important.
Therefore, in these cases, the sign of the variation takes into account the general tendency of the
data to be above or below the average value; Table S1: Values of repeated measures ANOVA and
Tukey HSD post hoc for both RQA and clustering analysis performed on the three temporal sections.
p-value annotation legend: ns: 5.00 × 10−2 < p ≤ 1.00 × 100; *: 1.00 × 10−2 < p ≤ 5.00 × 10−2;
**: 1.00 × 10−3 < p ≤ 1.00 × 10−2; ***: 1.00 × 10−4 < p ≤ 1.00 × 10−3; ****: p ≤ 1.00 × 10−4.
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