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Regularization may be used as an alternative to dimensionality reduction when the
number of variables in a model is much larger than the number of available observations.
In a recent study from our group regularized regression was employed to quantify
brain functional connectivity in a sample of healthy controls using a brain parcellation
and resting state fMRI images. Here regularization is applied to evaluate resting state
connectivity abnormalities at the voxel level in a sample of patients with schizophrenia.
Specifically, ridge regression is implemented with different degrees of regularization.
Results are compared to those delivered by the weighted global brain connectivity
method (GBC), which is based on averaged bivariate correlations and from the non-
redundant connectivity method (NRC), a dimensionality reduction approach that applies
supervised principal component regressions. Ridge regression is able to detect a larger
set of abnormally connected regions than both GBC and NRC methods, including
schizophrenia related connectivity reductions in fronto-medial, somatosensory and
occipital structures. Due to its multivariate nature, the proposed method is much more
sensitive to group abnormalities than the GBC, but it also outperforms the NRC, which is
multivariate too. Voxel based regularized regression is a simple and sensitive alternative
for quantifying brain functional connectivity.

Keywords: resting state fMRI, schizophrenia, functional connectivity, ridge regression, global brain connectivity

INTRODUCTION

Usage of regularization methods is obiquitous in estimating problems involving high
dimensionality data (Bühlmann and Van De Geer, 2011). In MRI, where voxels are the primary
unit of information representation, there may be from tens to hundreds of thousands of values
characterizing an imaged brain. However, comprehensive analyses on such large data entities have
been usually preceded by dimensionality reduction steps such as principal component analysis,
independent component analysis, and partial least squares (Calhoun et al., 2009; McIntosh and
Misic, 2013; Salvador et al., 2017) which drastically reduce the number of variables to be considered
in the following analyses.

Specifically, in the field of functional connectivity one may use this newly generated subset of low
dimensionality variables to fit linear models quantifying the connectivity between a single voxel
and the remaining gray matter voxels of the brain (Salvador et al., 2017). These models may be
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considered as truly multivariate models, in contrast to other voxel
level connectivity measures that are simple averages of bivariate
correlations between the target voxel and the rest of voxels in
the brain, as proposed by the weighted Global Brain Connectivity
(GBC) method (Cole et al., 2010).

As an alternative to dimensionality reduction methods,
regularization techniques allow fitting models directly to the
original data by applying constraints on the parameter estimates
of the fitted models (Hastie et al., 2009). This approach
was recently proposed by our group and applied to analyze
age and gender related connectivity patterns in a sample
of healthy controls scanned at rest (Salvador et al., 2020).
In this first study, mean time series from 246 regions of
interest (ROIs) from the Brainnetome atlas (Fan et al., 2016)
were used as input data for the regularized regressions
(ridge and random forest regressions) and results obtained
were compared to those delivered by the GBC, finding
distinct connectivity patterns between both approximations,
which were especially relevant in the age-related analyses
(Salvador et al., 2020).

Such methods may also be useful in improving understanding
of psychiatric disorders, such as schizophrenia. One of the
most accepted ethiological hypotheses for schizophrenia is
the dysconnection hypothesis (Weinberger, 1993; Friston and
Frith, 1995) which states that symptoms in patients with
schizophrenia arise from abnormalities in brain connectivity
at several levels (Friston et al., 2016). While there are many
MRI connectivity studies with significant results summarized
in recent meta-analyses (e.g., Zhou et al., 2015; Giraldo-
Chica and Woodward, 2017). the application and evaluation of
newly developed connectivity methods remains of high interest
in schizophrenia.

Here we apply one of the regularization methods used in
our previous study (ridge regression) to evaluate differences in
resting state connectivity between a sample of N = 74 patients
with schizophrenia and N = 74 healthy controls matched for
gender, age, and premorbid IQ. The association with clinical
severity is also evaluated in a larger sample of N = 148 patients.
Results are compared to those provided by the GBC method
and by the non-redundant connectivity method (NRC) (Salvador
et al., 2017), a dimensionality reduction approach that applies
supervised principal component regressions (Bair et al., 2006;
Hastie et al., 2009). We also extend the previous implementation
of ridge regression by directly considering voxels instead of ROIs
as inputs for the analyses.

MATERIALS AND METHODS

Regularized Brain Connectivity
Ideally, if scanning time was not a constraint and image
acquisition was carried out indefinitely, the number of recorded
time observations (N) would eventually exceed the number of
voxels (p) and a simple linear estimate of the association between
one voxel i and the remaining gray matter voxels in the brain
could be obtained by ordinary least squares (OLS). Under this
theoretical scenario, the multiple regression equation would give

the predicted time series for the target voxel (Ŷi)

Ŷi = β0 + β1Y1 + ...+ βi−1Yi−1 + βi+1Yi+1 + ...+ βpYp (1)

and a simple measure of functional connectivity for this voxel
would be provided by the multiple correlation coefficient

Cor
(
Ŷi, Yi

)
(2)

which quantifies the degree of similarity between the expected
(Ŷi) and observed (Yi) time series of voxel i, and which is given
by the square root of the coefficient of determination (i.e., R2, a
standard ouput from regression analyses).

However, in a real fMRI dataset the number of voxels is much
larger than the number of time points (N�p) and OLS is not
feasible. This limitation may be overcome by drastically reducing
the number of variables through dimensionality reduction or by
considering ROIs from a brain parcellation. Here, though, there
is also the alternative of using a regularization approach.

Specifically, regularization through ridge regression allows
obtaining Ŷi by setting a restriction on the parameter estimates
of Equation 1

p∑
i=1

β2
i < ct (3)

(where ct stands for constant value). Such restriction may be
restated as a constrained least-squares minimization regulated by
a Lagrange multiplier (λ ≥ 0)

N∑
j=1

(yij − (β0 + β1y1,j + ...+ βi−1yi−1,j + βi+1yi+1,j

+...+ βpyp,j))2
+ λ

p∑
i=1

β2
i (4)

where yi,1, . . ., yi,N stand for the individual components (time
points) of Yi.

Here, the selection of an adequate value for λ (the
regularization parameter) will be important in order to achieve
a good balance between bias and variance (i.e., to find a model
that avoids overfitting while not being not too constrained).
Furthermore, some aspects will have to be considered for the
validity of ridge regression in the framework of regularized brain
connectivity (RBC). Apart from the usual rescaling of variables
(time series) to unit variance, λ values will have to remain
fixed through all voxels and individuals, otherwise estimates of
Equation 2 will not be comparable. Unfortunately, due to the lack
of independence between observations in time series, the habitual
cross-validation methods will not be suitable. Since there is no
easy alternative to cross-validation in the current framework, we
have decided to report results using a wide range of λ values
(0.5, 1, 5, 10, 50, 100, and 500). All ridge regressions have been
carried out with functions contained in the glmnet R library
(Friedman et al., 2010).

To highlight the multivariate nature of the RBC, results
obtained have been compared to those provided by simple
averages of bivariate correlations. To do so, the weighted Global
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TABLE 1 | Summary of demographic and clinical data.

All patients (N = 148) Matched patients (N = 74) Matched controls (N = 74) Statistical tests and p-values

Gender 97M/51F 43M/31F 43M/31F χ2 = 0, pval = 1.00

Age 42.37 (10.97) 41.12 (11.83) 38.09 (13.65) t = –1.44, pval = 0.15

Premorbid IQ 21.15 (4.79) 23.14 (4.34) 23.12 (4.49) t = –0.02, pval = 0.98

Positive Syndrome 10.41 (4.61) 10.93 (5.15)

Negative Syndrome 14.02 (6.60) 12.86 (6.41)

Disorganization Syndrome 7.01 (2.43) 6.74 (2.27)

Absolute frequencies for gender, and mean and standard deviations for age, Premorbid IQ (as estimated by the Word Accentuation Test) and the three Liddle Syndromes
extracted from the PANSS scale are reported together with results from statistical tests comparing values for the matched samples of patients and healthy controls.

Brain Connectivity (GBC) method (Cole et al., 2010) has been
also applied to the resting state images. Specifically, averages of
absolute values of all bivariate correlations involving each specific
voxel have been calculated. Results from the RBC have been also
compared to connectivity estimates obtained through supervised
principal component regressions (Bair et al., 2006; Hastie et al.,
2009), a dimensionality reduction approach applied to quantify
brain connectivity from fMRI images (Salvador et al., 2017).

Participants
A sample of N = 148 patients with a diagnosis of schizophrenia
according to DSM-IV criteria (i.e. excluding patients with
schizoaffective and other schizophrenia related disorders) were
recruited from three hospitals from Germanes Hospitalàries
located in the Province of Barcelona, Spain (Hospital Bennito
Meni C.A.S.M., Hospital Sant Rafael and Hospital de la Mercè).
All patients but two were taking antipsychotic medication
(atypical N = 109, typical N = 9, both N = 24, unknown
N = 3, equivalents of Chlorpromazine: 508.82 mg (mean),
517.55 mg (SD). A second sample of N = 74 healthy controls
were recruited from non-medical hospital staff, their relatives and
acquaintances, plus independent sources in the community.

Controls reporting a history of mental illness and/or
treatment with psychotropic medication or with a psychotic
first-degree relative were not included. All individuals in both
samples were right handed, aged 18–65, with no history of
brain trauma or neurological disease, and not having shown
alcohol/substance abuse in the last 12 months. All subjects
gave written informed consent before participation and the
study procedures were approved by the Comité de Ética de la
Investigación de FIDMAG Hermanas Hospitalarias and adhered
to the Declaration of Helsinki.

Image Acquisition and Processing
Participants underwent a single MRI session in a 3.0 Tesla
Philips Ingenia machine located in the Hospital Sant Joan de Déu
(Barcelona, Spain) in which a resting state functional MRI (fMRI)
sequence and a T1 structural image for anatomical reference
were acquired. Parameters for the resting fMRI bold sequence
were: TR = 2,000 ms, TE = 30 ms, flip angle = 70◦, in-plane
resolution = 3.5 mm × 3.5 mm, FOV = 238 mm × 245 mm,
slice thickness = 3.5 mm, inter-slice gap = 0.75 mm, number
of volumes = 256. Slices (32 per volume) were acquired with
an interleaved order parallel to the AC-PC plane. The T1 image

was acquired using a Fast Field Echo (FFE) with TR = 9.90 ms;
TE = 4.60 ms; Flip angle = 8◦; voxel size = 1 mm × 1 mm;
slice thickness = 1 mm; slice number = 180; FOV = 240 mm).
fMRI preprocessing steps included movement correction, spike
scrubbing, regression of noise-independent components, non-
linear normalization to the Montreal Neurological Institute
space, regression of noise from ventricles and white matter, and
low-frequency filtering in the 0.1–0.02 Hz interval (Salvador
et al., 2017). Specifically, for the regression of noise-independent
components, individual independent component analyses were
previously run with Melodic, a module included in FSL (Smith
et al., 2004) and those components showing clear noise patterns
(most frequently edge effects due to movement) were selected.
Time series of the selected components were regressed out from
the time series of each voxel, and residuals were kept as the
denoised time series.

Prior to the calculation of the RBC, GBC, and NRC maps
a common gray matter mask was applied to the normalized
fMRI images. Then, fMRI volumes were resampled to a
4 mm × 4 mm × 4 mm voxel in order to reduce computational
costs. Finally, values from the individual RBC, GBC, and
NRC maps where Fisher transformed before carrying out
the group analyses.

Group Comparisons and Group Level
Regressions
A subsample of N = 74 patients matched for gender, age
and premorbid IQ to the sample of N = 74 controls was
selected from the original sample of patients before carrying
out group comparisons in RBC, GBC, and NRC. Premorbid
IQ was estimated with the Word Accentuation Test (Del
Ser et al., 1997). Positive and Negative Syndrome Scale
(PANSS) scores (Kay et al., 1987) were used to calculate
values of the three Liddle Syndromes (Positive, Negative,
and Disorganization) (Liddle, 1987) for all N = 148 patients,
and regressions between RBC, GBC, and NRC and clinical
severity as measured by the three Syndromes were performed
in this larger sample. In the regression analyses, age, gender,
type of antipsychotic medication (atypical and/or typical)
and dose of medication (equivalents of Chlorpromazine)
were considered as nuisance covariates. In all analyses
statistical significance was derived from permutation tests
carried out using the randomize function included in FSL
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FIGURE 1 | Brain areas with significant differences in RBC, GBC and NRC between patients and healthy controls. RBC results are given for the different
regularization values (λ values) applied in the ridge regressions. While for the RBC (red) and GBC (green), comparisons only included reductions in connectivity,
significant disorder related reductions (blue) and increases (red) were observed with the NRC (although the later were of much smaller extent).
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FIGURE 2 | Number of voxels with significant reductions in RBC connectivity in patients as a function of λ (red bars). Most extensive abnormalities were observed
with λ = 50. In all cases these were much larger than reductions observed with the GBC (green) and the NRC (blue).

(Smith et al., 2004) and applying the Threshold-Free Cluster
Enhancement (TFCE) method.

RESULTS

A summary of clinical and demographical data for the initial
sample of patients with schizophrenia and for the matched
samples of patients and healthy controls is provided in Table 1.

Group Analyses
When RBC maps from patients were compared to those
of healthy controls only areas of significant reductions in
connectivity were found. As shown in Figure 1, this pattern
was consistent through all regularization values. Tests performed
with λ = 50 produced the most extensive differences (Figure 2)
including bilateral connectivity reductions in the supplementary
motor area, paracentral lobule, precentral and postcentral gyri,
precuneus, dorsal and anterior cingulate, ventromedial and right
dorsolateral prefrontal cortex, cuneus, calcarine, lingual, lateral
occipital areas and parts of the cerebellum.

All λ values applied led to much more widespread patterns
of differences than those provided by both the GBC and NRC
methods, which were mainly restricted to connectivity reductions
in clusters of moderate size in the supplementary motor area /
paracentral lobule and postcentral gyrus (Figure 1). As shown
in Figure 2, though, reductions in the NRC were clearly larger
than those observed with the GBC. A cluster of increased
connectivity in patients was also observed in the right Rolandic
operculum (Figure 1).

Clinical Covariates
When RBC maps were correlated with scores of the three Liddle
Syndromes, a decreasing pattern of connectivity was observed for
the Negative Syndrome (Figure 3A). This negative association
involved a cluster located in the left occipital cortex (clusters
shown in Figure 3 are based on analyses using λ = 50, which led

to most extensive differences in the group comparison). Another
cluster of negative association with the Negative Syndrome was
observed for the GBC, which was also in the occipital cortex,
although with a more medial position. The GBC also showed
two clusters of negative association with the Disorganization
Syndrome, one of them located in the right fusiform area, and the
other in the right posterior insula (Figure 3B). The later was also
the site for the only significant cluster observed with the NRC,
which was of small size and was also negatively correlated with
the Disorganization Syndrome. No significant associations were
found between any of the three connectivity measures and the
Positive Syndrome.

DISCUSSION

As shown by the results, the RBC is much more sensitive
to group differences between patients with schizophrenia and
healthy controls than the GBC. The RBC and the GBC are
looking at different aspects of brain connectivity. While the GBC
only accounts for net differences in bivariate correlations, the
RBC is a truly multivariate measure and, consequently, it may
be much more sensitive to local changes in brain connectivity
(changes that may go unnoticed after the averaging operation
carried out by the GBC). Still, as shown by the associations
found with the Liddle syndromes, the GBC may convey relevant
information. Unexpectedly, the NRC, a method that is also
multivariate, did not perform as sensitively as the RBC in
the group comparisons, suggesting that regularization may be
a better option for quantifying functional connectivity than
dimensionality reduction. However, this statement may require
testing through exhaustive analyses.

Results found here are, to some extent, similar to those
reported in previous studies using similar methods. In a prior
study on patients with schizophrenia using the GBC (Cole et al.,
2011) the authors only found reduced frontal connectivity in the
primary (non seed based) analyses. A similar pattern of frontal
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FIGURE 3 | Significant associations between scores from the Liddle syndromes and connectivity levels. While (A) a negative relation was observed between the
Negative syndrome and both the RBC and GBC in occipital areas, (B) the Disorganization syndrome was negatively correlated with the GBC and the NRC, but the
latter only involved a very small cluster located in the right posterior insula. No association was found with positive syndrome scores.
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connectivity reduction was observed in another study using GBC
in schizophrenia (Yang et al., 2014) although this pattern was
reversed when the global brain signal was ignored in the pre-
processing phase [regrettably, pre-processing steps may have a
significant effect on resting state results (Caballero-Gaudes and
Reynolds, 2017)]. Using global Functional Connectivity Density
mapping (gFCD), an approach similar to GBC, based on the
number of correlations above a certain threshold connecting
each voxel (Tomasi and Volkow, 2010), Zhuo et al. (2017)
also reported a similar pattern of disconnections in patients
with schizophrenia, which included reductions in connectivity in
postcentral gyri, occipital cortex, temporo-occipital conjunction,
and inferior parietal lobule, although these authors also found
increases in subcortical structures. On the other hand, the only
study using NRC in patients with schizophrenia, which was
conducted at our institution in another sample of patients and
healthy controls, revealed a similar pattern of disconnection
in somatosensory and occipital regions (Salvador et al., 2017),
although a small cluster of increased connectivity was also
found in the Caudate and no significant differences were
reported for the GBC.

The dominance of reduced connectivity in these results agrees
with recent meta-analyses on schizophrenia (Dong et al., 2018;
Doucet et al., 2020). However, the reported abnormalities may
not be restricted to schizophrenia since, although with different
intensities, they have been also described in other psychotic
disorders such as the bipolar disorder or major depression
disorder (Xia et al., 2019). Still, they seem to be more prominent
in schizophrenia (Li et al., 2021).

As previously explained in the methods, some aspects should
be kept in mind in order to avoid biases and inconsistencies
when applying the RBC. Most importantly λ should be kept fixed
through all analyses. The selection of its value is also of relevance,
as a good trade-off between variance and bias should be achieved.
Unfortunately, there is no a priori rule for the selection of λ as
its optimal value will depend on many sample specific aspects
such as the number of voxels or the degree of autocorrelation
and length of time series. Even so, as shown by the stability of
results reported in our study using a wide range of λ values, it
may be concluded that λ selection, although relevant, it does not
require high accuracy.

In summary, in this study we prove that regularization, and
specifically ridge regression, may be a feasible alternative to
dimensionality reduction for multivariate functional connectivity
estimation, even if applied at the voxel level. The regularized
brain connectivity approach is able to detect a much extended
set of abnormally connected regions than those detected by
the global brain connectivity and the non-redundant brain
connectivity methods when it is applied to a sample of patients
with schizophrenia.
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