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Abstract

Analysis has been conducted to present the generalized magnetic field effects on the flow of

a Burgers’ nanofluid over an inclined wall. Mathematical modelling for hydro-magnetics

reveals that the term “sB2
0
u=r” is for the Newtonian model whereas the generalized magnetic

field term (as mentioned in Eq 4) is for the Burgers’ model which is incorporated in the cur-

rent analysis to get the real insight of the problem for hydro-magnetics. Brownian motion

and thermophoresis phenomenon are presented to analyze the nanofluidics for the non-

Newtonian fluid. Mathematical analysis is completed in the presence of non-uniform heat

generation/absorption. The constructed set of partial differential system is converted into

coupled nonlinear ordinary differential system by employing the suitable transformations.

Homotopy approach is employed to construct the analytical solutions which are shown

graphically for sundr5y parameters including Deborah numbers, magnetic field, thermophor-

esis, Brownian motion and non-uniform heat generation/absorption. A comparative study is

also presented showing the comparison of present results with an already published data.

Introduction

Analysis of non-Newtonian fluids is an active area of research for the last few years. Many

industrial fluids including certain oils, shampoos, paints, cosmetic products, polymers, colloi-

dal fluids, suspension fluids, ice cream etc. are characterize as the non-Newtonian fluids. The

diverse rheological properties of the non-Newtonian fluids results into division namely the

rate type (includes the Maxwell model, Jeffery model, Oldroyd model and the Burgers model

etc), the differential type (includes the second grade model, third grade model etc) and the

integral type (includes Sisko model etc.). The Burgers’ fluid model has been proposed to pre-

dict the properties of relaxation and retardation effects simultaneously. Due to the complexi-

ties in terms mathematical modelling of the Burgers’ fluid model, very little has been reported

for the Burgers’ model. For-instance Jamil and Fetecau [1] computed some exact solutions for

rotating flows of a generalized Burgers’ fluid in cylindrical domains. Authors have considered

the fluid flow between two co-axial cylinders and employed the Laplace and Hankel transforms

for the solutions procedure. A note on the longitudinal oscillations of a generalized Burgers

fluid in cylindrical domains has been presented by Fetecau et al. [2]. Authors have presented
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the effects of longitudinal oscillations and established Fourier-Bessel series. An exact solution

of start-up flow for the ractional generalized Burgers’ fluid in a porous half space is presented

by Xue et al. [3]. They have utilized the modified Darcy’s law for the mathematical modelling

in a porous medium and employed Fourier sine and fractional Laplace transform to compute

the exact solution of the velocity distribution. Khan et al. [4] computed the exact solutions for

some oscillating motions of a fractional Burgers’ fluid. Authors have incorporated fractional

calculus approach in the constitutive relationship model. The expressions for the velocity field

and the resulting shear stress that have been presented. Similar solutions for generalized Old-

royd-B, Maxwell and second grade fluids can be computed as a limiting cases. Hydromagnetic

flow and heat transfer of a generalized Burgers’ fluid due to an exponentially accelerating plate

with radiation effects has been analyzed by Liu et al. [5]. The authors have presented the flow

over an exponentially accelerating wall. Exact solutions for the velocity and temperature field

are presented in integral and series form in terms of the GG functions. Maryam et al. [6] pre-

sented the peristaltic flow of Burgers’ fluid with complaint walls and heat transfer. Authors

have studied a theoretical analysis to investigate the peristaltic flow and heat transfer character-

istics of Burgers’ fluid in a channel governed by the propagation of sinusoidal waves. Various

plots are presented to discuss the considered rheology. Awais et al. [7] investigated the heat

transfer in flow of Burgers’ fluid during melting process. The two-dimensional flow equations

are modeled and then simplified by employing boundary layer analysis. The solution to the

arising nonlinear problem is computed and interpretation of various emerging parameters is

given through graphs.

In the recent years, particles of nanometre-size (normally less than 100 nm proposed by

Choi [8]) termed as nanofluid are utilized for dispersing in base liquids in order to enhance

the thermal conductivity even at low solid concentrations. They are also very stable and have

no additional problems such as erosion, additional pressure drop and the low volume fraction

etc. The enhanced thermal behavior of nanofluids could provide a basis for an enormous inno-

vation for heat transfer intensification, which is major importance to a number of industrial

sectors including transportation, nuclear reactors, electronics as well as biomedicine and food.

In view of these fact various recent researchers have made several investigation to study the

nanofluid rheology in Newtonian and non-Newtonian fluids. For-instance Khan and Pop [9]

presented the boundary-layer flow of a nanofluid past a stretching sheet. Authors have pre-

sented a similarity solution is presented which depends on the Prandtl number, Lewis number,

Brownian motion number and thermophoresis number. Makinde and Aziz [10] studied the

boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condi-

tions. They have extended the work of Ref. [9] for convective boundaries which are considered

to be more generalized boundary conditions. Numerical study of the flow and heat transfer of

a nanofluid over a stretching sheet has been analyzed by Rana and Bhargava [11]. They have

analyzed the flow over a nonlinearly stretching surface and solved the considered problem

using finite element method (FEM) with a local non-similar transformation. Hamad and Fer-

dows [12] presented the similarity solution of boundary layer stagnation-point flow towards a

heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and

suction/blowing. They have utilized the Lie group theory to analyze the outcomes of the prob-

lem. Heat generation/absorption effects in a boundary layer stretched flow of Maxwell nano-

fluid has been analyzed by Awais et al. [13]. Authors have presented analytic and numeric

solutions and presented several plots and numerical results to give the exact insight of the con-

sidered problem.

The purpose of the present analysis is to investigate further in the direction of nano-

fluids’ rheology. Therefore we have studied the Burgers’ nanofluid flow. Generalized

magnetic field terms is presented for the over an inclined wall with non-uniform heat
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generation/absorption and gravitational effects. Mathematical modelling has been per-

formed in the presence of applied magnetic field. It is noted that magnetic field term

(which appear in the momentum equation) for rate type fluids is quite different then of

differential type fluids. The governing nonlinear partial differential system is converted

into system of coupled ordinary differential equations using appropriate transformations.

The resulting equations are solved analytically by using HAM [14–21] and the obtained

results are presented graphically. A comparative study with an already published data is

presented showing the nice agreement in derived results. Some new published papers can

be found in [22–24].

Mathematical Formulation

We considered the boundary layer flow of an incompressible Burgers’ nanofluid over an

inclined wall (makes an angle α with the vertical direction). Heat and mass transfer effects

are considered combined with non-uniform internal heat generation/absorption phenome-

non. Magnetic field B = {0,B0,0} is applied along the transverse direction. A conducting wall

undergoes stretching phenomenon with velocity Us(x) = cx, where c is a positive dimen-

sional constant. The fundamental laws representing the mass and momentum conservation

yield

divV ¼ 0; ð1Þ

r
DV
Dt
¼ � rpþ div S; ð2Þ

where an extra stress tensor in Burgers’ fluid model satisfy

Sþ l1

DS
Dt
þ l2

D2S
Dt2
¼ mðA1 þ l3

DA1

Dt
Þ: ð3Þ

In above equations (λ1, λ2) are the relaxation effects and λ3 is the retardation effect. It is

pointed out here that for λ2 = 0, the results for an Oldroyd-B fluid model can be deduced and

for λ2 = λ3 = 0, one can achieve the results for an Maxwell fluid model. Moreover the results

for the Newtonian fluid model can be obtained by setting λ1 = λ2 = λ3 = 0. Making use of Eq 3

in Eq 2 we get

u
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Moreover the energy and mass fraction equations are

u
@T
@x
þ v

@T
@y
¼ am

@2T
@y2
þ t DB

@C
@y

@T
@y
þ

DT

T1

@T
@y

� �2
( )

þ
�q

rcp
; ð5Þ

u
@C
@x
þ v

@C
@y
¼ DB

@2C
@y2
þ

DT

T1

@2T
@y2

: ð6Þ

Note that in above differential system u and v are the velocity components, ρ is the density

of the fluid, σ is the electrical conductivity, g0 is the acceleration due to gravity, α is the inclina-

tion of the wall, T is the temperature of the fluid, αm is the thermal diffusivity of ordinary fluid,

DB is the Brownian motion coefficient, DT is the thermophoresis effect and �q is the non-uni-

form heat generated �q > 0ð Þ or absorbed �q < 0ð Þ per unit volume respectively. The mathe-

matical expression for non-uniform heat source/sink is given by

�q ¼
kus

xn
½A Ts � T1ð Þf 0 þ B T � T1ð Þ�; ð7Þ

whereas the wall stretching velocity Us = cx, the wall surface temperature Ts ¼ T1 þ Tref
cx2

2n

and the concentration at the wall Cs ¼ C1 þ Cref
cx2

2n
, where Tref is the constant reference tem-

perature and Cref is the constant value of concentration at the wall respectively.

The associated wall conditions are given by

u ¼ Us; v ¼ 0; T ¼ Ts; C ¼ Cs; at y ¼ 0;

u ¼ 0; v ¼ 0; T ! T1; C ! C1; as y!1:
ð8Þ

Making use of the following transformations

Z ¼

ffiffiffi
c
n

r

y; u ¼ cxf 0ðZÞ; v ¼ �
ffiffiffiffi
cn
p

f ðZÞ; yðZÞ ¼
T � T1
Ts � T1

; �ðZÞ ¼
C � C1
Cs � C1

; ð9Þ

Eq 1 is automatically satisfied and Eqs 4–6 yield

f ‴ � f 02 þ ff @ þ b1ð2ff 0f @ � f 2f ‴Þ þ b2ðf 3f 0000 � 2ff 02f @ � 3f 2f 002Þ

þb3ðf 002 � ff 0000Þ � M2ðf 0 � b1ff @ þ b2f 2f ‴Þ þ Gycosa ¼ 0;
ð10Þ

y
@
þ Pr f y0 � 2f 0yþ Nb�

0
y
0
þ Nt y

0ð Þ
2

� �

þ Af 0 þ By ¼ 0; ð11Þ

φ@ þ Sc f�0 � 2f 0�
� �

þ
Nt

Nb
y

@
¼ 0; ð12Þ

along with the wall conditions

f ðZÞ ¼ 0; f 0ðZÞ ¼ 1; yðZÞ ¼ 1; �ðZÞ ¼ 1 at Z ¼ 0;

f 0ðZÞ ¼ 0; yðZÞ ¼ 0; �ðZÞ ¼ 0 as Z!1;
ð13Þ

where β1, β2 and β3 are the Deborah numbers, Pr is the Prandtl number, M is the Hartman

number, Nb is the Brownian motion phenomenon, Nt is the thermophoresis effect, Sc is the

Schmidt number and G is the mixed convection parameter. It is noted that G> 0 corresponds

to assisting flow whereas G< 0 represents opposing flow situation. For G = 0 the results of

forced convection phenomenon can be reproduced. Moreover A and B are the dimensionless
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coefficients of space and temperature dependent heat generation/absorption effects respec-

tively. Note that for internal heat generation A> 0 and B> 0 whereas for internal heat absorp-

tion we have A< 0 and B< 0. These quantities are defined as

b1 ¼ cl1; b2 ¼ c2l2; b3 ¼ cl3; Sc ¼
n

DB
; M2 ¼

sB2
0

rc
;Nb ¼

tDBðCs � C1Þ
n

G ¼
Grx
Re2

x

; Grx ¼
g0bTðTs � T1Þx3

n2
; Rex ¼

Usx
n
;Nt ¼

tDTðTs � T1Þ
nT1

; Pr ¼
n

am
;

ð14Þ

The local Nusselt (Nu) and Sherwood (Sh) numbers have the following definitions

Nu ¼
xqs

k Ts � T1ð Þ
; Sh ¼

xjs
DB Cs � C1ð Þ

;

qs ¼ � k
@T
@y

� �

y¼0

; js ¼ � DB
@C
@y

� �

y¼0

ð15Þ

in which qs and js represent the surface heat flux and surface mass flux respectively. In dimen-

sionless form

Nu=Re1=2

x ¼ � y
0
ð0Þ; Sh=Re1=2

x ¼ � �
0
ð0Þ: ð16Þ

Solution Methodology

In order to proceed for the solution we select the initial guesses for the velocity, temperature

and mass fraction fields given by

f0ðZÞ ¼ 1 � expð� ZÞ; y0ðZÞ ¼ expð� ZÞ; �0ðZÞ ¼ expð� ZÞ; ð17Þ

and the auxiliary linear operators as

Lf ¼
d3f
dZ3
�

df
dZ
; Ly ¼

d2y

dZ2
� y; L� ¼

d2�

dZ2
� �; ð18Þ

The zeroth order deformation problems are constructed by the following expressions

ð1 � pÞLf ½f̂ ðZ; pÞ � f0ðZÞ� ¼ pℏfNf ½f̂ ðZ; pÞ; ŷðZ; pÞ�; ð19Þ

ð1 � pÞLy½ŷðZ; pÞ � y0ðZÞ� ¼ pℏyNy½f̂ ðZ; pÞ; φ̂ Z; pð Þ; ŷðZ; pÞ�; ð20Þ

1 � pð ÞL�½�̂ Z; pð Þ � �0 Zð Þ� ¼ pℏ�N�½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ Z; pð Þ�; ð21Þ

with

f̂ ðZ; pÞ
�
�
�
�

Z¼0

¼ 0;
@ f̂ ðZ; pÞ
@Z

�
�
�
�

Z¼0

¼ 1;
@ f̂ ðZ; pÞ
@Z

�
�
�
�

Z¼1

¼ 0;

ŷðZ; pÞ
�
�
�
�

Z¼0

¼ 1; ŷðZ; pÞ
�
�
�
�

Z¼1

¼ 0;

�̂ðZ; pÞ
�
�
�
�

Z¼0

¼ 1; �̂ðZ; pÞ
�
�
�
�

Z¼1

¼ 0;

ð22Þ

where p 2 [0,1] is the embedding parameter and ℏf, ℏθ and ℏϕ are the non-zero auxiliary
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parameters. Moreover the non-linear operators Nf, Nθ and Nϕ are given by

Nf ½f̂ ðZ; pÞ; ŷðZ; pÞ� ¼
@3 f̂ ðZ; pÞ
@Z3

þ f̂ ðZ; pÞ
@2 f̂ ðZ; pÞ
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�
@ f̂ ðZ; pÞ
@Z
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þb1 2f̂ ðZ; pÞ
@ f̂ ðZ; pÞ
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@2 f̂ ðZ; pÞ
@Z2

8
>>>>><

>>>>>:
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8
<

:

9
=

;
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@2 f̂ ðZ; pÞ
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<

:

9
=

;
;

ð23Þ

Ny½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ� ¼
@2ŷðZ; pÞ
@Z2

þ Pr f̂ ðZ; pÞ
@ŷðZ; pÞ
@Z

� 2ŷðZ; pÞ
@ f̂ ðZ; pÞ
@Z

 !

þPr Nt
@2ŷðZ; pÞ
@Z2

þ Nb
@�̂ðZ; pÞ
@Z

@ŷðZ; pÞ
@Z

 !

þ A
@ f̂ ðZ; pÞ
@Z

þ BŷðZ; pÞ;

ð24Þ

N�½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ� ¼
@2�̂ðZ; pÞ
@Z2

þ Sc
f̂ ðZ; pÞ

@�̂ðZ; pÞ
@Z

� 2�̂ðZ; pÞ
@ f̂ ðZ; pÞ
@Z

0

B
B
B
B
@

1

C
C
C
C
A
þ
Nb

Nt

@2ŷðZ; pÞ
@Z2

: ð25Þ

It is noted that for p = 0 and p = 1 we have

f̂ ðZ; 0Þ ¼ f0ðZÞ; f̂ ðZ; 1Þ ¼ f ðZÞ; ŷðZ; 0Þ ¼ y0ðZÞ; ŷðZ; 1Þ ¼ yðZÞ;

�̂ðZ; 0Þ ¼ �0ðZÞ; �̂ðZ; 1Þ ¼ �ðZÞ;
ð26Þ

and making use of the Taylors’ series expansion we get

f̂ ðZ; pÞ ¼ f0ðZÞ þ
X1

m¼1

fmðZÞp
m; ð27Þ

ŷðZ; pÞ ¼ y0ðZÞ þ
X1

m¼1

ymðZÞp
m; ð28Þ

�̂ðZ; pÞ ¼ �0ðZÞ þ
X1

m¼1

�mðZÞp
m; ð29Þ
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where

fmðZÞ ¼
1

m!

@mf ðZ; pÞ
@pm

�
�
�
�
p¼0

; ymðZÞ ¼
1

m!

@myðZ; pÞ
@pm

�
�
�
�
p¼0

; �mðZÞ ¼
1

m!

@m�ðZ; pÞ
@pm

�
�
�
�
p¼0

: ð30Þ

The corresponding deformation problems at the mth order are

Lf ½fm Zð Þ � wmfm� 1 Zð Þ� ¼ ℏfR
f
m Zð Þ; ð31Þ

Ly½ym Zð Þ � wmym� 1 Zð Þ� ¼ ℏyR
y

m Zð Þ; ð32Þ

L�½�m Zð Þ � wm�m� 1 Zð Þ� ¼ ℏ�R�

m Zð Þ; ð33Þ

and

fmð0Þ ¼ 0; f 0mð0Þ ¼ 0; f 0mð1Þ ¼ 0; ymð0Þ ¼ 0; ymð1Þ ¼ 0;

�mð0Þ ¼ 0; �mð1Þ ¼ 0:
ð34Þ

Moreover

Rf
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k þ
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f 0000k
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� M2 f 0m� 1
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þ b2 fm� 1� k

Xk

l¼0

fk� lf
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l

 !8
<

:

9
=

;
þ Gym� 1cosa;

ð35Þ

Ry

m Zð Þ ¼ y
00

m� 1
þ Pr

Xm� 1

k¼0

fm� 1� ky
0

k � f 0m� 1� kyk

þNb�m� 1� kyk þ Nt

Xm� 1

k¼0

y
0

m� 1� ky
0

k

2

6
6
4

3

7
7
5þ Af 0m� 1

þ Bym� 1
; ð36Þ

R�

m Zð Þ ¼ �
00

m� 1
þ Sc

Xm� 1

k¼0

½fm� 1� k�
0

k � f 0m� 1� k�k� þ
Nb

Nt
y

@

m� 1
; ð37Þ

and

wm ¼

(
0; m � 1;

1; m > 1:
: ð38Þ

Convergence Analysis

It is noted that the nonlinear Eqs 19–21 contain the supporting parameters ℏf, ℏθ and ℏϕ. These

non-zero auxiliary parameters are very much useful in adjusting and controlling the conver-

gence of the obtained solutions. In order to find the suitable domains we have plotted ℏf-, ℏθ-
and ℏϕ-curves at 15th order of approximation in the Figs 1–3 by selecting β1 = 0.2 = β2 = β3,

M = 1.0 = Pr = Sc, Nb = 1.0, Nt = 1.0, A = 0.1 = B, G = 0.1 and α = π/4. These plots show that the

admissible ranges are −1.2� ℏf� −0.2, −1.15� ℏθ� −0.25 and −1.15� ℏϕ� −0.25. Table 1 is
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prepared for the convergence of the series solutions. It is found that the convergence is achieved

at 15th order of approximations.

Results and Discussion

The aim of this section is to present the rheological and physical effects on the flow field. For

this purpose we have prepared Figs 4–17. Figs 4 and 5 present the stream lines for the Newto-

nian and Burgers’ fluid models. It is observed that streamlines for Burgers’ fluid model show

different rheology when compared with the streamlines for Newtonian fluid. The different is

Fig 1. ℏf -curve.

doi:10.1371/journal.pone.0168923.g001

Fig 2. ℏθ-curve.

doi:10.1371/journal.pone.0168923.g002
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due to the addition relaxation and retardation effects which are present in the stress tensor for

the Burgers’ fluid. Fig 6 presents a comparative study between Newtonian and Burgers’ fluid

models. It is observed that velocity profile and momentum boundary layer are lessor for the

Burgers’ fluid when compared with the Newtonian fluid model. From physical point of view

we can say that addition rheological effects namely the Deborah numbers (β1, β2 and β3) are

non-zero for Burgers’ fluid model. Nonzero values of β1, β2 and β3 correspond to viscous as

well as elastic effects which retards the flow and hence the boundary layer will be thinner

which is noted in Fig 6. The influence of magnetic field M on the flow field are presented

in the Fig 7. It is observed that magnetic field retards the flow and thinner the momentum

boundary layer. Physically it is noted that when any fluid is subjected to a magnetic field then

the apparent viscosity increases. The outcome of which is that the fluid’s ability to transmit

force can be controlled with the help of an electromagnet which gives rise to its many possible

control-based applications including MHD power generation, electromagnetic casting of met-

als, MHD ion propulsion etc. Fig 8 presents the effects of inclination angle on the velocity pro-

file. It is noted that angle α varies from 0−π/2. Angle α = 0 represents the case of vertical wall

whereas α = π/2 represents the horizontal wall. We noticed that when α varies from 0−π/2 the

Table 1. Convergence of the derived solutions.

Order Item 1 Item 2 Item 3

1 1.332251 0.906666 1.210000

2 1.333996 0.799134 1.201590

5 1.334381 0.789481 1.201401

10 1.334167 0.779619 1.201361

15 1.334161 0.779670 1.201322

20 1.334161 0.779670 1.201322

30 1.334161 0.779670 1.201322

40 1.334161 0.779670 1.201322

Item 1: −f@(0), Item 2: −θ0(0), Item 3: −ϕ0(0)

doi:10.1371/journal.pone.0168923.t001

Fig 3. ℏϕ-curve.

doi:10.1371/journal.pone.0168923.g003
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strength of buoyancy force decrease which results into decrease in velocity profile and momen-

tum boundary layer. Fig 9 presents the influence of convection parameter G on the flow field.

It is observed that velocity field is an increasing function of G. It is because of the fact that

the larger values of G induces a strong buoyancy force which enhances the fluid velocity and

increases the momentum boundary layer. The combined effects of internal heat generation/

absorption parameters A and B on the temperature profile are presented in the Fig 10. It is

noted that the temperature profile θ(η) decreases for internal heat generation/absorption phe-

nomenon (i.e. A< 0 and B< 0) whereas for internal heat generation/absorption effects (i.e.

A> 0 and B> 0) the temperature profile θ(η) increases. Fig 11 presents the effects of convec-

tion parameters G on the temperature profile θ(η). It is noted that θ(η) is an increasing func-

tion of G. Fig 12 presents the combined effects of thermophoresis and the Brwonian motion

of the temperature profile θ(η). It is noted that θ(η) increases with an increase in thermophor-

esis and the Brownian motion. From physical point of view we can say that an increase in the

strength of Brownian motion and thermophoresis cause an effective movement of the nano-

particles which enhances the thermal conductivity of the fluid which results into enhancement

of the fluid temperature. Figs 13 and 14 portray the effects of non-uniform heat source/sink

Fig 4. Streamlines for Newtonian model.

doi:10.1371/journal.pone.0168923.g004
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and convection phenomenon on the concentration profile ϕ(η). Both graphs show that the

obtained results are quite opposite when compared with the effects on temperature profile as

presented in Figs 9 and 10. The effects of nanofluid parameter Nt on the concentration profile

are elucidated in the Fig 15. It is seen that the concentration profile ϕ(η) and the concentration

boundary layer are increasing functions of Nt. Figs 16 and 17 present the influence of thermo-

phoresis and Brownian motion on the local Nusselt and Sherwood numbers. It is noted that

the obtained results in both plots are qualitatively similar.

Table 2 presents a comparative study of the obtained results with those of Ref. [25]. It is noted

that the present results in a limiting case are in a nice agreement with an already (Ref. [25]).

Concluding Remarks

In this paper, an analysis is presented for the two-dimensional boundary layer flow of Burgers’

nanofluid over an inclined wall with non-uniform heat source/sink. The important observa-

tions are as follows:

Fig 5. Streamlines for Burgers’ model.

doi:10.1371/journal.pone.0168923.g005
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• Streamlines for Newtonian and Burger model are prepared which show the difference of

rheology.

• Velocity field and momentum boundary layer are lessor for Burger model due to extra visco-

elastic effects.

Fig 6. Comparison of Newtonian and Burger’s models.

doi:10.1371/journal.pone.0168923.g006

Fig 7. Influence of magnetic field on velocity profile.

doi:10.1371/journal.pone.0168923.g007
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• Larger values of magnetic field retards the fluid flow.

• Non-uniform heat generation and absorption phenomenon has opposite effects respectively.

• Thermophoresis and Brownian motion enhance the molecular movement which increases

the fluids’ temperature and concentration.

• Results for assisting and opposing flow situations are quite opposite.

Fig 8. Influence of ϕ on velocity profile.

doi:10.1371/journal.pone.0168923.g008

Fig 9. Influence of convection on velocity.

doi:10.1371/journal.pone.0168923.g009
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Fig 10. Influence of non-uniform heat generation/absorption on temperature.

doi:10.1371/journal.pone.0168923.g010

Fig 11. Influence of convection parameter on temperature.

doi:10.1371/journal.pone.0168923.g011
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Fig 12. Influence of thermophoresis and Brownian motion on temperature.

doi:10.1371/journal.pone.0168923.g012

Fig 13. Influence of non-uniform heat generation/absorption on concentration.

doi:10.1371/journal.pone.0168923.g013
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Fig 14. Influence of convection parameter on concentration.

doi:10.1371/journal.pone.0168923.g014

Fig 15. Influence of thermophoresis on concentration.

doi:10.1371/journal.pone.0168923.g015
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Fig 16. Influence of thermophoresis and Brownian motion on Nusselt number.

doi:10.1371/journal.pone.0168923.g016

Fig 17. Influence of thermophoresis and Brownian motion on Sherwood number.

doi:10.1371/journal.pone.0168923.g017
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