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Abstract

The test-negative design (TND) has become a standard approach to evaluate vac-
cine effectiveness against the risk of acquiring infectious diseases in real-world settings,
such as Influenza, Rotavirus, Dengue fever, and more recently COVID-19. In a TND
study, individuals who experience symptoms and seek care are recruited and tested
for the infectious disease which defines cases and controls. Despite TND’s poten-
tial to reduce unobserved differences in healthcare seeking behavior (HSB) between
vaccinated and unvaccinated subjects, it remains subject to various potential biases.
First, residual confounding bias may remain due to unobserved HSB, occupation as
healthcare worker, or previous infection history. Second, because selection into the
TND sample is a common consequence of infection and HSB, collider stratification
bias may exist when conditioning the analysis on testing, which further induces con-
founding by latent HSB. In this paper, we present a novel approach to identify and
estimate vaccine effectiveness in the target population by carefully leveraging a pair of
negative control exposure and outcome variables to account for potential hidden bias
in TND studies. We illustrate our proposed method with extensive simulation and an
application to study COVID-19 vaccine effectiveness using data from the University
of Michigan Health System.
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1 Introduction

1.1 Text-negative design studies of vaccine effectiveness

The test-negative design (TND) has become a standard approach to evaluate real-world

vaccine effectiveness (VE) against the risk of acquiring infections diseases (Chung et al.,

2020; Flannery et al., 2019; Jackson et al., 2017; Rolfes et al., 2019; Tenforde et al., 2021).

In an outpatient Influenza VE test-negative design, for example, symptomatic individuals

seeking care and meeting eligibility criteria are enrolled and their Influenza virus infection

status is subsequently confirmed via a laboratory test. VE against flu infection is then

measured by comparing the prevalence of vaccination between the test-positive “cases”

and test-negative “controls” (Jackson and Nelson, 2013; Jackson et al., 2017). Besides In-

fluenza, the TND and its variants have also been applied to study VE against pneumococcal

disease (Broome, Facklam, and Fraser, 1980), dengue (Anders et al., 2018; Utarini et al.,

2021), rotavirus (Boom et al., 2010; Schwartz et al., 2017), and other infectious diseases.

Recently, the TND has increasingly been used in post-licensure evaluation of COVID-19

VE (Dagan et al., 2021; Dean, Hogan, and Schnitzer, 2021; Hitchings et al., 2021; Olson

et al., 2022; Patel, Jackson, and Ferdinands, 2020; Thompson et al., 2021).

Test-negative designs are believed to reduce unmeasured confounding bias due to health-

care seeking behavior (HSB), whereby care seekers are more likely to be vaccinated, have

healthier behaviors that reduces the risk of infection, and get tested when ill (Jackson et

al., 2006; Shrank, Patrick, and Brookhart, 2011). By restricting analysis to care seekers

who are tested for the infection in view (e.g. Influenza or COVID-19), the vaccinated and

unvaccinated are more likely to share similar HSB and underlying health characteristics.

Misclassification of infection status is also reduced because the analysis is restricted to
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tested individuals (Jackson and Nelson, 2013).

Sullivan et al. (2016) used directed acyclic graphs (DAG) to illustrate the rationale

behind TND in the context of evaluating VE against Influenza infection, as shown in

Figures 1(a) and (b). We denote Influenza vaccination status by A and Influenza infection

by Y , so that the arrow A→ Y represents VE against flu infection. Selection into the TND

study sample, denoted by S, is triggered by a subject experiencing flu-like symptoms or

acute respiratory illness, seeking care at clinics or hospitals, and getting tested for Influenza

infection, hence the Y → S edge. Healthcare seeking behavior, denoted by HSB, may affect

S, A, and Y because subjects with certain health seeking proclivities may be more likely

to seek care, take annual flu shots, and participate in healthy and preventative behaviors.

The above variables are subject to effects of other clinical or demographic factors, such as

age, season and high-risk conditions, included in Figure 1 as confounders X. The TND

assumes that by restricting recruitment to care seekers, the study subjects have identical

healthcare seeking behavior; in other words, conditioning the analysis on S = 1 necessarily

leads to HSB= 1, which blocks the effects of HSB (Figure 1(b)). The effects of X are

further adjusted for by including these factors in a logistic regression model or by inverse

probability weighting (Bond, Sullivan, and Cowling, 2016; Thompson et al., 2021).

However, the TND remains subject to potential hidden bias. First, the assumption

that all study subjects seeking care are lumped into a single category HSB= 1 may be

unrealistic. It may be more realistic that HSB is not a deterministic function of S and

remains a source of confounding bias even after conditioning on S. Furthermore, there

might be other mismeasured or unmeasured confounders, denoted as U . For example,

healthcare workers are at increased risk of flu infection due to higher exposure to flu pa-

tients and are more likely to seek care and receive vaccination due to health agency guide-
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lines (Black et al., 2018). Previous flu infection history may also be a source of confounding

if it alters the likelihood of vaccination and care seeking, while also providing immunity

against circulating strains (Krammer, 2019; Sullivan, Tchetgen Tchetgen, and Cowling,

2016). These unmeasured or mismeasured potential sources of confounding, if not prop-

erly accounted for, can result in additional confounding bias, as illustrated in Figure 1(c).

Finally, collider stratification bias is likely present due to conditioning on S, which is a

common consequence of HSB, other risk factors (X,U), and Influenza infection Y (Lip-

sitch, Jha, and Simonsen, 2016). That is, conditioning on S unblocks the backdoor path

A ← (X,U,HSB) → S ← Y , which would in principle be blocked if study subjects had

identical levels of HSB and other risk factors (Sullivan, Tchetgen Tchetgen, and Cowling,

2016).

Accounting for these potential sources of bias is well known to be challenging, and

potentially infeasible without additional assumptions or data. This can be seen in Fig-

ure 1(d), which is a simplified version of Figure 1(c) where the unmeasured confounders

U include individuals’ occupation as a healthcare worker, previous flu infection, HSB, and

so on. Figure 1(d) indicates that the unmeasured confounders U induce both confound-

ing bias through the path A ← U → Y and collider stratification bias through the path

A ← U → S ← Y . In presence of both unmeasured confounding and collider bias, causal

bounds may be available (Gabriel, Sachs, and Sjölander, 2020) but likely too wide to

be informative; causal identification in TND therefore remains to date an important and

outstanding open problem in the causal inference literature which we aim to resolve.
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Figure 1: Causal relationships of variables in a test-negative design. Sullivan, Tchetgen
Tchetgen, and Cowling, 2016 used (a) to illustrate the causal relationship between variables
in a test-negative design in the general population, and used (b) to illustrate the assumption
implicit in the common approach to estimate VE from the study data that study subjects
have identical healthcare seeking behavior (HSB) (Sullivan, Tchetgen Tchetgen, and Cowl-
ing, 2016). (c) shows that if HSB remains partially unobserved, then the backdoor paths
A ← HSB → Y and A ← HSB → S = 1 ← Y indicate unmeasured confounding bias
and selection bias, respectively. Other unmeasured confounders, such as occupation as a
healthcare worker and previous infection, open additional backdoor paths between A and
Y and result in additional confounding bias. (d) shows a simplified DAG from (c) that
combines the unmeasured confounders into a single variable U . (e) illustrates our approach
to estimate VE leveraging negative control exposure Z and outcome W . Dashed arrows
indicate effects that are not required. (f) shows a scenario with the A → Y arrow where
the causal odds ratio can still be identified under additional assumptions.
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1.2 Negative control methods

In recent years, negative control variables have emerged as powerful tools to detect, reduce

and potentially correct for unmeasured confounding bias (Lipsitch, Tchetgen Tchetgen,

and Cohen, 2010; Miao, Geng, and Tchetgen Tchetgen, 2018; Shi, Miao, and Tchetgen

Tchetgen, 2020). The framework requires that at least one of two types of negative control

variables are available which are a priori known to satisfy certain conditions: a nega-

tive control exposure (NCE) known to have no direct effect on the primary outcome; or

a negative control outcome (NCO), known not to be an effect of the primary exposure.

Such negative control variables are only valid and therefore useful to address unmeasured

confounding in a given setting to the extent that they are subject to the same source of

confounding as the exposure-outcome relationship of primary interest. Thus, the observed

association between a valid NCE and the primary outcome (conditional on the primary

treatment and observed covariates) or that between a valid NCO and the primary expo-

sure can indicate the presence of residual confounding bias. For example, in a cohort study

to investigate flu VE against hospitalization and death among seniors, to detect the pres-

ence of confounding bias due to underlying health characteristics, Jackson et al. (2006) used

hospitalization/death before and after the flu season as NCOs and found that the associa-

tion between flu vaccination and hospitalization was virtually the same before and during

the flu season, suggesting that the lower hospitalization rate observed among vaccinated

seniors versus unvaccinated seniors was partially due to healthy user bias.

Recently, new causal methods have been developed to not only detect residual confound-

ing when present, but also to potentially de-bias an observational estimate of a treatment

causal effect in the presence of unmeasured confounders when both an NCE and an NCO

are available, referred to as the double negative control (Miao, Geng, and Tchetgen Tch-
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etgen, 2018; Shi et al., 2020; Tchetgen Tchetgen et al., 2020). In this recent body of work,

the double negative control design was extended in several important directions including

settings in which proxies of treatment and outcome confounding routinely measured in

well designed observational studies may be used as negative control variables, a framework

termed proximal causal inference; longitudinal settings where one is interested in the joint

effects of time-varying exposures (Ying et al., 2021), potentially subject to both measured

and unmeasured confounding by time-varying factors; and in settings where one aims to

estimate direct and indirect effects in mediation analysis subject to unmeasured confound-

ing or unmeasured mediators (Dukes, Shpitser, and Tchetgen Tchetgen, 2021; Ghassami,

Shpitser, and Tchetgen Tchetgen, 2021). Additional recent papers in this fast-growing

literature include Qi, Miao, and Zhang (2021), Liu and Tchetgen Tchetgen (2021), Egami

and Tchetgen Tchetgen (2021), Kallus, Mao, and Uehara (2021), Imbens, Kallus, and Mao

(2021), Deaner (2018), Deaner (2021), Ghassami et al. (2021), Mastouri et al. (2021) and

Ghassami, Shpitser, and Tchetgen Tchetgen (2022). Importantly, existing identification

results in negative control and proximal causal inference literature has been restricted to

i.i.d settings (Miao, Shi, and Tchetgen Tchetgen, 2018) and time series settings (Shi et al.,

2021), and to date, to the best of our knowledge, outcome-dependent sampling settings

such as TND, have not been considered, particularly one where confounding and selection

bias might co-exist.

1.3 Outline

The rest of the paper is organized as followed: we introduce notation and the identification

challenge in view in Sections 2.1. Next we develop the identification strategy and describe

a new debiased estimator under a double negative control TND study in Section 2.2-2.4,
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assuming (1) homogeneous VE across strata defined by all measured and unmeasured

confounders and (2) no direct effect of vaccination on selection into the TND sample. In

Section 2.5, we relax the homogeneous VE assumption and describe identification and

estimation allowing for VE to depend on observed covariates. In Section 2.6, we relax the

assumption of no direct effect of vaccination on selection and introduce the assumptions

under which our VE estimator is unbiased on the odds ratio scale. In Section 3, we

demonstrate the performance of our method with simulation. In Section 4, the approach is

further illustrated in an application to estimate COVID-19 VE against infection in a TND

study nested within electronic health records from University of Michigan Health System.

We then conclude with a discussion in Section 5.

2 Method

2.1 Preliminary: estimation under no unmeasured confounding

and no selection bias

To fix ideas, we first review estimation assuming all confounders (U,X) are fully observed

and the study sample is randomly drawn (rather than selected by testing) from source popu-

lation, referred to as the “target population”. That is, we observe data on (A, Y, U,X) which

are independent and identically distributed in the target population. For each individual,

we write Y (a) as the binary potential infection outcome had, possibly contrary to fact,

the person’s vaccination status been A = a, a = 0, 1. Our goal is to provide identification

and estimation strategies for the causal risk ratio (RR) defined as RR = E[Y (1)]/E[Y (0)].

Let β0 denote the log causal RR, i.e., RR = exp(β0). Following Hudgens and Halloran

(2006) and Struchiner and Halloran (2007), we define VE as one minus the causal RR:
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V E = 1 − RR = 1 − exp(β0). The potential outcomes and the observed data are related

through the following assumptions:

Assumption 1. (Identification conditions of mean potential outcomes).

(a) (Consistency) Y (a) = Y if A = a almost surely for a = 0, 1;

(b) (Exchangeability) A ⊥⊥ Y (a)|U,X for a = 0, 1.

(c) (Positivity) 0 < P (A = a|U,X) almost surely a = 0, 1.

Assumption 1(a) states that the infection status of a subject with vaccination status

A = a is equal to the corresponding potential outcome Y (a). This further requires that

the treatment is sufficiently well-defined and a subject’s potential outcome is not affected

by the treatment of other subjects (Cole and Frangakis, 2009). Assumption 1(b) states

that treatment is exchangeable within strata of (U,X), i.e. there is no unmeasured con-

founding given (U,X). We develop methods that allow U to be unmeasured in Section 2.3.

Assumption 1(c) states that for all realized values of (U,X) there is at least one individual

with an opportunity to get treatment a = 0, 1.

Let Q(A = a, U,X) = 1/P (A = a|U,X) denote the inverse of the probability of vacci-

nation status A = a given confounders (Rosenbaum, 1987). Under Assumption 1, it is well

known that, if U were observed, the mean potential outcome for treatment a in the general

population can be identified by inverse probability of treatment weighting (IPTW):

E[Y (a)] = E [I(A = a)Q(A = a, U,X)Y ] , (1)

for a = 0, 1. Therefore, the log causal RR β0 satisfies the following equation

E [Q(A = 1, U,X)AY exp(−β0)]− E [Q(A = 0, U,X)(1− A)Y ] = 0.
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Equivalently, we have

E[V0(A, Y, U,X; β0)] = 0 (2)

for unbiased estimation, where V0(A, Y, U,X; β) = (−1)1−AQ(A,U,X)Y exp(−βA).

2.2 Tackling selection bias under a semiparametric risk model

Next, consider a TND study for which data (A, Y,X, U) is observed only for the tested

individuals with S = 1. Because S is impacted by other factors such as infection, the esti-

mating function V0(A, Y, U,X; β0) may not be unbiased with respect to the study sample;

i.e. V0(A, Y, U,X; β0)|U,X, S = 1] 6= 0 without another assumption about the selection

process into the TND sample.

For a study sample of size n from a TND, we denote the i-th study subject’s variables

as (Ai, Yi, Ui, Xi), i = 1, . . . , n. For generalizability, we first make the key assumption that

vaccination A is unrelated to selection S other than through a subject’s infection status Y

and confounders (U,X).

Assumption 2 (Treatment-independent sampling). S ⊥⊥ A|Y, U,X.

In the test-negative design, this assumption requires that an individual’s decision to

seek care and get tested only depends on the presence of symptoms and his/her underlying

behavioral or socioeconomic characteristics, including HSB (contained in (U,X)); a per-

son’s vaccination status does not directly Influence their selection process. The DAGs in

Figure 1(a)-(e) in fact encode this conditional independence condition. We will relax this

assumption in Section 2.6.

Assumption 3 (No effect modification by a latent confounder). For a = 0, 1,

P (Y = 1|A = a, U,X) = exp(β0a)g(U,X) (3)

13



where g(U,X) is an unknown function only restricted by 0 ≤ P (Y = 1|A,U,X) ≤ 1.

Assumption 3 defines a semiparametric multiplicative risk model which posits that

vaccine effectiveness, measured on the RR scale, is constant across (U,X) strata in the

target population. In other words, the effect of vaccination A on the risk of infection

Y is not modified by confounders U,X. In Section 2.5, we will relax the assumption to

allow for effect modification by measured confounders X. Infection risk for control subjects

P (Y = 1|A = 0, U,X) = g(U,X) is left unspecified and thus defines the nonparametric

component of the model.

Under Assumptions 1 and 3, one can verify that exp(β0) = E[Y (1)]/E[Y (0)], which is

the marginal causal RR. The potential infection outcome means E[Y (1)] and E[Y (0)] in

the target population cannot be identified due to the study selection process without an

additional restriction. Nevertheless, the estimating equation (2) implies that it may still be

possible to identify β0 without necessarily identifying E[Y (0)] and E[Y (1)]. The following

proposition indicates that the same is true when the data are subject to selection bias of

certain structure.

Proposition 1. Under Assumptions 1- 3, the parameter β0 satisfies

E[V0(A, Y, U,X; β0) | U,X, S = 1] = 0. (4)

The proof of Proposition 1 is in Appendix A. From Proposition 1, the IPTW estimating

function V0 derived from the target population is also unbiased with respect to the study

sample.
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Under Assumptions 1-3, one can estimate β0 with β̂ as the solution to

1

n

n∑
i=1

(−1)1−Aic(Xi)Q̂(Ai, Ui, Xi)Yi exp(−β̂0Ai) = 0, (5)

where n is the size of the selected sample, c(·) is a user specified function, and Q̂(Ai, Ui, Xi) =

P̂ (A = Ai | Ui, Xi) is the estimated probability of have vaccination status A = Ai given

confounders (Ui, Xi). Letting c(Xi) = 1, the resulting estimator

β̂0 =

[
n∑
i=1

Q̂(Ai, Ui, Xi)AiYi

]
/

[
n∑
i=1

Q̂(Ai, Ui, Xi)(1− Ai)Yi

]

is essentially the IPTW estimator of marginal RR in Schnitzer (2022) assuming (Ui, Xi)’s

are all observed.

However, Q(A,U,X) cannot be estimated because U is unobserved. Furthermore, even

if U were observed, Q̂(Ai, Ui, Xi) may not be identified from the TND sample due to

selection bias. In the next section, we describe a new framework to account for unmeasured

confounding in a TND setting, leveraging negative control exposure and outcome variables.

2.3 Tackling unmeasured confounding bias leveraging negative

controls

2.3.1 Negative control exposure (NCE) and treatment confounding bridge

function

As shown in Figure 1(e), suppose that one has observed a valid possibly vector-valued NCE,

denoted as Z, which is a priori known to satisfy the following key independence conditions:

Assumption 4 (NCE independence conditions). Z ⊥⊥ (Y, S)|A,U,X.
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Assumption 4 essentially states that any existing Z − Y association conditional on

(X,A) in the target population must be a consequence of their respective association with

U , therefore indicating the presence of confounding bias. Importantly, the NCE must a

priori be known to have no causal effect on infection status (Miao, Shi, and Tchetgen

Tchetgen, 2018). Likewise, the association between Z and S conditional on (X,A) is

completely due to their respective association with U . Figure 1(e) presents a graphical

illustration of an NCE that satisfies Assumption 4.

In the Influenza VE setting, a candidate NCE can be vaccination status for the preceding

year, or other vaccination status such as Tdap (Tetanus, Diphtheria, Pertussis) vaccine, as

both are known to effectively provide no protection against the circulating flu strain in a

given year. We now provide an intuitive description of our approach to leverage Z as an

imperfect proxy of U for identification despite being unable to directly observe U .

To illustrate the rationale behind identification, ignore selection bias for now and sup-

pose that Q(A,U) = α0 + α1A + α2U , suppressing measured confounders X. Although U

is unobserved, suppose further that Z satisfies E[Z|A,U ] = γ0 + γ1A+ γ2U . Then we have

that

Q(A,U) = E[q(A,Z)|A,U ], U = E[Ũ(A,Z)|A,U ],

where Ũ = (Z − γ0 − γ1A)/γ2. Replacing U with Ũ in Q(A,U), we get q(A,Z) = α0 +

α1A+ α2Ũ(A,Z), which does not depend on unmeasured confounder U and can represent

the inverse probability of vaccination as Q(A,U) = E[q(A,Z)|A,U ]. If all parameters of q

were known, it would naturally follow that the IPTW method in (1) can be recovered by

E[Y (a)] = E{I(A = a)E[q(A,Z)|A,U ]Y } A.4= E [I(A = a)q(A,Z)Y ] ,
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Therefore, β0 can be identified if the distribution of (A, Y, Z) in the target population

is available provided that parameters indexing q can be identified.

The above insight motivates the following assumption:

Assumption 5 (treatment confounding bridge function). There exists a function q(A,Z,X)

that satisfies, for every a, u and x,

Q(A = a, U = u,X = x) = E [q(A,Z,X)|A = a, U = u,X = x] (6)

The function q that satisfies (6) is called a treatment confounding bridge function, as it

bridges the observed NCE with the unobserved propensity score (Cui et al., 2020). Below

we give two examples where the integral equation (6) can easily be solved and the treatment

confounding bridge function q admits a closed form solution.

Example 1. (Binary U and Z) Suppose that U is binary, and so is the NCE Z. For sim-

plicity we suppress X. The integral equation (6) can then be written as
∑1

z=0 q(a, z)P (Z =

z|U = u,A = a) = P (A = a|U = u)−1,

or equivalently,
∑1

z=0 pza.uq(a, z) = 1 for each a, u ∈ {0, 1}, where pza.u = P (Z =

z, A = a|U = u). Therefore, the treatment confounding bridge function q(a, z) solves the

linear equation system

PZ,A|U

q(a, 0)

q(a, 1)

 =

1

1

 , where PZ,A|U =

p0a.0 p1a.0

p0a.1 p1a.1

 .

If the matrix PZ,A|U is invertible, then q(a, z) has a closed form solution given by

q(a, z) = [p1a.1 − p1a.0 + (p0a.0 − p0a.1 − p1a.1 + p1a.0)z] / (p0a.0p1a.1 − p0a.1p1a.0) . (7)
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The result can be extended to the cases where Z is polytomous as detailed in Appendix D.

Example 2. (Continuous U and Z) Suppose the unmeasured confounder U and the NCE

Z are continuous. Further assume that

A|U,X ∼ Bernoulli([1 + exp(−µ0A − µUAU − µXAX)]−1)

Z|A,U,X ∼ N(µ0Z + µAZA+ µUZU + µXZX, σ
2
Z).

By the derivation in Appendix E, the treatment confounding bridge function q(A,Z,X)

is

q(A,Z,X) = 1 + exp
[
(−1)A(τ0 + τ1A+ τ2Z + τ3X)

]
(8)

where τ0 = µ0A −
µUAµ0Z

µUZ
− σ2

zµ
2
UA

2µ2
UZ

, τ1 =
σ2
zµ

2
UA

µ2
UZ

− µUAµAZ
µUZ

, τ2 = µUA/µUZ , and τ3 =

µXA − µXZµUA/µUZ .

Formally, Equation (6) defines a Fredholm integral equation of the first kind, with

treatment confounding bridge function q(A,Z,X) as its solution (Cui et al., 2020). Heuris-

tically, the existence of a treatment confounding bridge function requires that variation in

Z induced by U is sufficiently correlated with variation in A induced by U . For instance, in

Example 1, existence of a treatment confounding bridge function requires that the matrix

PZ,A|U

is nonsingular. In Example 2, the existence of a treatment confounding bridge function

amounts to the condition µUZ 6= 0, which again requires Z 6⊥⊥ U |A,X. Cui et al. (2020)

provided formal conditions sufficient for the existence of the treatment confounding bridge

function satisfying Equation (6). These conditions are reproduced for completeness in

Appendix B.

Thus, under Assumption 5, we propose to construct a new unbiased estimating function
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for β0 by replacing Q(A,U,X) with q(A,Z,X) in V0(A, Y, U,X; β0).

Theorem 1. (Moment restriction of β0) Under Assumptions 1-5, we have that

E[V1(A, Y, Z,X; β0) | U,X, S = 1] = 0

where V1(A, Y, Z,X; β0) = (−1)1−Aq(A,Z,X)Y exp(−β0A).

The proof of Theorem 1 is in Appendix C. In practice, if one can consistently estimate

the treatment confounding bridge function q(A,Z,X) with q̂(A,Z,X), Theorem 1 suggests

estimating β0 by solving the estimating equation

1

n

n∑
i=1

(−1)1−Aic(Xi)q̂(Ai, Zi, Xi)Yi exp(−β0Ai) = 0, (9)

which, for a one-dimensional c(·), results in a closed form estimator

β̂0 = log

( ∑
c(Xi)q̂(Ai, Zi, Xi)AiYi∑

c(Xi)q̂(Ai, Zi, Xi)(1− Ai)Yi

)
.

Importantly, although (6) may not have a unique solution, any solution uniquely identifies

the causal log RR β0 for a fixed function c(·). Furthermore, although the choice of c(·)

doesn’t change the unbiasedness of (9), it impacts the validity and efficiency of the resulting

estimator β̂0. For example, (9) doesn’t lead to a estimator of β0 if c(Xi) is set to be zero.

In practice, one may simply set c(Xi) ≡ 1. The result in Theorem 1 cannot directly be

applied in practice because the treatment confounding bridge function is not identifiable

even if random samples from the target population were available – solving (6) requires

additional information about U which is unobserved. For instance, in Example 1 one is

unable to directly estimate q(a, z) because pza.u in (7) cannot directly be estimated from
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the observed data.

2.3.2 Negative control outcome (NCO) for identification of treatment con-

founding bridge function

For identification and estimation of q, we leverage negative control outcomes (NCO) to

construct feasible estimating equations for the treatment confounding bridge function as

in Cui et al. (2020). Similar to NCEs, NCOs can be viewed as imperfect proxies of U .

However, unlike NCEs, a valid NCO, denoted by W , is a measured covariate which is (i)

known a priori not to be a causal effect of either the primary exposure A nor the NCE Z;

and (ii) is associated with (A,Z) conditional on X only to the extent that it is associated

with U .

Formally, we make the following assumption.

Assumption 6. (NCO Independence Conditions).

(a) W ⊥⊥ A|U,X;

(c) S ⊥⊥ Z|A,U,X,W, Y .

(b) W ⊥⊥ Z|A,U,X, Y ;

Assumptions 6(a) and (b) formalize the requirement that neither the primary exposure

nor NCE have direct effects on the NCO. Assumption 6(c) complements Assumption 4 and

states that conditioning on W in addition to (A,U,X, Y ) does not alter the conditional

independence of Z with S. In flu VE studies, a candidate NCO can be an infection whose

risk is not causally affected by either A or Z. For example, if the NCE is selected to be Tdap

vaccination, then a potential NCO may be current-year respiratory syncytial virus infection,

as its risk is unlikely to be affected by Influenza or Tdap vaccination. Recent outpatient

visits for other acute illnesses can also serve as NCO, such as blepharitis, wrist/hand sprain,
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lipoma, ingrowing nail, etc. (Leung et al., 2011). Figure 1(e) illustrates an NCO W that

satisfies Assumptions 6(a) and (b).

Similar to Cui et al. (2020), we leverage the availability of an NCO as an additional

proxy to identify the treatment confounding bridge function. However, a complication

arises due to lack of a random sample from the target population, a key requirement in

the approach outlined in Cui et al. (2020). In general, it is not possible to obtain sufficient

information about neither the distribution of W nor that of U in the target population

from the TND data without an additional structural assumption (Bareinboim and Pearl,

2012). In the following, we avoid imposing such an additional structural assumption by

leveraging an important feature of infectious diseases such as Influenza and COVID-19;

mainly that contracting such an infection is a rare event in most target populations of

interest, and therefore information from the target population that is relevant for estimating

the treatment confounding bridge function can be recovered from the test-negative control

group. Formally, we make the following rare disease assumption.

Assumption 7 (Rare infection). There exist a small positive number δ > 0 such that

P (Y = 1|A = a,W = w,U = u,X = x) ≤ δ, for almost every a, w, u, x (10)

Assumption 7 states that infected subjects, whether vaccinated or not and regardless of

their negative control outcomes, only constitute a small proportion of each (U,X) stratum

in the general population; specifically, the assumption implies that 1
1−δ ≤

P (A,Z|U=u,X=x,Y=0)
P (A,Z|U=u,X=x)

≤

1 − δ. Thus, under Assumptions 2, 4 and 7, P (A = a, Z = z|U = u,X = x) ≈ P (A =

a, Z = z|U = u,X = x, Y = 0, S = 1) for all a, z, x, u. We now introduce a key property of

the treatment confounding bridge function in Theorem 2, which is proved in Appendix F.
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Theorem 2 (Identification of the treatment confounding bridge function). Under Assump-

tions 2, 4, 5, 6, and 7, for a = 0, 1 we have that

(1− δ)3

P (A = a|W,X, Y = 0, S = 1)
< E[q(a, Z,X)|W,A = a,X, Y = 0, S = 1]

<
1

(1− δ)3P (A = a|W,X, Y = 0, S = 1)

Thus, provided δ ≈ 0, Theorem 2 suggests that an approximation to the treatment

confounding bridge function can be obtained by solving the following integral equation

involving only observed data

E[q∗(A,Z,X)|W,A = a,X, Y = 0, S = 1] = 1/P (A = a|W,X, Y = 0, S = 1). (11)

as long as a solution exists. Accordingly, hereafter suppose that the following assumption

holds.

Assumption 8 (Existence of a unique solution to (11)). There exists a unique square-

integrable function q∗(A,Z,X) that satisfies (11).

Heuristically, uniqueness of a solution to (11) requires that variation in W is sufficiently

informative about variation in Z, in the sense that there is no source of variation in W

that is not associated with a corresponding source of variation in Z. See Appendix G for

further elaboration of completeness conditions and D’Haultfoeuille (2011) and Newey and

Powell (2003) for related use of the assumption in the literature. Below we briefly illustrate

Assumption 8 in the examples of Section 2.3.1.

Example 1′. Suppose U and Z are both binary, and a binary NCO W is also observed.

Let p′za.w = P (Z = z, A = a|W = w, Y = 0, S = 1) for z, a, w ∈ {0, 1}, then solving (11) is
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equivalent to solving the system of linear equations

p′0a.0q
∗(a, 0) + p′1a.0q

∗(a, 1) = 1; p′0a.1q
∗(a, 0) + p′1a.1q

∗(a, 1) = 1,

giving q∗(a, z) = [p′1a.1 − p′1a.0 + (p′0a.0 − p′0a.1 − p′1a.1 + p′1a.0)z] / (p′0a.0p
′
1a.1 − p′0a.1p′1a.0). Note

that the probabilities p′za.w can all be estimated from the study sample.

We emphasize that the solution to Equation (11) is ultimately an approximation to

the (non-identifiable) treatment confounding bridge function in the target population. The

accuracy of this approximation relies on the extent to which the rare disease assumption

holds in the target population of interest. We study the potential bias resulting from a

departure of this key assumption in the Appendix I. We further observe that, under the

null hypothesis of no vaccine effectiveness, or if W has no direct effects on Y or S, then the

function q∗(A,Z,X) equals the treatment confounding bridge exactly, even for a non-rare

disease outcome, as stated in the corollary below. We prove Corollary 1 in Appendix F.

Corollary 1. Under the Assumptions of Theorem 1 and Assumption 8, if there is no

vaccine effect against infection, such that Y ⊥⊥ A|U,X, then

E[q(A,Z,X)|W,A = a,X, Y = 0, S = 1] = 1/P (A = a|W,X, Y = 0, S = 1).

From Theorem 2, we immediately have the following corollary which provides a basis

for estimation of q∗(A,Z,X) from the observed TND sample.

Corollary 2. Under the conditions listed in Theorem 2, for any function m(W,A,X), the

solution q∗(A,Z,X) to Equation (11) also solves the population moment equation

E [m(W,A,X)q∗(A,Z,X)−m(W, 1, X)−m(W, 0, A)|Y = 0, S = 1] = 0. (12)
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We prove Corollary 2 in Appendix H. In practical situations where a parametric model

q∗(A,Z,X; τ) for the treatment confounding bridge function might be appropriate, where

τ is an unknown finite dimensional parameter indexing the model, Corollary 2 suggests one

can estimate τ by solving the estimating equation

1

n

n∑
i=1

(1− Yi)[m(W,A,X)q(A,Z,X; τ)−m(W, 1, X)−m(W, 0, X)] = 0, (13)

where m(W,A,X) is a user-specified function whose dimension is no smaller than τ ’s.

Example 1′′. If Z and W are both binary, rather than solving the system of equations

implied by (11), one can instead specify a saturated model for the treatment confounding

bridge function:

q∗(A,Z; τ) = τ0 + τ1Z + τ2A+ τ3ZA (14)

and estimate τ = (τ0, τ1, τ2, τ3)
T by solving (13) with m(W,A) = (1,W,A,WA)T . Extension

to Z and X with multiple categories is straightforward.

Example 2′. In case of continuous (U,X,Z), result (8) suggests the model

q∗(A,Z,X; τ) = 1 + exp
[
(−1)A(τ0 + τ1A+ τ2Z + τ3X)

]
. (15)

If a univariate NCO W is available, we may solve (13) with m(W,A,X) = (1,W,A,X)T .

2.4 Estimation and Inference

In the previous sections, we have defined the causal parameter of interest β0 as stratum-

specific log risk ratio, introduced the treatment confounding bridge function as a key ingre-

dient to identification of β0, and presented a strategy to estimate the treatment confounding
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bridge function leveraging an available NCO. We summarize the steps of our estimation

framework in Algorithm 1 and present the large-sample properties of the resulting estimator

(β̂, τ̂) in Theorem 3.

Algorithm 1 Negative control method to estimate vaccine effectiveness from a test-
negative design

1: Identify the variables in the data according to Figure 1(e), in particular the NCEs and
NCOs.

2: Estimate the treatment confounding bridge function by solving Equation (13) with
a suitable parametric model q∗(A,Z,X; τ) and a user-specified function m(W,A,X).
Write τ̂ as the resulting estimate of τ .

3: Estimate β0 by solving Equation (9) with q̂(A,Z,X) = q∗(A,Z,X; τ̂). For a user-
specified nonzero one-dimensional function c(·), the resulting estimator of β0 is

β̂ = log

( ∑
c(Xi)q

∗(Ai, Zi, Xi; τ̂)AiYi∑
c(Xi)q∗(Ai, Zi, Xi; τ̂)(1− Ai)Yi

)
; (16)

The estimated vaccine effectiveness is V̂ E = 1− exp(β̂).

Theorem 3 (Inference based on (β̂, τ̂)). Under Assumptions 1-8 and suitable regularity

conditions provided in Appendix J , the estimator (β̂, τ̂) in Algorithm 1, or equivalently, the

solution to the estimating equation
1

n

∑n
i=1Gi(β, τ) = 0 is regular and asymptotically linear

with the i-th influence function IFi(β, τ) = −Ω(β, τ)+Gi(β, τ), where Ω(β, τ)+ denotes the

Moore-Penrose inverse of Ω(β, τ),

Gi(β, τ) =

 (−1)1−Aic(Xi)q
∗(Ai, Zi, Xi; τ)Yi exp(−βAi)

(1− Yi) [m(Wi, Ai, Xi)q
∗(Ai, Zi, Xi; τ)−m(Wi, 1, Xi)−m(Wi, 0, Xi)]



and Ω(β, τ) =
(
E
[
∂Gi(β, τ)/∂βT

]
, E
[
∂Gi(β, τ)/∂τT

])
.

The proof follows from standard estimating equation theory (See Van der Vaart (2000)

Theorem 5.21). An immediate consequence of Theorem 3 is that we may estimate the
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variance-covariance matrix of (β̂, τ̂) with

Ω̂(β̂, τ̂)+V̂ ar(Gi(β̂, τ̂))
[
Ω̂(β̂, τ̂)+

]T
/n, (17)

where Ω̂(β, τ) =

(
Ê

[
∂Gi(β, τ)/∂βT

∣∣∣∣
β=β̂,τ=τ̂

]
, Ê

[
∂Gi(β, τ)/∂τT

∣∣∣∣
β=β̂,τ=τ̂

])
. Here Ê and

V̂ ar denote the expectation and variance with respect to the empirical distribution, respec-

tively. A two-sided α-level Wald-type confidence interval of VE can then be obtained as(
1− exp

(
β̂ − z1−α/2

√
Σ̂n,1,1

)
, 1− exp

(
β̂ + z1−α/2

√
Σ̂n,1,1

))
, where Σ̂n,1,1 is the (1, 1)-

th entry of Σ̂n and z1−α/2 is the (1− α/2)-th quantile of a standard normal distribution.

The estimator β̂ and the above confidence interval are constructed under the assumption

that the disease is rare in the target population; for non-rare diseases, β̂ is in general going to

be biased and the confidence interval may not be well-calibrated. However, by Corollary 1,

under the null hypothesis of no vaccine effects, the estimated q∗(A,Z,X) converges to the

true treatment confounding bridge function and β̂ is consistent for β0 = 0. This implies

that while our methods are approximately asymptotically unbiased for rare infections, they

provide a valid test of no vaccine effect even if the infection is not rare.

2.5 Accounting for effect modification by measured confounders

So far we have operated under Assumption 3 that VE is constant across levels of (U,X). As

we now show, this assumption can be relaxed to allow for potential effect modification with

respect to X without compromising identification. This extension is particularly important

because empirical evidence has indeed suggested that flu vaccine effectiveness may vary

across sex and age groups (Chambers et al., 2018); and similar effect heterogeneity is of

key interest in case of COVID-19 (Fernández Villalobos et al., 2021).

Instead of Assumption 3, we consider a less stringent assumption:
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Assumption 9 (No effect modification by unmeasured confounders).

P (Y = 1|A = a, U,X) = exp(β0(X)a)g(U,X) (18)

where β0(x) are g(u, x) are unknown functions of x and u, x respectively.

Under condition 1, Assumption 9 further implies that β0(x) = E[Y (1)|X = x]/E[Y (0)|X =

x], i.e. the conditional causal RR as a function of x. Similar to Theorem 1, we have:

Theorem 4. Under Assumptions 1, 2, 4, 5 and 9, for an arbitrary function c(·) we have

that

E[V3(A, Y, Z,X; β0)|S = 1] = 0,

where V3(A, Y, Z,X; β0) = (−1)1−Ac(X)q(A,Z,X) exp(−β0(X)A).

The proof of Theorem 4 is identical to that of Theorem 1 with β0A replaced with

β0(X)A. Identification and estimation of the treatment confounding bridge function are

also essentially identical to that of Corollary 2. Therefore, it is straightforward to ex-

tend Algorithm 1 to allow effect modification by measured confounders. We describe the

algorithm and the large sample properties of the resulting estimator in Appendix K.

2.6 Estimating VE under treatment-induced selection into TND

sample

Thus far, unbiasedness of the estimating function V0 has crucially relied on Assumption 2

that A does not have a direct effect on S. In some settings, the assumption may be

violated if an infected person who is vaccinated is on average more likely to present to

the ER than an unvaccinated infected person with similar symptoms, so that treatment or
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vaccination-induced selection into the TND sample is said to be present. In such settings,

both estimators β̂ and β̂(X) produced by Algorithms 1 and 2 may be severely biased

because Assumption 2 may no longer be valid. Crucially, we note that this form of selection

bias can be present even in context of a randomized trial in which vaccination/treatment is

assigned completely at random, if the outcome is ascertained using a TND, for example in

the cluster-randomized test-negative design studies of community-level dengue intervention

effectiveness Anders et al. (2018), Dufault and Jewell (2020), Jewell et al. (2019), and

Wang et al. (2022). In this Section, we provide sufficient conditions for identification under

treatment-induced selection. In this vein, consider the following assumptions:

Assumption 2′. P (S = 1|A = a, Y = 1, U,X)/P (S = 1|A = a, Y = 0, U,X) =

exp(h(U,X)) for a = 0, 1.

That is, the risk ratio association between infection status and selection into the TND

sample is independent of vaccination status. Furthermore,

Assumption 3′. (No effect modification by confounders on the OR scale).

P (Y = 1|A = 1, U,X)/P (Y = 0|A = 1, U,X)

P (Y = 1|A = 0, U,X)/P (Y = 0|A = 0, U,X)
= exp(β′0).

Recall that Assumption 3 posited a constant vaccination causal effect on the RR scale

across levels of (U,X), while Assumption 3′ posits that the corresponding causal effect

on the odds ratio scale is constant across levels of (U,X). In case of a rare infection in

the target population, the OR and RR are approximately equal, in which case VE is well

approximated by 1−OR.

Furthermore, identification relies on the following modified definition of a treatment

confounding bridge function:
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Assumption 5′. There exists a treatment confounding bridge function q̃ such that for

a = 0, 1,

E[q̃(a, Z,X)|A = a, U,X] = 1/P (A = a|U,X, Y = 0, S = 1) almost surely. (19)

Note that if the infection is rare in the target population in the sense of Assumption 7,

then the treatment confounding bridge function defined in Assumption 5 in Section 2.3.1

satisfies (19) approximately .

We now introduce the identification of the OR with the following theorem:

Theorem 1′. Under Assumptions 1, 2′, 3′, 4 and 5′, we have

E[Ṽ1(A, Y, Z,X; β′0) | U,X, S = 1] = 0

where Ṽ1(A, Y, Z,X; β) is the same as V1 defined in Theorem 1 except with q̃ replacing q.

Importantly, the theorem establishes that the estimating function V1 previously de-

veloped in the paper can under certain conditions, remain unbiased for the odds ratio

association of vaccination with testing positive for the infection, even in the presence of

treatment-induced selection into the TND sample. We leave the proof of Theorem 1′ to

Appendix L.

Estimation of the treatment confounding bridge function q̃(A,Z,X) requires a negative

control outcome that satisfies:

Assumption 6′. (NCO Independence Conditions) W ⊥⊥ (A,Z, S)|U,X, Y.

In addition to Assumptions 6, this last assumption requires that neither Y nor S is a

causal effect of W . Figure 1(f) illustrates a DAG that satisfies our assumptions regarding
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(Z,W ). As can be verified in the graph, Assumption 6′ is needed to ensure that collider

stratification bias induced by the path A → [S = 1] ← W upon conditioning on S = 1 is

no longer present. Identification of the function q̃ is given below:

Theorem 2′. Under assumptions 4, 5′ and 6′, for a = 0, 1 we have that

E[q̃(a, Z,X)|A = a,W,X, Y = 0, S = 1] = 1/P (A = a|W,X, Y = 0, S = 1)

We prove Theorem 2′ in Appendix M. As a result of Theorem 2′, the parameters in the

treatment confounding bridge function can be estimated by solving moment equation (13).

In summary, the above discussion suggests that one can continue to use Algorithm 1

to estimate VE in presence of treatment induced selection bias, albeit on the OR scale

and under a modified set of negative control conditions. Algorithm 2 can similarly be

justified under treatment-induced selection with assumptions in this section, except that

β′0 in Assumption 3′ is replaced by the conditional log RR β′0(X).

As a side note, Assumption 2′ automatically holds under Assumption 2, and hence the

above results in this section also apply to the setting in previous sections that is illustrated

in Figure 1(e). We present this statement in the following corollary.

Corollary 3. Under Assumptions 1, 2, 3′, 4 and 5′, we have

E[Ṽ1(A, Y, Z,X; β′0) | U,XS = 1] = 0.

With Assumption 2, the treatment confounding bridge function q̃ can be estimated by

solving the moment equation (13) either under under Assumption 6′ and 8, or Assump-

tions 6, 7 and 8 as an approximation under the rare disease assumption. Corollary 3 leads

to an interesting observation: under the treatment-independent sampling (Assumption 2),
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the estimator β̂ from Algorithm 1 can be viewed as either log RR or log OR, depending on

the set of assumptions made.

3 Simulation Study

To assess the empirical performance of our proposed method, we consider two settings with

different types of confounding and negative control variables, and perform corresponding

simulation studies.

In the first setting, we consider no measured confounder, a binary unmeasured con-

founder U , a binary NCE Z and a binary NCO W . To trigger selection among subjects

with Y = 0, we let D be a binary indicator of the presence of other flu like illnesses. The

treatment confounding bridge function is thus given by (7). We assume the distribution of

Y is Bernoulli with a log-linear risk model: Y |A,U ∼ Bernoulli(exp(η0Y + β0A+ ηUYU)).

We consider values of β0 to be -1.609, -0.693, -0.357 or 0, corresponding to a risk ratio of

0.2, 0.5, 0.7 or 1. We assume the selection S only equals one with nonzero probability if

at least one of Y , W and D equals one, and is independent of A and Z conditional on

other variables. The resulting prevalence of Y in the target population is 0.75% among

the unvaccinated individuals and 0.55%, 0.65%, 0.72% or 0.75% among the vaccinated in-

dividuals, corresponding to four values of β0. Next, we consider a setting where X, U , Z

and W are all univariate continuous variables. We generate the infection outcome using a

log-linear model

Y |A,U,X ∼ Bernoulli(exp(µ0Y + β0A+ µUYU + µXYX + µUXYUX)).

We generate A and Z following Example 2 in Section 2.3. As such the treatment con-
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founding bridge function is given by Equation (8). The probability of S = 1 is 1 only if at

least one of Y and D is nonzero. The resulting prevalence of Y in the target population is

0.34% among the unvaccinated individuals and 0.24%, 0.28%, 0.31% or 0.34% among the

vaccinated individuals, corresponding to four values of β0. Appendix N and O give more

details on the data-generating mechanism for the two settings.

In each scenario, we simulate a target population of size N = 7, 000, 000 and imple-

ment 1, 000 simulation iterations. For both settings, we evaluate the performance of three

estimators for β0:

• NC estimator: our proposed estimator given by Algorithm 1. In the first setting, we

use a saturated parametric model (14) for the treatment confounding bridge function

in the first setting, with m(W,A) = (1,W,A,WA)T ; in the second setting, we use

model (15) and m(W,A,X) = (1,W,A,X)T . We set c(X) = 1 in both settings.

• NC-Oracle estimator: the estimated treatment confounding bridge function in Algo-

rithm 1 is only an approximation under Assumption 7, whose bias may affect the

estimation for β0, as derived in Appendix I. We therefore include NC-Oracle estima-

tor that uses the true treatment confounding bridge function q(A,Z,X). Appendices

E include derivation of the true treatment confounding bridge function under the

continuous (X,U,Z,W ) setting.

• Logistic regression: we also consider a logistic regression model of Y on A (and

X in the second setting), overlooking the unmeasured confounders U . This is a

common choice for covariate adjusted analyses of test-negative designs but ignores

biases caused by U (Bond, Sullivan, and Cowling, 2016). We comment in Appendix P

that the estimator is appropriate in the absence of unmeasured confounders except

for potential model misspecification.
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We note that the target parameter β0 for NC estimator and NC-Oracle estimator is

log causal RR, while logistic regression gives log causal OR. However, the two parameters

are approximately equal under Assumption 7 where the infection risk is low in the target

population.

Figure 2 shows the bias of three estimators considered and the coverage of their 95%

confidence intervals. In both settings, both NC and NC-Oracle are essentially unbiased

whereas logistic regression gives a biased estimate in all scenarios. NC-Oracle exhibits

slightly higher precision than NC, which implies that estimating the treatment confounding

bridge function in the TND is only slightly more variable. The 95% confidence intervals

for NC and NC-Oracle both achieve nominal coverage, whereas logistic regression-based

confidence intervals under-cover severely. We repeated the simulation under a non-rare

disease setting in Appendix Q. In such scenarios, while NC-Oracle estimator is still unbiased

with calibrated 95% confidence intervals, the NC estimator is biased in general except when

β0 = 0. We conclude that the proposed NC estimator is unbiased of the log causal RR

either under a rare disease setting or under a non-rare disease setting with no vaccine effect.

4 Application

We applied our proposed method to a TND study of COVID-19 VE of two-dose Mod-

erna vaccine (mRNA-1273), two-dose Pfizer-BioNTech vaccine (BNT162b2), and single-

dose Johnson & Johnson’s Janssen vaccine (Ad26.COV2.S) against COVID-19 infection

nested in the University of Michigan Health System. The selected study sample includes

patients who interacted with the University of Michigan Health System and experienced

COVID-19 symptoms, had suspected exposure to COVID-19 virus, or sought to screen for

COVID-19 infection, between April 5, 2021 and December 7, 2021. In addition, the selected
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(a)

(b)

Figure 2: Bias (left) and coverage rates of 95% confidence interval (right) for the oracle
estimator (NC-Oracle), GMM estimator (NC-GMM) and logistic regression (Logit Reg.)
with a (a) binary or (b) continuous unmeasured confounder.

test-positive subjects had at least one positive lab tests for COVID-19 infection after April

5. Vaccination history was obtained through electronic health records. A study subject

was considered fully vaccinated if they received at least one dose of Johnson & Johnson’s

Janssen vaccine or at least two doses of Moderna or Pfizer-BioNTech vaccine. If a subject

tested positive before or within 14 days after their first dose of Janssen vaccine or within 14

days after their second dose of Moderna or Pfizer-BioNTech vaccine, they were considered

unvaccinated (Moline et al., 2021).

We took immunization visits before December 2020 as NCE since COVID-19 vaccines

were not available before December 2020 and immunization before was unlikely to affect

the risk of COVID-19 infection; nor that of the selected NCOs we describe next. For
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NCO, we selected a binary indicator of having at least one of the following “negative

control outcome” conditions after April 5, 2021: arm/leg cellulitis, eye/ear disorder, gastro-

esophageal disease, atopic dermatitis, and injuries. Such candidate NCE and NCO are likely

to satisfy the requisite conditional independence conditions for them to be valid negative

control variables and to be related to a patient’s latent HSB. We adjusted for age groups

(<18, between 18 and 60, or≥ 60), gender, race (white or non-white), Charlson comorbidity

score ≥ 3, and the calendar month of a test-positive subject’s first positive COVID test

or a test-negative subject’s last COVID test. Table S3 in Appendix R summarizes the

distribution of negative control variables, demographic variables and COVID-19 infection

among vaccinated and unvaccinated subjects.

Because NCE is expected not to be associated with either the outcome or NCE in a fully

adjusted analysis unless there is unmeasured confounding, we first fit regression models to

detect presence of residual confounding bias. Conditioning on the baseline covariates, in

both vaccinated and unvaccinated groups, NCE is significantly associated with COVID-19

infection (p < 0.001) and NCO (p < 0.001) in corresponding adjusted logistic regression

models, suggesting the presence of hidden biases (See Appendix R Table S4, S5).

We implemented Algorithm 1 to estimate VE. We specified a linear model for the treat-

ment confounding bridge function with an interaction term between COVID-19 vaccination

and the NCE, and set the function m to include one (for an intercept term), COVID-19

vaccination, the NCO, and baseline covariates, as well as all two-way interactions. For

comparison, we also implemented a logistic regression model, which gives an unbiased esti-

mate of causal odds ratio under the no unmeasured confounding assumption, adjusting for

gender and age groups. In this case, The VE can be approximated by one minus the odds

ratio of COVID-19 infection against vaccination, as COVID-19 infection rate is known to
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be low across strata in the target population.

The double negative control Algorithm 1 estimated the VE against lab-confirmed COVID-

19 infection were 71.6% (95% CI: 68.9%, 74.0%) for the two-dose Pfizer-BioNTech vaccine,

86.8% (95% CI: 84.7%, 88.6%) for the two-dose Moderna vaccine, and 66.0% (95% CI:

54.5%, 74.6%) for the one-dose Johnson & Johnson’s Janssen vaccine. The logistic regres-

sion estimates for the same VE were 67.0% (95% CI: 64.5%, 69.4%) for the Pfizer-BioNTech

vaccine, 75.1% (95% CI, 72.5%, 77.5%) for the Moderna vaccine, and 56.0% (95%: 47.9%,

62.9%) for the Janssen vaccine. There is significant evidence of hidden bias as summarized

in Tables S4 and S5. The VE estimates with our double NC method are notably higher

than those given by the standard logistic regression for all three regimens.

Recent observational studies estimated real-world mRNA COVID-19 vaccine (Pfizer-

BioNTech and Moderna) effectiveness ranging between 80% and 98% against lab confirmed

SARS-COV-2 infection of different variants (bruxvoort2021effectiveness; israel2021elapsed;

Dagan et al., 2021). Our NC approach provided VE estimates that are close to the previ-

ous studies. We hypothesize that the standard logistic regression underestimates the VE

by overlooking the confounding bias due to HSB and related factors, which our proposed

double NC approach appears to reduce to some extent.

5 Discussion

In this article, we have introduced a statistical method for estimating vaccine effectiveness

in a test-negative design. The approach leverages negative control variables to account

for hidden bias due to residual confounding and/or selection mechanism into the TND

sample. Negative control variables abound in practice, such as vaccination history which is

routinely collected in insurance claims and electronic health records. Hence the proposed
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method may be particularly useful in such real world settings to obtain improved estimates

of vaccine effectiveness.

The TND is a challenging setting in causal inference where selection bias and unmea-

sured confounding co-exist, selection is outcome-dependent, and unmeasured confounders

also impact selection. As a result, the causal effect of interest is in general not identified

from such studies (Cai and Kuroki, 2012). Nevertheless, we establish that progress can be

made under a semiparametric multiplicative model, provided the outcome is rare in the tar-

get population, and double negative control variables are available. To this end, this article

showcases the potential power of negative control methods and proximal causal inference

in epidemiologic research (Shi, Miao, and Tchetgen Tchetgen, 2020; Tchetgen Tchetgen

et al., 2020).

We focused on the outpatient TND, where recruitment is restricted to subjects who seek

care voluntarily. TNDs have also been applied to inpatient settings for studying VE against,

for example, flu hospitalization (Feng, Cowling, and Sullivan, 2016; Foppa et al., 2016).

In inpatient TNDs, differential access to healthcare and underlying health characteristics

between vaccinated and unvaccinated subjects are likely the main causes of confounding

bias (Feng, Cowling, and Sullivan, 2016). Our methods are still applicable in such settings,

but negative control variables should be selected to be relevant to the source of unmeasured

confounding mechanism. For example, previous vaccination and hospitalization outside the

flu season or hospitalization due to other flu-like illnesses are viable candidate NCE and

NCO, respectively (Jackson et al., 2006).

Our approach is suitable for post-market TND studies where real-world vaccine effec-

tiveness is of interest and vaccination history is obtained retrospectively, possibly through

electronic health records. For vaccine efficacy in a controlled trial setting, Wang et al. (2022)
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recently developed estimation and inference of RR in cluster-randomized TND, aiming to

correct for bias due to differential HSB induced by the intervention being unblinded. Be-

cause of randomization, they considered HSB as a post-treatment variable and proposed a

log-contrast estimator which corrects for selection bias by leveraging a valid test-negative

outcome, under an assumption that either (i) the vaccine does not have a causal effect in the

population, and the causal impact of vaccination on selection is equal for test-positive and

-negative subsamples; or (ii) among care seekers, the incidence of test-negative outcomes

does not differ between vaccinated and unvaccinated, and the intervention effect among

care seekers is generalizable to the whole population. We note that even under random-

ization, identification conditions given in Section 2.6 are neither stronger nor weaker than

those of Wang et al. (2022) described above, as neither set of assumptions appear to imply

the other. An important advantage of our proposed methods is that they can be used to

account for selection bias in a TND study irrespective of randomization.

Our methods target RR as a measure of VE instead of the more common OR (Jackson

et al., 2006; Sullivan, Tchetgen Tchetgen, and Cowling, 2016). These two measures are

approximately equal for rare infections. Schnitzer (2022) recently considered estimation of

a marginal causal RR in the TND sample and justified the use of an inverse probability of

treatment weighted (IPTW) estimator in a setting in which an unmeasured common cause

of infection and selection into the TND sample does not cause vaccination (and thus there

is no unmeasured confounding). Instead, our methods allow for an unmeasured common

cause of vaccination, infection and selection into the TND sample; however in order to

estimate a causal RR, we invoke both, an assumptions of no effect modification by an un-

measured confounder, and a rare-disease condition. As we establish, the latter assumption

is not needed if there is no vaccine effect against infection outcome. In Section 2.6, we es-
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tablish that under a homogeneous OR vaccine effect measure condition, and an alternative

definition of the treatment bridge function, our methods can identify a causal effect of the

vaccine on the odds ratio scale without invoking the rare disease condition.

Throughout the article, we have assumed diagnostic tests are accurate and individuals

who seek care are sparsely distributed, such that the vaccination of a given subject in

the TND sample does not protect another study subject from infection, , i.e. there is no

interference in the TND sample, a common assumption in TND literature. This assumption

may be violated if members of the same households present in the ER in which case block

interference must be accounted using results from interference literature (Hudgens and

Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012). Sensitivity analysis may be

considered to evaluate how violation of these assumptions can potentially bias inferences

about VE.
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A Proof of Proposition 1

The result immediately follows if we can show that

E

[
(−1)1−A

1

P (A|U,X)
exp(−β0A)

∣∣∣∣U,X, Y = 1, S = 1

]
= 0. (20)

By Assumption 2, the left-hand side of (20) equals

E

[
(−1)1−A

1

P (A|U,X)
exp(−β0A)

∣∣∣∣U,X, Y = 1

]
.

We further have

E

[
(−1)1−A

1

P (A|U,X)
exp(−β0A)

∣∣∣∣U,X, Y = 1

]
=

1∑
a=0

(−1)1−a
1

P (A = a|U,X)
exp(−β0a)P (A = a|U,X, Y = 1)

=
1∑

a=0

(−1)1−a
1

P (A = a|U,X)
exp(−β0a)

P (A = a|U,X)P (Y = 1|A = a, U,X)

P (Y = 1|U,X)

A.3
=

1∑
a=0

(−1)1−a exp(−β0a)
exp(β0a)P (Y = 1|A = 0, U,X)

P (Y = 1|U,X)

=
1∑

a=0

(−1)1−a
P (Y = 1|A = 0, U,X)

P (Y = 1|U,X)

=0.
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B Existence of solutions to (6)

In this section, we provide the conditions of existence of solutions to (6). The conditions for

(11) can be similarly derived. The results in this section directly adapted from Appendix

B of Cui et al. (2020).

Let L2{F (t)} denote the Hilbert space of all square-integrable functions of t with respect

to distribution function F (t), equiped with inner product 〈g1, g2〉 =
∫
g1(t)g2(t)dF (t). Let

Ta,x denote the operator L2{F (z|a, x)} → L2{F (u|a, x)}, Ta,xq = E[q(Z)|A = a, U =

u,X = x] and let (λa,x,n, ϕa,x,n, φa,x,n) denote a singular value decomposition of Ta,x. The

solution to (6) exists if:

(1)
∫ ∫

f(z|a, u, x)f(u|a, z, x)dzdu <∞;

(2)
∫
P−2(A = a|U = u,X = x)f(u|a, x)du <∞;

(3)
∑∞

n=1 λ
−2
a,x,n|〈P−1(A = a|U = u,X = x), φa,x,n〉|2 <∞.
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C Proof of Theorem 1

It suffices to show that

E[(−1)1−Aq(A,Z,X) exp(−β0A)|U,X, Y = 1, S = 1] = 0.

By Assumption 2, the left-hand side is

E[e−β0A(−1)1−Aq(A,Z,X)|U,X, Y = 1]

=E{e−β0A(−1)1−AE[q(A,Z,X)|A,U,X, Y = 1]|U,X, Y = 1}

A.4
=E{e−β0A(−1)1−AE[q(A,Z,X)|A,U,X]|U,X, Y = 1}

A.5
=E{e−β0A(−1)1−A

1

P (A|U,X)
|U,X, Y = 1}

=0

The last equality is proved in Appendix A.
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D Treatmeng bridge function and estimation with cat-

egorical NCE, NCO and unmeasured confounders.

We consider a categorical unmeasured confounder U with categories u1, . . . , uJ and NCE

Z with categories z1, . . . , zI . We assume there are no other covariates X. We write pia.k =

P (Z = zi, A = a|U = uj) for i = 1, . . . , I, a = 0, 1, and j = 1, . . . , J .

Similar to before, the treatment confounding bridge function q(a, z) should satisfy

I∑
i=1

pia.jq(a, zi) = 1 (21)

for all i, j. Therefore, any solution of the following equation system, if exists, is a treatment

confounding bridge function:

p1a.1q(a, z1) + p2a.1q(a, z2) + · · ·+ pIa.1q(a, zI) = 1

p1a.2q(a, z1) + p2a.2q(a, z2) + · · ·+ pIa.2q(a, zI) = 1

. . .

p1a.Jq(a, z1) + p2a.Jq(a, z2) + · · ·+ pIa.Jq(a, zI) = 1

(22)

for a = 0, 1. We denote the probability matrix

PZ,A|U =



p1a.1 p2a.1 . . . pIa.1

p1a.2 p2a.2 . . . pIa.2

...
...

p1a.J p2a.J . . . pIa.J


. (23)

A treatment confounding bridge function exists if the matrix PZ,A|U is invertible.

Suppose besides a categorical NCE Z with levels z1, . . . , zI , we also have a categorical
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NCO W with levels w1, . . . , wK . The integral equation (11) is equivalent to the linear

equation system

p′1a.1q
∗(a, z1) + p′2a.1q

∗(a, z2) + · · ·+ p′Ia.1q
∗(a, zI) = 1

p′1a.2q
∗(a, z1) + p′2a.2q

∗(a, z2) + · · ·+ p′Ia.2q
∗(a, zI) = 1

. . .

p′1a.Kq
∗(a, z1) + p′2a.Kq

∗(a, z2) + · · ·+ p′Ia.Kq
∗(a, zI) = 1

(24)

for a = 0, 1, where p′ia.k = P (Z = zi, A = a|W = wk, Y = 0, S = 1). We denote that matrix

P ′(a) =



p′1a.1 p′2a.1 . . . p′Ia.1

p′1a.2 p′2a.2 . . . p′Ia.2

...
...

p′1a.K p′2a.K . . . p′Ia.K


. (25)

Then Assumption 8 is equivalent to the condition that P ′(a) is invertible with I = K

for a = 0, 1, in which case (11) has a unique solution

(q∗(a, z1), . . . , q
∗(a, zI))

T = [P ′(a)]−11I .

The probabilities p′ia.k’s can all be estimated from the study data.
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E Derivation of the treatment confounding bridge func-

tion in Example 2

By Assumption 5, the treatment confounding bridge function q(A,Z,X) should satisfy

E[q(A,Z,X)|U = u,A = a,X = x] =
1

P (A = a|U = u,X = x)

for all a, u and X.

We write q(A,Z,X) = 1 + r(Z,A,X), then

E[r(Z, a,X)|U,A = a,X] =
1− P (A = a|U,X)

P (A = a|U,X)
.

Consider

r(Z,A,X) = exp((−1)A(τ0 + τ1A+ τ2Z + τ3X)),

then

P (A = 1|U = u,X = x)

1− P (A = 1|U = u,X = x)

=

∫
r(z, 0, x)f(z|u, x,A = 0)dz

=

∫
exp(τ0 + τ2z + τ3x)

1√
2πσ2

z

exp

(
−(z − µ0z − µUZu− µXZx)2

2σ2
z

)
dz

= exp(τ0 + τ3x) exp

(
τ2(µ0Z + µUZu+ µXZx) +

σ2
zτ

2
2

2

)
= exp(τ0 + τ2µ0Z +

σ2
zτ

2
2

2
+ τ2µUZu+ (τ3 + µXZτ2)x)
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and

1− P (A = 1|U = u,X = x)

P (A = 1|U = u,X = x)

=

∫
r(z, 1, x)f(z|u, x,A = 1)dz

=

∫
exp(−τ0 − τ1 − τ2z − τ3x)

1√
2πσ2

z

exp

(
−(z − µ0Z − µAZ − µUZu− µXZx)2

2σ2
z

)
dz

= exp(−τ0 − τ1 − τ3x) exp

(
−τ2(µ0Z + µAZ + µUZu+ µXZx) +

σ2
zτ

2
2

2

)
= exp(−τ0 − τ1 − τ2µ0Z − τ2µAZ +

σ2
zτ

2
2

2
− τ2µUZu− (τ3 + τ2µXZ)x)

This requires that

τ1 + τ2µAZ = σ2
zτ

2
2

Because

P (A = 1|U,X) = expit(µ0A + µUAU + µXAX),

we conclude the parameters in the bridge function are

τ2 = µUA/µUZ ,

τ3 = µXA − µXZτ2 = µXA − µXZµUA/µUZ

τ1 = σ2
zτ

2
2 − τ2µAZ =

σ2
zµ

2
UA

µ2
UZ

− µUAµAZ
µUZ

τ0 = µ0A − τ2µ0Z −
σ2
zα

2
2

2
= µ0A −

µUAµ0Z

µUZ
− σ2

zµ
2
UA

2µ2
UZ
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F Proof of Theorem 2 and Corollary 1

We first introduce a few properties due to the rare disease assumption:

Lemma 1. Under Assumptions 2, 4, 6 and 7, for every a, w, u and x, we have

(a)

P (Y = 1|W = w,U = u,X = x) < δ, P (Y = 1|A = a, U = u,X = x) < δ,

P (Y = 1|U = u,X = x) < δ.

(b)

1− δ < P (A = a|U = u,X = x, Y = 0, S = 1)

P (A = a|U = u,X = x)
<

1

1− δ

(c)

(1− δ)2 < P (A = a|W = w,U = u,X = x, Y = 0, S = 1)

P (A = a|U = u,X = x, Y = 0, S = 1)
<

1

(1− δ)2
.

(d)

f(z|A = a, U = u,X = x) = f(z|W = w,A = a, U = u,X = x, Y = 0, S = 1).

Proof. (a) For every a, w, u and x, we have

P (Y = 1|W = w,U = u,X = x)

=
∑
a

P (Y = 1|A = a,W = w,U = u,X = x)P (A = a|W = w,U = u,X = x)

A.7
< δ

∑
a

P (A = a|W = w,U = u,X = x)

= δ.
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The rest follows similarly.

(b) For every a, u and x, we have

P (A = a|U = u,X = x, Y = 0) = P (A = a|U = u,X = x)× P (Y = 0|A = a, U = u,X = x)

P (Y = 0|U = u,X = x)
.

By Lemma 1(a), we have

1− δ < P (Y = 0|A = a, U = u,X = x)

P (Y = 0|U = u,X = x)
=
P (A = a|U = u,X = x, Y = 0)

P (A = a|U = u,X = x)
<

1

1− δ
.

The result follows by noticing that P (A = a|U = u,X = x, Y = 0) = P (A = a|U =

u,X = x, Y = 0, S = 1) due to Assumption 2.

(c) For every a, w, u and x, we have

P (A = a|W = w,U = u,X = x, Y = 0)

= P (A = a|W = w,U = u,X = x)× P (Y = 0|A = a,W = w,U = u,X = x)

P (Y = 0|W = w,U = u,X = x)

A.6(a)
= P (A = a|U = u,X = x)× P (Y = 0|A = a,W = w,U = u,X = x)

P (Y = 0|W = w,U = u,X = x)

= P (A = a|U = u,X = x, Y = 0)× P (Y = 0|U = u,X = x)

P (Y = 0|A = a, U = u,X = x)

× P (Y = 0|A = a,W = w,U = u,X = x)

P (Y = 0|W = w,U = u,X = x)

By Lemma 1(a), we have

1− δ < P (Y = 0|U = u,X = x)

P (Y = 0|A = a, U = u,X = x)
<

1

1− δ
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and

1− δ < P (Y = 0|A = a,W = w,U = u,X = x)

P (Y = 0|W = w,U = u,X = x)
<

1

1− δ
.

We therefore have

(1− δ)2 < P (A = a|W = w,U = u,X = x, Y = 0)

P (A = a|U = u,X = x, Y = 0)
<

1

(1− δ)2
.

Finally, by Assumptions 2 and 6(c), we have

P (A = a|U = u,X = x, Y = 0) = P (A = a|U = u,X = x, Y = 0, S = 1),

P (A = a|W = w,U = u,X = x, Y = 0) = P (A = a|W = w,U = u,X = x, Y = 0, S = 1).

We conclude that

(1− δ)2 < P (A = a|W = w,U = u,X = x, Y = 0, S = 1)

P (A = a|U = u,X = x, Y = 0, S = 1)
<

1

(1− δ)2
.

(d)

f(z|W = w,A = a, U = u,X = x, Y = 0, S = 1)

A.6(c)
= f(z|W = w,A = a, U = u,X = x, Y = 0)

A.6(b)
= f(z|A = a, U = u,X = x)
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Therefore, we have

E{q(a, Z,X)|A = a,W,X, Y = 0, S = 1}

=

∫
q(a, z,X)f(z|A = a,W,X, Y = 0, S = 1) dz

=

∫ ∫
q(a, z,X)f(z|A = a,W,U = u,X, Y = 0, S = 1)f(u|A = a,W,X, Y = 0, S = 1) dz du

L.1(d)
=

∫ {∫
q(a, z,X)f(z|A = a, U = u,X) du

}
f(u|A = a,W,X, Y = 0, S = 1) dz

A.5
=

∫
1

P (A = a|U = u,X)
f(u|A = a,W,X, Y = 0, S = 1)du

L.1(b)
<

1

1− δ

∫
1

P (A = a|U = u,X, Y = 0, S = 1)
f(u|A = a,W,X, Y = 0, S = 1)du

L.1(c)
<

1

(1− δ)3

∫
1

P (A = a|W,U = u,X, Y = 0, S = 1)
f(u|A = a,W,X, Y = 0, S = 1)du

=
1

(1− δ)3

∫
f(u|W,X, Y = 0, S = 1)f(u|A = a,W,X, Y = 0, S = 1)

P (A = a|W,X, Y = 0, S = 1)f(u|A = a,W,X, Y = 0, S = 1)
du

=
1

(1− δ)3
1

P (A = a|W,X, Y = 0, S = 1)

∫
f(u|W,X, Y = 0, S = 1) du

=
1

(1− δ)3
1

P (A = a|W,X, Y = 0, S = 1)

and
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E{q(a, Z,X)|A = a,W,X, Y = 0, S = 1}

=

∫
1

P (A = a|U = u,X)
f(u|A = a,W,X, Y = 0, S = 1) du

L.1(b)
> (1− δ)

∫
1

P (A = a|U = u,X, Y = 0, S = 1)
f(u|A = a,W,X, Y = 0, S = 1) du

L.1(c)
> (1− δ)3

∫
1

P (A = a|W,U = u,X, Y = 0, S = 1)
f(u|A = a,W,X, Y = 0, S = 1) du

=(1− δ)3
∫

f(u|W,X, Y = 0, S = 1)f(u|A = a,W,X, Y = 0, S = 1)

P (A = a|W,X, Y = 0, S = 1)f(u|A = a,W,X, Y = 0, S = 1)
du

=(1− δ)3 1

P (A = a|W,X, Y = 0, S = 1)

∫
f(u|W,X, Y = 0, S = 1) du

=(1− δ)3 1

P (A = a|W,X, Y = 0, S = 1)
.

To prove Corollary 1, we have

E{q(a, Z,X)|A = a,W,X, Y = 0, S = 1}

=

∫
1

P (A = a|U = u,X)
f(u|A = a,W,X, Y = 0, S = 1) du

=

∫
P (A = a|U = u,X, Y = 0,W, S = 1)

P (A = a|U = u,X)P (A = a|W,X, Y = 0, S = 1)
f(u|W,X, Y = 0, S = 1) du

A.6
=

∫
P (A = a|U = u,X, Y = 0,W )

P (A = a|U = u,X)P (A = a|W,X, Y = 0, S = 1)
f(u|W,X, Y = 0, S = 1) du

If A ⊥⊥ Y |U,X, then together with Assumption 6 we have P (A = a|U = u,X, Y = 0,W ) =

P (A = a|U = u,X), whereby the above equals

1

P (A = a|W,X, Y = 0, S = 1)

∫
f(u|W,X, Y = 0, S = 1)du =

1

P (A = a|W,X, Y = 0, S = 1)
.
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G Discussion of Assumption 8

Similar to (6), Equation (11) defines a Fredholm integral equation of the first kind, yet only

involves observed data. Although a treatment confounding bridge function q(A,Z,X) must

satisfy (11), there is no guarantee that solving (11) gives a treatment confounding bridge

function if multiple solutions exist. When a solution to (11) exists, we give the following

assumptions that guarantee the uniqueness of solution.

Assumption 10 (Completeness).

(a) For any square-integrable function g, if E[g(Z)|A,U,X] = 0 almost surely, then

g(Z) = 0 almost surely;

(b) For any square-integrable function h, if E[h(U)|A,W,X, Y = 0, S = 1] almost surely,

then h(U) = 0 almost surely.

Intuitively, Assumption 10 is a statement on the information contained in the unmea-

sured confounders vs. in the negative control variables – Assumption 10(a) requires the con-

founders U are informative enough about Z in the target population and Assumption 10(b)

requires the NCO W is informative enough about U in the subgroup Y = 0, S = 1, so that

no information is lost when taking the two conditional expectations. Completeness con-

ditions similar to Assumption 10 were originally introduced by Lehmann and Scheffe to

identify the so-called unbiase minimum risk estimator (Lehmann and Scheffé, 2012a,b). In

econometrics and causal inference literature, completeness conditions have been employed

to achieve identifiability for a variety of nonparametric or semiparametric models, such

as instrumental variable regression (D’Haultfoeuille, 2011; Newey and Powell, 2003), mea-

surement error models (Hu and Schennach, 2008), synthetic control (Shi et al., 2021), and

previous works in negative control methods (Cui et al., 2020; Miao, Shi, and Tchetgen
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Tchetgen, 2018; Ying et al., 2021). The completeness condition holds for a wide range

of distributions. Newey and Powell (2003) and D’Haultfoeuille (2011) provided justifica-

tions in exponential families and discrete distributions with finite support. Andrews (2011)

constructed a broad class of bivariate distributions that satisfy the completeness condition.

Assumption 10 have several immediate consequences:

Proposition 2. (a) Under Assumptions 4, 6 and 10, for any square integrable function

g such that E[g(Z)|A,W,X, S = 0, Y = 1] = 0 almost surely, then g(Z) = 0 almost

surely.

(b) Under Assumptions 10(a) and 1-5, the treatment confounding bridge function is

unique. That is, if two square-integrable functions q(A,Z,X) and q1(A,Z,X) sat-

isfy

E[q(a, Z, x)|A = a, U = u,X = x] = E[q1(a, Z, x)|A = a, U = u,X = x]

=
1

P (A = a|U = u,X = x)

for all a, u, x almost surely, then q(A,Z,X) = q1(A,Z,X) almost surely.

(c) Under Assumptions 4, 6, 8 and 10, Equation (11) has a unique solution q∗(A,Z,X).

We prove Proposition 2 below. Proposition 2 states that the completeness conditions in

Assumption 10 and the definitions of the negative control variables lead to a third complete-

ness condition that only involves the study data. Proposition 2 states the uniqueness of the

treatment confounding bridge function, q(A,Z,X), and the solution to (11), q∗(A,Z,X).

The function q∗(A,Z,X) can therefore be identified from the study data alone and is a

good approximation of q(A,Z,X) by Theorem 2.
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Proof. (a) Suppose a square-integrable function g(Z) satisfies

E[g(Z)|A,W,X, Y = 0, S = 1] = 0 almost surely.

The left-hand side equals

E {E [g(Z)|U,A,W,X, Y = 0, S = 1] |A,W,X, Y = 0, S = 1}

A.6
=E {E [g(Z)|U,A,X, Y = 0, S = 1] |A,W,X, Y = 0, S = 1}

A.4
=E {E [g(Z)|U,A,X] |A,W,X, Y = 0, S = 1}

By Assumption 10(b), E [g(Z)|U,A,X] = 0 almost surely. Then by Assumption 10(a),

g(Z) = 0 almost surely.

(b) We have

E[q(A,Z,X)− q1(A,Z,X)|A,U,X] = 0

almost surely. By Assumtion 10(a), we have

q(A,Z,X)− q1(A,Z,X) = 0

almost surely, or q(A,Z,X) = q1(A,Z,X) almost surely.

(c) If two square-integrable functions q∗(A,Z,X) = q∗1(A,Z,X) satisfies

E[q∗(A,Z,X)|A,W,X, Y = 0, S = 1] = E[q∗1(A,Z,X)|A,W,X, Y = 0, S = 1]

=
1

P (A|W,X, Y = 0, S = 1)
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almost surely, then

E {[q∗(A,Z,X)− q∗1(A,Z,X)]|A,W,X, Y = 0, S = 1} = 0.

Under Assumptions 4, 6 and 10, Proposition 2(a) holds and therefore

q∗(A,Z,X) = q∗1(A,Z,X)

almost surely.
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H Proof of Corollary 2 and further discussion

We first prove equation (12)

E[m(W,A,X)q∗(A,Z,X)−m(W, 1, X)−m(W, 0, X)|Y = 0, S = 1]

=E {m(W,A,X)E [q∗(A,Z,X)|W,A,X, Y = 0, S = 1]−m(W, 1, X)−m(W, 0, X)|Y = 0, S = 1}

(11)
= E

{
m(W,A,X)

1

P (A|W,X, Y = 0, S = 1)
−m(W, 1, X)−m(W, 0, X)|Y = 0, S = 1

}
=E
{
E

[
m(W,A,X)

1

P (A|W,X, Y = 0, S = 1)
|W,X, Y = 0, S = 1

]
−

m(W, 1, X)−m(W, 0, X)|Y = 0, S = 1
}

=E {m(W, 1, X) +m(W, 0, X)−m(W, 1, X)−m(W, 0, X)|Y = 0, S = 1}

= 0

In fact, one can show that any regular and asymptotically normal estimator of τ that

satisfies (11) has influence function of the form

IF (W,Z,A,X) = −
{
E

[
∂q(A,Z,X; τ)

∂τ

∣∣∣∣
τ=τ0

m(W,A,X)(1− Y )

∣∣∣∣S = 1

]}−1
(1− Y )(

m(W,A,X)q(A,Z,X)−m(W, 1, X)−m(W, 0, X)

)

for an arbitrary function m(W,A,X). Therefore, any regular and asymptotically normal

estimator of τ corresponds to the solution of the estimating equation (13) for some function

m(W,A,X).

To prove this result, we see that for any parametric submodel that satisfies (11) and is

56



indexed by s such that the true distribution corresponds to s = 0, we have

Es

{
(1− Y )

[
q(A,Z,X; τs)−

1

fs(A|W,X, Y = 0, S = 1)

]
m(W,A,X)

∣∣∣∣S = 1

}
= 0

and thus

∂Es

{
(1− Y )

[
q(A,Z,X; τs)−

1

fs(A|W,X, Y = 0, S = 1)

]
m(W,A,X)

∣∣∣∣S = 1

}
/∂s

∣∣∣∣
s=0

= 0.

Note that

∂

∂s
Es[(1− Y )q(A,Z,X; τs)m(W,A,X)|S = 1]

=E

[
∂q(A,Z,X; τ)

∂τ

∣∣∣∣
τ=τ0

m(W,A,X)(1− Y )

∣∣∣∣S = 1

]
∂τs
∂s

∣∣∣∣
s=0

+

E[(1− Y )q(A,Z,X)m(W,A,X)S(O|S = 1)|S = 1]
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and

∂

∂s
Es

[
(1− Y )m(W,A,X)

fs(A|W,X, Y = 0, S = 1)

∣∣∣∣S = 1

]

=E

[
− (1− Y )m(W,A,X)

∂

∂s
fs(A|W,X, Y = 0, S = 1)

f 2(A|W,X, Y = 0, S = 1)

∣∣∣∣S = 1

]
+

E

[
m(W,A,X)(1− Y )

f(A|W,X, Y = 0, S = 1)
S(W,A,X, Y = 0|S = 1)

∣∣∣∣S = 1

]
=E

[
− m(W,A,X)(1− Y )

f(A|W,X, Y = 0, S = 1)
S(A|W,X, Y = 0, S = 1)

∣∣∣∣S = 1

]
+

E

[
m(W,A,X)(1− Y )

f(A|W,X, Y = 0, S = 1)
S(W,A,X, Y = 0|S = 1)

∣∣∣∣S = 1

]
=E

[
m(W,A,X)(1− Y )

f(A|W,X, Y = 0, S = 1)
S(W,X, Y = 0|S = 1)

∣∣∣∣S = 1

]
=E

[
(1− Y ){m(W, 1, X)−m(W, 0, X)}S(W,X, Y = 0|S = 1)

∣∣∣∣S = 1

]
=E

[
(1− Y ){m(W, 1, X)−m(W, 0, X)}S(O|S = 1)

∣∣∣∣S = 1

]

Rearranging the terms, we have

∂τs
∂s

∣∣∣∣
s=0

=

E

[
−
{
E

[
∂q(A,Z,X; τ)

∂τ

∣∣∣∣
τ=τ0

m(W,A,X)(1− Y )

∣∣∣∣S = 1

]}−1
(1− Y )(

m(W,A,X)q(A,Z,X)−m(W, 1, X)−m(W, 0, X)

)
S(O|S = 1)

∣∣∣∣S = 1

]
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I Discussion on the rare disease assumption 7

Through this section, we set c(X) = 1.

We first describe a crucial identity that links the log risk ratio β0 and the treatment

confounding bridge function q(A,Z,X).

Lemma 2. Under Assumptions 1, 2, 3 and 5, we have

β0 = log

(
E[q(A,Z,X)I(A = 1, Y = 1)|S = 1]

E[q(A,Z,X)I(A = 0, Y = 1)|S = 1]

)
(26)

Proof. The right hand side of (26) is

log

(
E[q(A,Z,X)I(A = 1, Y = 1)|S = 1]

E[q(A,Z,X)I(A = 0, Y = 1)|S = 1]

)
= log

(
E[q(A,Z,X)|A = 1, Y = 1, S = 1]

E[q(A,Z,X)|A = 0, Y = 1, S = 1]

)
+ log

(
P (Y = 1, A = 1|S = 1)

P (Y = 1, A = 0|S = 1)

)
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Note that for a = 0, 1,

E[q(A,Z,X)|A = a, Y = 1, S = 1]

=E {E[q(A,Z,X)|U,X,A = a, Y = 1, S = 1]|A = a, Y = 1, S = 1}

A.2
=E {E[q(A,Z,X)|U,X,A = a]|A = a, Y = 1, S = 1}

A.5
=E

{
1

P (A = a|U,X)

∣∣∣∣A = a, Y = 1, S = 1

}
=

∫
1

P (A = a|U = u,X = x)
f(u, x|A = a, Y = 1, S = 1) du dx

=

∫
1

P (A = a|U = u,X = x)
×

P (A = a|U = u,X = x)P (Y = 1|A = a, U = u,X = x)P (S = 1|Y = 1, A = a, U = u,X = x)

P (A = a, Y = 1, S = 1)
du dx

A.2,A.3
=

∫
exp(β0a)P (Y = 1|A = 0, U = u,X = x)P (S = 1|Y = 1, U = u,X = x)

P (A = a, Y = 1, S = 1)
du dx

=
exp(β0a)

P (A = a, Y = 1, S = 1)

∫
P (Y = 1|A = 0, U = u,X = x)P (S = 1|Y = 1, U = u,X = x) du dx.

Therefore, the right-hand side of (26) equals

β0 + log

(
P (A = 0, Y = 1, S = 1)

P (A = 1, Y = 1, S = 1)

)
+ log

(
P (Y = 1, A = 1|S = 1)

P (Y = 1, A = 0|S = 1)

)
=β0 + log

(
P (A = 0, Y = 1|S = 1)P (S = 1)

P (A = 1, Y = 1|S = 1)P (S = 1)

)
+ log

(
P (Y = 1, A = 1|S = 1)

P (Y = 1, A = 0|S = 1)

)
=β0

Let q∗ be the function that satisfies (11):

E[q∗(a, Z,X)|A = a,W,X, Y = 0, S = 1] =
1

P (A = a|U = u,X, Y = 0, S = 1)
.
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We introduce an additional regularity condition:

Assumption 11 (Uniform continuity). For any fixed positive square-integrable function

g(U) and a small positive number 0 < η < 1, there exists some 0 < γ = γ(g, η) < 0 such

that 1− γ < E[g1(U)|A,W,X, Y = 0, S = 1]

E[g(U)|A,W,X, Y = 0, S = 1]
<

1

1− γ
a.e. implies 1− η < g1(U)

g(U)
<

1

1− η
a.e., where g1(U) is a positive square integrable function.

Assumption 11 requires that the inverse mapping of g → E[g(U)|A,W,X, Y = 0, S = 1]

is sufficiently smooth. By Theorem 2 and Assumption 8, we have

(1− δ)3 < E[q∗(A,Z,X)|A,W,X, Y = 0, S = 1]

E[q(A,Z,X)|A,W,X, Y = 0, S = 1]

=
E{E[q∗(A,Z,X)|A,W,U,X, Y = 0, S = 1]|A,W,X, Y = 0, S = 1}
E{E[q(A,Z,X)|A,W,U,X, Y = 0, S = 1]|A,W,X, Y = 0, S = 1}

A.6
=

E{E[q∗(A,Z,X)|A,U,X]|A,W,X, Y = 0, S = 1}
E{E[q(A,Z,X)|A,U,X]|A,W,X, Y = 0, S = 1}

A.5
=

E{E[q∗(A,Z,X)|A,U,X]|A,W,X, Y = 0, S = 1}

E{E[
1

P (A|U,X)
|A,U,X]|A,W,X, Y = 0, S = 1}

<
1

(1− δ)3

By Assumption 11, this implies

1− η(δ)

P (A|U,X)
< E[q∗(A,Z,X)|A,U,X] <

1

(1− η(δ))P (A|U,X)
. (27)

The constant η(δ) is determined by the smoothness of the inverse mapping of g 7→ E[g(U)|A,W,X, Y =

0, S = 1].

E[q∗(A,Z,X)|U = u,X, Y = 0, S = 1] =
1

P (A = a|U = u,X, Y = 0, S = 1)
(28)
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for almost all a and u. Let

β∗0 = log

(
E[q∗(A,Z,X)AY |S = 1]

E[q∗(A,Z,X)(1− A)Y |S = 1]

)
= log

(
E[q∗(A,Z,X)|A = 1, Y = 1, S = 1]

E[q∗(A,Z,X)|A = 0, Y = 1, S = 1]

)
+ log

(
P (Y = 1, A = 1|S = 1)

P (Y = 1, A = 0|S = 1)

)
.

Under mild regularity, the estimator β̂ is regular and asymptotically linear for β∗0 , and

therefore

β̂ = β∗0 +Op(1/
√
n) = β0 + (β∗0 − β0) +Op(1/

√
n).

It suffices to study

β∗0−β0 = log

(
E[q∗(A,Z,X)|A = 1, Y = 1, S = 1]

E[q∗(A,Z,X)|A = 0, Y = 1, S = 1]

)
−log

(
E[q(A,Z,X)|A = 1, Y = 1, S = 1]

E[q(A,Z,X)|A = 0, Y = 1, S = 1]

)

Notice that

E[q∗(A,Z,X)|A = a, Y = 1, S = 1]

=E{E[q∗(A,Z,X)|A = a, U,X, Y = 1, S = 1]|A = a, Y = 1, S = 1}

A.4
=E{E[q∗(A,Z,X)|A = a, U,X]|A = a, Y = 1, S = 1}

A.4
=E{E[q∗(A,Z,X)|A = a, U,X, Y = 0]|A = a, Y = 1, S = 1}

(27)
<

1

1− η(δ)
E

{
1

P (A = a|U,X)

∣∣∣∣A = a, Y = 1, S = 1

}
A.5
=

1

1− η(δ)
E

{
E[q(A,Z,X)|A,U,X]

∣∣∣∣A = a, Y = 1, S = 1

}
A.4
=

1

1− η(δ)
E

{
E[q(A,Z,X)|A,U,X, Y = 1, S = 1]

∣∣∣∣A = a, Y = 1, S = 1

}
=

1

1− η(δ)
E[q(A,Z,X)|A = a, Y = 1, S = 1]

and similarly,
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E[q∗(A,Z,X)|A = a, Y = 1, S = 1] > (1− η(δ))E[q(A,Z,X)|A = a, Y = 1, S = 1].

Therefore, we have

1− η(δ) <
E[q∗(A,Z,X)|A = a, Y = 1, S = 1]

E[q(A,Z,X)|A = a, Y = 1, S = 1]
<

1

1− η(δ)
.

We conclude that

2 log(1− η(δ)) = log((1− ε)2) < β∗0 − β0 < log

(
1

(1− ε)2

)
= −2 log(1− ε)

and thus

|β̂ − β0| < −2 log(1− η(δ)) +Op(
1√
n

).
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J Regularity conditions and proof of Theorem 3

We denote τ ∗0 as the true value of τ such that q(A,Z,X; τ ∗0 ) = q∗(A,Z,X). We will give the

regularity conditions and proof that (β̂, τ̂) is a regular and asymptotically linear estimator

of (β∗0 , τ
∗
0 ). Here β∗0 and q∗ are the biased versions of β0 and q defined in Appendix I, respec-

tively, although the biases are negligible when the infection is rare. Following Appendix I,

β̂ is also a regular and asymptotically linear estimator of β0 if

sup
a,w,u,x

P (Y = 1|A = a,W = w,U = u,X = x) < δn,

Assumption 11 holds and

log(1− η(δn)) = op(
1√
n

).

A set of regularity conditions are

R.1 The function τ 7→ q(A,Z,X; τ) is Lipschitz in a neighborhood of τ ∗0 ; that is, for

every τ1 and τ2 in a neighborhood of τ0 and a measurable function q̇(A,Z,X) with

E[q̇(A,Z,X)] <∞, we have ‖q(A,Z,X; τ1)− q(A,Z,X; τ2)‖ ≤ q̇(A,Z,X)‖τ1 − τ2‖;

R.2 E[q(A,Z,X; τ ∗0 )2] <∞ and E[m(W,A,X)2] <∞;

R.3 The function τ 7→ q(A,Z,X; τ) is differentiable at τ ∗0 . The derivative matrix Ω(β∗0 , τ
∗)

is nonsingular;

R.4
1

n

∑n
i=1Gi(β̂, τ̂) = op(n

−1/2) and (β̂, τ̂)
p→ (β∗0 , τ

∗
0 ).

The condition R.1 and the fact that β 7→ exp(−βA) is Lipschitz in a neighborhood of

β∗0 imply the function (β, τ)→Mi(β, τ) is Lipschitz in a neighborhood of (β∗0 , τ
∗
0 ) for every

i. The remaining proof follows Van der Vaart (2000) Theorem 5.21.
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K Estimating conditional causal RR in the presence

of effect modification by measured confounders

Algorithm 2 below describes a straightforward extension of Algorithm 1 to estimation

the conditional vaccine effectiveness V E(x) = 1 − exp(β0(x)) under Assumption 9 and a

parametric model β0(X;α) indexed by a finite-dimensional parameter α.

Algorithm 2 Negative control method to estimate conditional vaccine effectiveness from
a test-negative design

1: Identify the variables in the data according to Figure 1(c), in particular the NCEs and
NCOs.

2: Estimate the treatment confounding bridge function by solving the equation (13) with
a suitable parametric model q∗(A,Z,X; τ) and a user-specified function m(W,A,X).
Write τ̂ as the resulting estimate of τ .

3: Estimate α by solving

1

n

n∑
i=1

(−1)1−Aic(Xi)q
∗(Ai, Zi, Xi; τ̂) exp(−β0(Xi;α)Ai) = 0 (29)

Denote the resulting estimate of α as α̂. The estimated conditional vaccine effectiveness
is

V̂ E(x) = 1− exp(β0(x; α̂)).

We describe the large-sample properties of the estimator (α̂, τ̂) in the theorem below.

Theorem 5 (Inference of (α̂, τ̂)). Under Assumptions 1- 2, 4-5, 6, 9 and suitable regu-

larity conditions listed at the end of this section, the estimator (α̂, τ̂) in Algorithm 2, or

equivalently, the solution to the estimating equation
1

n

∑n
i=1 G̃i(α, τ) = 0 is regular and

asymptotically linear with influence function

ĨF (α, τ) = −
[
Ω̃(α, τ)T Ω̃(α, τ)

]−1
Ω̃(α, τ)T G̃i(α, τ),
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where

G̃i(α, τ) =

 (−1)1−Aic(Xi)q
∗(Ai, Zi, Xi; τ)Yi exp(−β0(X;α)Ai)

(1− Yi) [m(Wi, Ai, Xi)q
∗(Ai, Zi, Xi; τ)−m(Wi, 1, Xi)−m(Wi, 0, Xi)]


and

Ω̃(α, τ) =

(
E

[
∂G̃i(α, τ)

∂αT

]
, E

[
∂G̃i(α, τ)

∂τT

])
.

Here c(X) is a user-specified function of X with the sample dimension as α.

Suppose that in Algorithm 2, one specifies β0(X;α) = XTα, then a natural choice for

c(X) is c(X) = X. A sandwich estimator of the asymptotic variance of (α̂, τ̂) can be

deduced from previous derivations. Under Assumption 9, we have shown that one can

identify V E(X), however, one may be unable to identify the population marginal V E

without an additional assumption. Interestingly, we note that the population marginal

risk ratio would remain non-identified even if one had access to a random sample from

the target population to inform the marginal distribution of X. Specifically, as shown

in Huitfeldt, Stensrud, and Suzuki (2019), the marginal RR = E[Y (1)]/E[Y (0)] can be

written as RR = E[RR(X)|Y (0) = 1], i.e. the average risk ratio among subjects who

would contract say Influenza had they possibly contrary to fact, not been vaccinated against

Influenza. However, the distribution of X within the group Y (a = 0) = 1 cannot be

identified in presence of unmeasured confounding, thus ruling out identification of the

population marginal RR.

Define q∗ as before and

β∗0(x) = log

(
E[q∗(A,Z, x)I(A = 1, Y = 1)|S = 1, X = x]

E[q∗(A,Z, x)I(A = 0, Y = 1)|S = 1, X = x]

)
.
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Denote α∗0 as the value of α such that β0(x;α∗0) = β∗0(x). Below we give the set of regularity

conditions such that (α̂, τ̂) is a regular and asymptotically linear estimator of (α∗0, τ
∗
0 ):

R’.1 The function τ 7→ q(A,Z,X; τ) is Lipschitz in a neighborhood of τ ∗0 and α 7→ β0(X;α)

is Lipschitz in a neighborhood of α∗0.

R’.2 E[q(A,Z,X; τ ∗0 )2] <∞, E[m(W,A,X)2] <∞, E[C(X)2] <∞ and E[exp(−2β0(X;α∗0))] <

∞. ;

R’.3 The function τ 7→ q(A,Z,X; τ) is differentiable at τ ∗0 and α 7→ β0(X;α) is differen-

tiable at α∗0. The derivative matrix Ω̃(α∗0, τ
∗) is nonsingular;

R’.4
1

n

∑n
i=1 G̃i(α̂, τ̂) = op(n

−1/2) and (α̂, τ̂)
p→ (α∗0, τ

∗
0 ).
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L Proof of Theorem 1′

Lemma 3. Under Assumptions 2′, 3′ and 6′, we have

P (A = a, Y = y|U,W,X, S = 1)

=
1

ξ
P (A = a|Y = 0, U,W,X, S = 1)P (Y = y|A = 0, U,W,X, S = 1) exp(β′0ay)

where ξ =
∑

a∗,y∗ P (A = a∗|Y = 0, U,W,X, S = 1)P (Y = y∗|A = 0, U,W,X, S =

1) exp(β′0a
∗y∗).

Proof. Note that

P (Y = 1|A = 1, U,W,X, S = 1)P (Y = 0|A = 0, U,W,X, S = 1)

P (Y = 1|A = 0, U,W,X, S = 1)P (Y = 0|A = 1, U,W,X, S = 1)

A.6′
=
P (Y = 1|A = 1, U,X, S = 1)P (Y = 0|A = 0, U,X, S = 1)

P (Y = 1|A = 0, U,X, S = 1)P (Y = 0|A = 1, U,X, S = 1)

= exp(β′0)×
P (S = 1|Y = 1, A = 1, U,X)

P (S = 1|Y = 0, A = 1, U,X)
× P (S = 1|Y = 0, S = 0, U,X)

P (S = 1|Y = 1, S = 0, U,X)

A.2′
= exp(β′0)× exp(h(U,X))× exp(−h(U,X))

= exp(β′0)

The result follows after Chen (2003).

To prove Theorem 1′, we need to show

E[(−1)1−Ac(X)q(A,Z,X)Y exp(−βaA)|S = 1] = 0

It suffices to prove that

E[(−1)1−Aq(A,Z,X)Y exp(−βaA)|U,X, S = 1] = 0.
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The left-hand side is

∑
a,y

∫
(−1)1−ay exp(−β′0a)q(a, z,X)P (A = a, Y = y|U,X, S = 1)f(z|U,X,A = a, Y = y, S = 1)dz

L.3
=
∑
a,y

∫
(−1)1−ay exp(−β′0a)q(a, z,X)×

1

ξ
P (A = a|Y = 0, U,X, S = 1)P (Y = y|A = 0, U,X, S = 1) exp(β′0ay)f(z|U,X,A = a, Y = y, S = 1)dz

=
∑
a

∫
(−1)1−a exp(−β′0a)q(a, z,X)×

1

c
P (A = a|Y = 0, U,X, S = 1)P (Y = 1|A = 0, U,X, S = 1) exp(β′0a)f(z|U,X,A = a, Y = 1, S = 1)dz

=
∑
a

(−1)1−a

ξ
P (A = a|Y = 0, U,X, S = 1)P (Y = 1|A = 0, U,X, S = 1)×

∫
q(a, z,X)f(z|U,X,A = a, Y = 1, S = 1)dz

A.5′
=
∑
a

(−1)1−a

ξ
P (A = a|Y = 0, U,X, S = 1)P (Y = 1|A = 0, U,X, S = 1)×

1

P (A = a|Y = 0, U,X, S = 1)

=
∑
a

(−1)1−a

ξ
P (Y = 1|A = 0, U,X, S = 1)

=0
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M Proof of Theorem 2′

E[q̃(a, Z,X)|A = a,W,X, Y = 0, S = 1]

=E {E[q̃(a, Z,X)|A = a, U,W,X, Y = 0, S = 1]|A = a,W,X, Y = 0, S = 1}

A.6′
= E {E[q̃(a, Z,X)|A = a, U,X, Y = 0, S = 1]|A = a,W,X, Y = 0, S = 1}

A.4′
= E {E[q̃(a, Z,X)|A = a, U,X]|A = a,W,X, Y = 0, S = 1}

A.5′
= E

{
1

P (A = a|U,X, Y = 0, S = 1)
|A = a,W,X, Y = 0, S = 1

}
=

∫
1

P (A = a|U = u,X, Y = 0, S = 1)
f(u|A = a,W,X, Y = 0, S = 1)du

=

∫
1

P (A = a|U = u,X, Y = 0, S = 1)

f(u|W,X, Y = 0, S = 1)P (A = a|U = u,W,X, Y = 0, S = 1)

P (A = a|W,X, Y = 0, S = 1)
du

A.6′
=

∫
1

P (A = a|U = u,X, Y = 0, S = 1)

f(u|W,X, Y = 0, S = 1)P (A = a|U = u,X, Y = 0, S = 1)

P (A = a|W,X, Y = 0, S = 1)
du

=
1

P (A = a|W,X, Y = 0, S = 1)

∫
f(u|W,X, Y = 0, S = 1)du

=
1

P (A = a|W,X, Y = 0, S = 1)
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N Simulation setting with binary unmeasured con-

founder

We generate the data of a size N = 7, 000, 000 general population according to Figure 1,

with the following distribution:

U ∼ Bernoulli(pU);

Z|U ∼ Bernoulli(p0Z + pUZU);

A|U ∼ Bernoulli(p0A + pUAU);

Y |A, Y ∼ Bernoulli(exp(η0Y + β0A+ ηUYU));

W |U ∼ Bernoulli(p0W + pUWU);

D|U ∼ Bernoulli(p0D + pUDU);

S|Y,D,W,U ∼ Bernoulli(max(Y,D,W )(pY S + pUY SU)).

In the above data generating process, to mimic a test-negative design platform, we

created a binary indicator D for flu-like diseases other than W . The study sample contains

subjects with S = 1. The distribution of S indicates that only subjects with at least one of

Y , D and W equal to one will be recruited into the study sample. We chose the parameters

as in Table S1, which resulted in an average study sample size of between around 48,000

and around 52,000.

To obtain the true treatment confounding bridge function, by (6), we have

∑
z

q(a, z)f(z|u, a) =
∑
z

q(a, z)f(a|u, z)f(z|u)/f(a|u) = 1/f(a|u)
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Table S1: Parameter values of the data generating distribution in the simulation with a
binary unmeasured confounder.

Parameter Value Parameter Value
pU 0.5 p0Z 0.2
pUZ 0.4 p0A 0.2
pUA 0.4 η0Y log(0.01)
β0 log(0.2), log(0.5), log(0.7), or 0 ηUY log(0.5)
p0W 0.02 pUW 0.02
p0D 0.02 pUD -0.015
pY S 0.1 pUY S 0.4

and thus

∑
z

q(a, z)f(a|u, z)f(z|u)

=q(a, 0)[p0A + pUAu]a[1− (p0A + pUAu)]1−a[1− (p0Z + pUZu)]+

q(a, 1)[p0A + pUAu]a[1− (p0A + pUAu)]1−a(p0Z + pUZu)

=1

for each u, a. We obtain that

q(0, 0)

q(0, 1)

 =

 [1− p0A](1− p0Z) [1− p0A]p0Z

[1− (p0A + pUA)][1− (p0Z + pUZ)] [1− (p0A + pUA)](p0Z + pUZ)


−11

1


q(1, 0)

q(1, 1)

 =

 p0A(1− p0Z) p0Ap0Z

(p0A + pUA)[1− (p0Z + pUZ)] (p0A + pUA)(p0Z + pUZ)


−11

1
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O Simulation setting with a continuous unmeasured

confounder

In simulation studies with a continuous unmeasured confounder, we generate data for a

general population of 7,000,000 individuals following the distribution below:

U ∼ Uniform(0, 1);

X ∼ Uniform(0, 1);

A|U,X ∼ Binomial(expit(µ0A + µUAU + µXAX))

Z|A,U,X ∼ N(µ0Z + µAZA+ µXZX + µUZU, σ
2
Z);

W |U,X ∼ N(µ0W + µXWX + µUWU, σ
2
W );

Y |A,U,X ∼ Binomial(expit(µ0Y + βA+ µUYU + µXYX) + µUXYUX)

D|U,X ∼ Binomial(expit(µ0D + µXDX + µUDU))

S|U,X, Y,D ∼ max(Y,D)×Binomial(expit(µ0S + µXSX + µUSU + µUXSUX)).

We chose the parameter values according to Table S2, which results in an average study

sample size of between around 43,000 and around 47,000.
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Table S2: Parameter values of the data generating distribution in the simulation with a
continuous unmeasured confounder.

Parameter Value Parameter Value
µ0A -1 µUA -1
µXA 0.25 µ0Z 0
µAZ 0.25 µXZ 0.25
µUZ 4 σZ 0.25
µ0Y log(0.01) β0 log(0.2), log(0.5), log(0.7), or 0
µUY -2 µXY -0.25
µ0W 0 µXW 0.25
µUW 2 σW 0.25
µ0D log(0.01) µXD 0.25
µUD -0.2 µ0S -1.4
µXS 0.5 µUS 2
µUXS 1

P Logistic regression as a näıve approximate estima-

tor of log risk ratio, ignoring unmeasured confounders

Figure S1 shows a causal diagram of a test-negative design with no unmeasured confounders.

Again we assumed selection into the study S is independent of the subjects’ treatment

status A, given the subjects’ infection status Y and other covariates X.

A Y S

X

Figure S1: Directed acylic graph of a test-negative design with no unmeasured confounders.

In this scenario, we note that the conditional odds ratio given X in the study population

74



equals the conditional odds ratio in the general population, i.e.

P (Y = 1|A = 1, X, S = 1)

P (Y = 1|A = 0, X, S = 1)

/
P (Y = 0|A = 1, X, S = 1)

P (Y = 0|A = 0, X, S = 1)

=
P (Y = 1|A = 1, X)P (S = 1|Y = 1, A = 1, X)

P (Y = 1|A = 0, X)P (S = 1|Y = 1, A = 0, X)

/
P (Y = 0|A = 1, X)P (S = 1|Y = 0, A = 1, X)

P (Y = 0|A = 0, X)P (S = 1|Y = 0, A = 0, X)

A.2
=
P (Y = 1|A = 1, X)P (S = 1|Y = 1, X)

P (Y = 1|A = 0, X)P (S = 1|Y = 1, X)

/
P (Y = 0|A = 1, X)P (S = 1|Y = 0, X)

P (Y = 0|A = 0, X)P (S = 1|Y = 0, X)

=
P (Y = 1|A = 1, X)

P (Y = 1|A = 0, X)

/
P (Y = 0|A = 1, X)

P (Y = 0|A = 0, X)

This implies that we may estimate the stratum-specific odds ratio in the general popu-

lation by fitting a logistic regression model to the study data:

P (Y = 1|A,X, S = 1) = expit(γ0 + γXX + γAA)

where expit(x) = exp(x)/[1 + exp(x)], and γA is the log odds ratio. When the outcome is

rare in the general population, i.e. P (Y = 0|A = a,X = x) ≈ 1 for any a, x, the log odds

ratio γA also approximates the log risk ratio.
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Q Simulation for non-rare diseases

To investigate the performance of our method for non-rare diseases, we repeat the sim-

ulation with the same setup with binary or continuous confounders. For the simulation

with binary confounders, we set η0Y to be log(0.20); for the simulation with continuous

confounders, we set µ0Y to be log(0.20) – both correspond to an infection risk of 20% for

subjects with A = U = X = 0.

The results are in Figure S2. While the NC-Oracle estimator remains unbiased and

maintains calibrated confidence intervals, the NC estimator is in general biased with under-

covered confidence intervals. Notably, the NC estimator is unbiased with calibrated confi-

dence intervals under the null hypothesis where β0 = 0. The logistic regression estimator

is biased and has unpredictable behavior.
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(a)

(b)

Figure S2: Bias (left) and coverage rates of 95% confidence interval (right) for the oracle
estimator (NC-Oracle), GMM estimator (NC-GMM) and logistic regression (Logit Reg.)
with a binary or unmeasured confounder, where η0y or µ0Y is log(0.20).

R Detailed results of University of Michigan Health

System Data analysis
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Table S3: Descriptive statistics of University of Michigan Health System COVID-19 Data.
Variables were summarized as counts (percentage%).

Unvaccinated (N=12,672) Vaccinated (N=39,591)
Vaccine types

Pfizer-BioNTech / 20,312 (51.3%)
Moderna / 10,831 (27.4%)
Johnson & Johnson’s Janssen / 1,409 (3.6%)
Other / 7,039 (17.8%)

COVID-19 Infection 3,074 (24.2%) 2,774 (7.0%)
NCE: Immunization before Dec 2020 3,854 (30.4%) 18,167 (45.9%)
NCO conditions

Arm/leg cellulitis 39 (0.3%) 161 (0.4%)
Eye/ear disorder 83 (0.6%) 518 (1.3%)
Gastro-esophageal disease 619 (4.9%) 3,188 (8.0%)
Atopic dermatitis 13 (0.1%) 41 (0.1%)
Injuries 1,033 (8.2%) 3,690 (9.3%)
General adult examination 752 (5.9%) 4,687 (11.8%)

No. of NCO conditions ≥ 1 2,258 (17.8%) 10,355 (26.2%)
Age
≤ 18 1,683 (13.3%) 2,406 (6.1%)
≥ 18, < 60 8,667 (68.4%) 23,495 (59.3%)
≥ 60 2,322 (18.3%) 13,690 (34.6%)

Male 5,357 (42.3%) 16,241 (41.0%)
White 9.012 (71.1%) 30,748 (77.7%)
Charlson score ≥ 3 869 (6.8%) 3,230 (8.2%)
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Table S4: Logistic regression of COVID-19 infection on COVID-19 vaccination, the NCE
(previous immunization) and other baseline covariates.

Est. S.E. p-value
(Intercept) -1.30 0.06 <0.001
COVID-19 vaccination -1.56 0.03 <0.001
Previous Immunization 0.37 0.03 <0.001
Age ≥18, ≤60 0.29 0.05 <0.001
Age ≥60 0.10 0.06 0.099
Male 0.01 0.03 0.750
White 0.32 0.04 <0.001
Charlson score ≥3 0.15 0.05 0.005
Calendar month

April -0.00 0.05 0.940
May -0.98 0.06 <0.001
June -1.79 0.08 <0.001
July -1.16 0.07 <0.001
August -0.53 0.05 <0.001
September -0.40 0.05 <0.001
October -0.10 0.04 0.026
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Table S5: Logistic regression of having at least one NCO conditions on COVID-19 vacci-
nation, the NCE (previous immunization) and other covariates.

Est. S.E. p-value
(Intercept) -2.32 0.06 <0.001
COVID-19 vaccination 0.28 0.03 <0.001
Previous Immunization 0.63 0.02 <0.001
Age ≥18, ≤60 0.28 0.04 <0.001
Age ≥60 0.76 0.05 <0.001
Male -0.03 0.02 0.190
White 0.19 0.03 <0.001
Charlson score ≥3 0.38 0.04 <0.001
Calendar month

April -0.05 0.04 0.290
May 0.16 0.04 <0.001
June 0.16 0.04 <0.001
July 0.16 0.04 <0.001
August 0.14 0.04 <0.001
September -0.03 0.04 0.360
October 0.04 0.04 0.309
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Lehmann, Erich Leo and Henry Scheffé (2012a). “Completeness, similar regions, and unbi-

ased estimation-Part I”. In: Selected Works of EL Lehmann. Springer, pp. 233–268.

— (2012b). “Completeness, similar regions, and unbiased estimation—part II”. In: Selected

Works of EL Lehmann. Springer, pp. 269–286.

84



Leung, Jessica et al. (2011). “Herpes zoster incidence among insured persons in the United

States, 1993–2006: evaluation of impact of varicella vaccination”. In: Clinical Infectious

Diseases 52.3, pp. 332–340.

Lipsitch, Marc, Ayan Jha, and Lone Simonsen (2016). “Observational studies and the

difficult quest for causality: lessons from vaccine effectiveness and impact studies”. In:

International journal of epidemiology 45.6, pp. 2060–2074.

Lipsitch, Marc, Eric Tchetgen Tchetgen, and Ted Cohen (2010). “Negative controls: a

tool for detecting confounding and bias in observational studies”. In: Epidemiology

(Cambridge, Mass.) 21.3, p. 383.

Liu, Lan and Eric Tchetgen Tchetgen (2021). “Regression-based negative control of ho-

mophily in dyadic peer effect analysis”. In: Biometrics.

Mastouri, Afsaneh et al. (2021). “Proximal causal learning with kernels: Two-stage esti-

mation and moment restriction”. In: International Conference on Machine Learning.

PMLR, pp. 7512–7523.

Miao, Wang, Zhi Geng, and Eric J Tchetgen Tchetgen (2018). “Identifying causal effects

with proxy variables of an unmeasured confounder”. In: Biometrika 105.4, pp. 987–993.

Miao, Wang, Xu Shi, and Eric Tchetgen Tchetgen (2018). “A confounding bridge approach

for double negative control inference on causal effects”. In: arXiv e-prints, arXiv–1808.

Moline, Heidi L et al. (2021). “Effectiveness of COVID-19 vaccines in preventing hospital-

ization among adults aged≥ 65 years—COVID-NET, 13 states, February–April 2021”.

In: Morbidity and Mortality Weekly Report 70.32, p. 1088.

Newey, Whitney K and James L Powell (2003). “Instrumental variable estimation of non-

parametric models”. In: Econometrica 71.5, pp. 1565–1578.

85



Olson, Samantha M et al. (2022). “Effectiveness of BNT162b2 vaccine against critical

Covid-19 in adolescents”. In: New England Journal of Medicine.

Patel, Manish M, Michael L Jackson, and Jill Ferdinands (2020). “Postlicensure evaluation

of COVID-19 vaccines”. In: JAMA 324.19, pp. 1939–1940.

Qi, Zhengling, Rui Miao, and Xiaoke Zhang (2021). “Proximal Learning for Individualized

Treatment Regimes Under Unmeasured Confounding”. In: arXiv preprint arXiv:2105.01187.

Rolfes, Melissa A et al. (2019). “Effects of influenza vaccination in the United States during

the 2017–2018 influenza season”. In: Clinical Infectious Diseases 69.11, pp. 1845–1853.

Rosenbaum, Paul R (1987). “Model-based direct adjustment”. In: Journal of the American

Statistical Association 82.398, pp. 387–394.

Schnitzer, Mireille E (2022). “Estimands and Estimation of COVID-19 Vaccine Effective-

ness Under the Test-negative Design: Connections to Causal Inference.” In: Epidemiol-

ogy (Cambridge, Mass.)

Schwartz, Lauren M et al. (2017). “Rotavirus vaccine effectiveness in low-income settings:

An evaluation of the test-negative design”. In: Vaccine 35.1, pp. 184–190.

Shi, Xu, Wang Miao, and Eric Tchetgen Tchetgen (2020). “A selective review of negative

control methods in epidemiology”. In: Current Epidemiology Reports, pp. 1–13.

Shi, Xu et al. (2020). “Multiply robust causal inference with double-negative control ad-

justment for categorical unmeasured confounding”. In: Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 82.2, pp. 521–540.

Shi, Xu et al. (2021). “Theory for identification and Inference with Synthetic Controls: A

Proximal Causal Inference Framework”. In: arXiv preprint arXiv:2108.13935.

86



Shrank, William H, Amanda R Patrick, and M Alan Brookhart (2011). “Healthy user

and related biases in observational studies of preventive interventions: a primer for

physicians”. In: Journal of general internal medicine 26.5, pp. 546–550.

Struchiner, CJ and ME Halloran (2007). “Randomization and baseline transmission in

vaccine field trials”. In: Epidemiology & Infection 135.2, pp. 181–194.

Sullivan, Sheena G, Eric J Tchetgen Tchetgen, and Benjamin J Cowling (2016). “Theoret-

ical basis of the test-negative study design for assessment of influenza vaccine effective-

ness”. In: American journal of epidemiology 184.5, pp. 345–353.

Tchetgen Tchetgen, Eric J and Tyler J VanderWeele (2012). “On causal inference in the

presence of interference”. In: Statistical methods in medical research 21.1, pp. 55–75.

Tchetgen Tchetgen, Eric J et al. (2020). “An Introduction to Proximal Causal Learning”.

In: arXiv preprint arXiv:2009.10982.

Tenforde, Mark W et al. (2021). “Influenza vaccine effectiveness against hospitalization in

the United States, 2019–2020”. In: The Journal of Infectious Diseases 224.5, pp. 813–

820.

Thompson, Mark G et al. (2021). “Effectiveness of COVID-19 vaccines in ambulatory and

inpatient care settings”. In: New England Journal of Medicine 385.15, pp. 1355–1371.

Utarini, Adi et al. (2021). “Efficacy of Wolbachia-infected mosquito deployments for the

control of dengue”. In: New England Journal of Medicine 384.23, pp. 2177–2186.

Van der Vaart, Aad. (2000). Asymptotic statistics. Vol. 3. Cambridge university press.

Wang, Bingkai et al. (2022). “Randomization Inference for Cluster-Randomized Test-Negative

Designs with Application to Dengue Studies: Unbiased estimation, Partial compliance,

and Stepped-wedge design”. In: arXiv preprint arXiv:2202.03379.

87



Ying, Andrew et al. (2021). “Proximal Causal Inference for Complex Longitudinal Studies”.

In: arXiv preprint arXiv:2109.07030.

88


	1 Introduction
	1.1 Text-negative design studies of vaccine effectiveness
	1.2 Negative control methods
	1.3 Outline

	2 Method
	2.1 Preliminary: estimation under no unmeasured confounding and no selection bias
	2.2 Tackling selection bias under a semiparametric risk model
	2.3 Tackling unmeasured confounding bias leveraging negative controls 
	2.3.1 Negative control exposure (NCE) and treatment confounding bridge function
	2.3.2 Negative control outcome (NCO) for identification of treatment confounding bridge function 

	2.4 Estimation and Inference
	2.5 Accounting for effect modification by measured confounders
	2.6 Estimating VE under treatment-induced selection into TND sample

	3 Simulation Study
	4 Application
	5 Discussion
	A Proof of Proposition 1
	B Existence of solutions to (6)
	C Proof of Theorem 1
	D Treatmeng bridge function and estimation with categorical NCE, NCO and unmeasured confounders.
	E Derivation of the treatment confounding bridge function in Example 2
	F Proof of Theorem 2 and Corollary 1
	G Discussion of Assumption 8
	H Proof of Corollary 2 and further discussion
	I Discussion on the rare disease assumption 7
	J Regularity conditions and proof of Theorem 3
	K Estimating conditional causal RR in the presence of effect modification by measured confounders
	L Proof of Theorem 1'
	M Proof of Theorem 2'
	N Simulation setting with binary unmeasured confounder
	O Simulation setting with a continuous unmeasured confounder
	P Logistic regression as a naïve approximate estimator of log risk ratio, ignoring unmeasured confounders
	Q Simulation for non-rare diseases
	R Detailed results of University of Michigan Health System Data analysis

