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Abstract

Background: Several studies have investigated the associations between ambient temperature and years of life lost
(YLLs), but few focused on the difference of life loss attributable to temperature among different socioeconomic
development levels.

Objectives: We investigated the disparity in temperature-YLL rate relationships and life loss per death attributable
to nonoptimal temperature in regions with various development levels.

Methods: Three hundred sixty-four Chinese counties or districts were classified into 92 high-development regions
(HDRs) and 272 low-development regions (LDRs) according to socioeconomic factors of each location using K-
means clustering approach. We used distributed lag non-linear models (DLNM) and multivariate meta-analysis to
estimate the temperature-YLL rate relationships. We calculated attributable fraction (AF) of YLL and temperature-
related average life loss per death to compare mortality burden of temperature between HDRs and LDRs. Stratified
analyses were conducted by region, age, sex and cause of death.
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Results: We found that non-optimal temperatures increased YLL rates in both HDRs and LDRs, but all subgroups in
LDRs were more vulnerable. The disparity of cold effects between HDRs and LDRs was significant, while the
difference in heat effect was insignificant. The overall AF of non-optimal temperature in LDRs [AF = 12.2, 95%
empirical confidence interval (eCI):11.0–13.5%] was higher than that in HDRs (AF = 8.9, 95% eCI: 8.3–9.5%).
Subgroups analyses found that most groups in LDRs had greater AFs than that in HDRs. The average life loss per
death due to non-optimal temperature in LDRs (1.91 years, 95% eCI: 1.72–2.10) was also higher than that in HDRs
(1.32 years, 95% eCI: 1.23–1.41). Most of AFs and life loss per death were caused by moderate cold in both HDRs
and LDRs.

Conclusions: Mortality burden caused by temperature was more significant in LDRs than that in HDRs, which
means that more attention should be paid to vulnerable populations in LDRs in planning adaptive strategies.

Keywords: Temperature, Years of life lost, Mortality burden, Socioeconomic development level

Introduction
Climate change is widely recognized as one of the major
public health threats of the twenty-first century. The
Intergovernmental Panel on Climate Change has pro-
jected that global warming is likely to reach 1.5° between
2030 and 2052 if climate change continue the current rate
[1]. A link between ambient temperature and mortality
has been reported in numerous studies [2, 3]. Those stud-
ies have found that temperature-mortality curves are usu-
ally U or J shaped, which means that non-optimal
temperatures, both low and high, lead to excess mortality
[2]. Other studies further showed that socioeconomic sta-
tus such as individual income and education attainment
had a significant modifying effect on the association [4, 5].
Most previous studies used death count as a primary

health outcome to examine the effects of ambient
temperature exposure [2, 6]. This indicator takes only
the number of deaths into account and not the age at
death. Therefore, it does not represent the real burden
of exposure to ambient temperature. Years of life lost
(YLLs), an important component of disability adjusted
life years (DALY), is an indicator of premature death
used to evaluate the burden of disease. YLL is a more in-
formative indicator because it puts more weight on
death at young age than death at old age [7]. However,
very few studies estimated the effects of temperature on
YLLs, and most of them focused on urban areas [8].
Moreover, in previous studies, YLLs caused by
temperature could not be comparable because total
YLLs largely depends on the population size of each
study location. YLLs should be adjusted by population,
such as using YLL rate (i.e., YLL/105 population), for
comparison among different regions and populations.
China is a vast country where socioeconomic status is

geographically heterogeneous. Most studies have recog-
nized that socioeconomic factors are very important
health determinants. Several studies have reported that
socioeconomic factors independently affected the associ-
ation of temperature with mortality counts [5, 9, 10]. For

instance, several studies reported that temperature-
mortality relationships had difference between urban
and rural areas [11–13], gross domestic product (GDP)
and average educational years also could explain spatial
heterogeneity of temperature-related effects [10, 14, 15].
Based on these, we hypothesize that low socioeconomic
development regions (LDRs) maybe more vulnerable to
ambient temperature than high development regions
(HDRs), which has not been examined in the previous
studies at national level.
To test the hypothesis, we conducted a national study

including 364 locations in China. We first classified the lo-
cations into different development levels regions accord-
ing to urbanization level, level of educational attainment
and GDP per capita of each location using K-means clus-
tering algorithm. Then, we compared temperature-YLL
rate associations and life loss per death attributable to
non-optimal temperature among different development
levels. Our findings will be helpful to identify vulnerable
populations in regions requiring protection.

Material and methods
Study locations
The study included 364 counties or districts covering
seven geographical regions around mainland China
(Fig. 1). Study locations in Yunnan, Guangdong,
Hunan, Zhejiang, and Jilin provinces were selected
based on the provincial mortality surveillance system.
Locations in other provinces were selected based on
the China’s Disease Surveillance Points System
(DSPs). DSPs is administrated by the Chinese Center
for Disease Control and Prevention (CDC), and the
detailed information on DSPs was described elsewhere
[16, 17]. In order to assure enough statistical power,
only locations with a population size over 200,000 or
mortality rates larger than 4‰ were included [18].
The 364 locations were classified into 92 HDRs and
272 LDRs according to percentage of urban dwellers,
average years of education and GDP per capita of
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each location using clustering methods. The detailed
information on development level is described below.
Socioeconomic development is a comprehensive con-

cept including social, economic, humanities develop-
ment. Since many socioeconomic indicators at the
county or district level is hard to obtain in China, we
collected three available and representative socioeco-
nomic indicators of each location, including percentage
of urban dwellers for urbanization level, average years of
education for education level and GDP per capita for
economic level to evaluate socioeconomic development
level. In order to ensure data-driven rather than arbi-
trary classification of development level, we employed K-
means clustering analysis to classify development level.
The K-means clustering algorithm is an unsupervised
machine learning method for data clustering analysis.
The main idea is the minimization of the distance within
the clusters utilizing an iterative method [19]. In our
study, the dataset was first divided into K clusters ac-
cording to an arbitrarily chosen initial cluster center
with the minimum distance principle; the average of
each cluster then become new cluster centers for re-

dividing. In such an iterative manner, the final clustering
was developed when the cluster centers no longer chan-
ged. We determined the optimal number of clusters
based on Nbclust, an R package which provides 30 indi-
ces for determining the best number of clusters and pro-
poses the best clustering scheme from the different
results obtained by varying all combinations of number
of clusters (from 2 to 7) and distance measures [20]. The
results showed that two clusters are optimal (Figure S1,
see Supplementary material), which represents for HDRs
and LDRs (Table S1, see Supplementary material).

Data collection
Daily death records in locations from Yunnan, Guang-
dong, Hunan, Zhejiang, and Jilin provinces (from Janu-
ary 1, 2013 to December 31, 2017) were collected from
the corresponding provincial CDC and daily death data
of other locations (from January 1, 2006 to December
31, 2011) were collected from Chinese CDC, as de-
scribed previously [18]. All deaths were classified based
on the sole primary diagnosis coded by International
Classification of Diseases, 10th Revision (ICD-10)

Fig. 1 Distribution of 92 HDRs and 272 LDRs in the present study. HDR: high-development region; LDR: low-development region
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including total non-accidental causes (codes: A00-R99),
cardiovascular disease (CVD, codes I00-I99) and respira-
tory disease (RESP, codes J00-J98).
We calculated individual YLLs by matching the age

and sex of every death to the life table for corresponding
province (Table S2, see Supplementary material). The
provincial life table was calculated based on the mortal-
ity data and demographical information collected from
2010 Population Census of China. Then daily YLLs of
each location were quantified by summing all individual
YLLs on the same day. We stratified daily YLLs by cause
of death (non-accidental causes, CVD or RESP), sex
(male or female), age (0–64 or 65+ years old), and region
(northern China or southern China, divided by the
north-south demarcation zone in China, which was de-
veloped based on the Geographic Information System
with some quantitative methods) [21]. We further com-
puted daily YLL rate (per 105 populations) of each sub-
group by dividing daily YLLs by the population size of
the group, and multiplying 105.
Daily mean temperature and relative humidity data

from 698 climate stations across China were derived
from the China Meteorological Data Sharing Service
System (http://data.cma.cn/, Figure S2, see Supplemen-
tary material). We employed the Australian National
University Splines (ANUSPLIN), an interpolation pack-
age based on the thin plate smoothing spline function,
to interpolate the daily temperature grid and daily rela-
tive humidity grid at 0.01° × 0.01° resolution for all of
China from 698 daily weather station observations. Lon-
gitude and latitude were considered as independent
spline variables and elevation was regarded as a covari-
ate. Ten-fold cross-validation confirmed the good pre-
diction accuracy of the interpolation method for daily
mean temperature [R2 = 0.96, root mean squared predic-
tion error (RMSE) = 2.37 °C] and daily relative humidity
(R2 = 0.81, RMSE = 7.7%) (Figure S3, see Supplementary
material). Daily mean temperatures and relative humid-
ity data from all 364 studied locations were extracted
from the corresponding interpolated grid.
Since PM10 was the only available air pollutant during

the whole study period (2006–2017), so we used it as a
represent of air quality. Daily average PM10 data during
2006–2017 were obtained from the China National En-
vironmental Monitoring Centre. Since the air quality
monitoring system did not cover all study locations, we
employed a random forest model to predict the daily
PM10 of each location using the following predictors:
daily mean temperature, daily RH, latitude, longitude,
altitude, population density, length of road, types of land
use and GDP per capital at each monitoring station
using a radius of 1300m [22, 23]. One smooth temporal
basis function was also included in the model to control
long-term and seasonal trend of PM10 concentrations.

The result of ten-fold cross-validation for the model
showed that the R2 was 0.78 and RMSE was 13.2 μg/
m3(Figure S3, see Supplementary material). The popula-
tion density data in 2015 were obtained from GeoData In-
stitute in University of Southampton (www.worldpop.org.
uk), and the geographic information system (GIS) (geo-
graphic map, road density, land use data and GDP per
capita) were obtained from the Data Center for Resources
and Environmental Sciences (http://www.resdc.cn).
GDP data and population data for each location were

gathered from the Statistical Yearbook at the provincial
and city level. Other county-level socioeconomic charac-
teristics including average years of education and urban
population size were obtained from the 2010 Population
Census in China.

Statistical analysis
Distributed lag non-linear model fitting
A two-stage analytic approach was employed to investi-
gate the association between temperature and YLL rates.
In the first stage, we estimated the location-specific asso-
ciation of temperature-YLL rate using distributed lag
non-linear model framework (DLNM) [24] combined
with Gaussian distribution function. The DLNM models
were described as follows:

E Y tð Þ ¼ aþ cb Tmt; lagð Þ þ ns timet; dfð Þ
þ ns Rht; dfð Þ þ β1DOWt

where Yt refers to the YLL rate on day t; cb (Tmt, lag)
refers to the cross-basis function of daily temperature, de-
fined as a quadratic B-spline with three knots (10th, 50th,
90th) of location-specific temperature distributions, and a
natural cubic B-spline with an intercept and three internal
knots placed at equally spaced values in the log scale; ns
(timet, df) means natural cubic B spline function of time
with 7 degrees of freedom (df) per year for the seasonal
and long-term trend; ns (Rht, df) means a natural cubic B-
spline function of relative humidity with 3df; β1DOWt re-
fers to a categorical variable of day of the week. Previous
studies suggested that effects of cold often appear several
days later and last for about 2 weeks, and hence, we chose
21 days as the maximum lag [6].
As DLNM is a two-dimensional function considering

non-linear exposure-response relationship and delayed
effect simultaneously [24], we then reduced the full-
association to the overall exposure-response association
to cumulate full effects during the lag period. This step
reduces the number of parameters for pooling in the
second-stage meta-analysis.
In the second stage, we pooled the location-specific

exposure-response associations using multivariate meta-
analytical model with random effects models. The best
linear unbiased prediction (BLUP) of location-specific
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cumulative associations between temperature and YLL
rate were derived by use of the fitted meta-analytical
model. The BLUP method makes use of a trade-off be-
tween the location-specific association and the pooled
association to increase the preciseness of prediction, es-
pecially in location with small daily mortality counts [2].

Calculation of mortality burden of non-optimal
temperatures
The minimum YLL rate temperature (MYT) and the
corresponding minimum YLL rate temperature percent-
ile (MYP) in each location were obtained from the corre-
sponding BLUP of overall temperature-YLL rate
associations and were defined as the optimal tempera-
tures. We used the MYT as the reference for calculating
the attributable YLL rate by re-centring the quadratic B
spline that models the exposure-response. And the daily
attributable YLL in each location was the production of
attributable YLL rate and population size. The total at-
tributable YLL was the sum of the attributable YLL for
each day in time series. Its radio to the sum of YLLs
during the study periods provides total attributable frac-
tion (AF) [2], and its radio to the sum of daily death pro-
vides temperature-related life loss per death. We also
estimated the AFs and life loss per death related to ex-
treme cold, moderate cold, moderate heat, and extreme
heat by summing the subsets of days with corresponding
temperatures range (defined as≤2.5th percentile, 2.5th
percentile to the MYT, MYT to 97.5th percentile, and ≥
97.5th percentile of daily temperature, respectively). Em-
pirical confidence intervals (eCIs) were obtained through
Monte Carlo simulations with the assumption of a
multivariate normal distribution of the BLUP of the re-
duced coefficients [25, 26].

Sensitivity analysis
To check the robustness of all models, we conducted sen-
sitivity analysis by varying the maximum lag periods and
the df for time trend. We also investigate temperature-
YLL rate using different temperature measures.
Since death datasets were collected from different data

source, we perform a sensitivity analysis to compare the
temperture-YLL rate associations in different death dataset.
R software version 3.6.0 was used to performed data

analysis, with the “stats” package and “Nbclust” package
for the K-means clustering algorithm, the “dlnm” pack-
age for constructing the DLNM model, and the
“mvmeta” package for multivariate meta-analysis.

Results
Descriptive statistics
Summary statistics of daily YLL rates (per 105), daily me-
teorological variables, and socioeconomic and demo-
graphic characteristics for HDRs and LDRs are

presented in Table 1. The study had 10.7 million YLLs.
Generally, there were higher average YLL rates in LDRs
than in HDRs. Compared with HDRs, the daily mean
temperature in LDRs was 1.0 degree Celsius higher. So-
cioeconomic factors in HDRs were notably higher than
that in LDRs.

Temperature–YLL rate relationships
Figure 2 shows the pooled associations between
temperature and YLL rate for total population in LDRs
and HDRs of China as a whole, northern China and
southern China, and Fig. 3 displays the stratified analyses
of the temperature-YLL rate associations in LDRs and
HDRs by age, sex, and cause of death. For all above

Table 1 Summary statistics of daily weather factors, YLL rate
and socioeconomic characteristics

Development level HDRs LDRs

Number of locations 92 272

Daily YLL rate (Mean (SD))

Total population 20.5(13.1) 24.7(16.6)

Age 0–64 12.0(11.8) 15.0(15.4)

Age65+ 98.7(70.3) 110.9(75.5)

Males 24.3(19.2) 29.1(23.6)

Females 16.7(15.4) 20.1(19.9)

Cardiovascular 7.1(7.0) 8.7(8.5)

Respiratory 1.7(2.8) 2.6(4.4)

Northern China 21.0(14.4) 25.7(24.6)

Southern China 20.1(12.7) 24.5(14.8)

Daily mean temperature (°C)

Mean (SD) 15.3(10.8) 16.3(9.5)

Minimum −30.6 −32.3

2.5th percentile −11.7 −6.2

25th percentile 8.3 10.1

50th percentile 17.1 17.7

75th percentile 23.7 23.4

97.5th percentile 30.6 30.2

Maximum 35.5 35.6

Relative humidity [%, Mean (SD)] 71.7(14.5) 73.6(13.7)

Socioeconomic and demographic characteristics

Population (105) 525.0 1501.5

Percent population of males [%, Mean (SD)] 50.5(2.3) 51.2(1.2)

Percent population >65y of age [%, Mean
(SD)]

10.3(2.9) 10.2(2.5)

Percent of urban dweller [%, Mean (SD)] 86.3(14.1) 41.2(14.4)

Average years of education [Mean (SD)] 10.7(1.0) 8.3(0.8)

GDP per capita [thousand RMB, Mean (SD)] 55.2(34.1) 24.8(14.2)

Notes: HDRs High-development regions, LDRs Low-development regions, SD
Standard deviation, YLL rate Years of life lost per 105 populations, GDP Gross
domestic product
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groups, we found that the attributed YLL rates below
MYT were higher in LDRs compared with HDRs, while
above MYT they were very close.
Table 2 further displayed the attributable YLL rates for

extreme cold (2.5th percentile of temperature distribu-
tion) and extreme heat (97.5th percentile of temperature
distribution). Compared with extreme heat-related YLL
rate, the HDR-LDR disparity of extreme cold-related
YLL rate were more significant. This HDRs-LDRs dis-
crepancy for the elderly (≥65 years old) and cardiovascu-
lar disease was more distinct than that for young
population and respiratory disease.

Comparison of temperature-related mortality burden
between LDRs and HDRs
AFs and life loss per death associated with non-optimal
temperatures in HDRs and LDRs are shown in Tables 3
and 4, respectively. Generally, temperature-related mor-
tality burden was higher in LDRs compared with HDRs.
The overall AFs were 8.9% (95% eCI: 8.3–9.5%) in HDRs
and 12.2% (95% eCI: 11.0–13.5%) in LDRs, and
temperature-related life loss per death were 1.32 years
(95% eCI: 1.23–1.41) in HDRs and 1.91 years (95% eCI:
1.72–2.10) in LDRs. Cold-related AFs and life losses per
death were higher in LDRs than those in HDRs for most
populations excerpt patients with respiratory diseases.
Cold-related AFs or life loss per death (below MYT)
were much higher than heat-related AFs (above MYT)
or life loss per death in both HDRs and LDRs.
AFs and life loss per death were further estimated for

four temperature components: extreme cold, moderate
cold, moderate heat, and extreme heat (Fig. 4, Table S3,
Table S4, see Supplementary material). Extreme
temperature contributed to 0.19 years life loss per death

in HDRs and 0.22 years life loss per death in LDRs.
Moderate cold contributed to majority of mortality bur-
den, with a total AF of 7.7% in HDRs and a total AF of
8.3% in LDRs, and an average of 1.11 years life loss per
death from temperature in HDRs and 1.45 years life loss
per death from temperature in LDRs were associated
with moderate cold.

Sensitivity analysis
Temperature-YLL rate curves for HDRs and LDRs were
performed when varying the dfs for time trend, lag
structure and temperature measures (Figure S4, see Sup-
plementary material). Figure S5 show temperature-YLL
association for HDRs and LDRs in different datasets.
The sensitivity analysis suggested that our main results
were relatively stable.

Discussion
To the best of our knowledge, this is the first multi-
locations time-series study to investigate the disparity in
temperature-YLL rate relationship and life loss per death
attributable to temperature among different develop-
ment regions in a developing country. We found an ap-
parent disparity in YLL rates caused by temperature
between HDRs and LDRs. Moreover, attributable YLL
rates for cold temperature were higher in LDRs than
that in HDRs, but heat-related YLL rates were very close
between the two development regions.
Human Development Index (HDI) is a summary measure

of human development in the literature [27]. In the study,
we did not define development level using HDI for data un-
availability, which may influence the comparison of our
findings with other studies. However, the three indicators
we chose to classify development levels are appropriate

Fig. 2 Overall cumulative temperature–YLL rate associations along lag 0–21 days with 95% confidence interval (CI). HDR: high-development
region; LDR: low-development region; YLL rate: years of life lost per 105 population
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because they reflect different aspects of socioeconomic de-
velopment level including economic status, urbanization
level and education level. We classified all study locations
into different development levels using K-means clustering
algorithm rather than simple equisection of the three indi-
cators because K-means is a scientific cluster analysis with
a clear mechanism [28–30].
Our findings showed that the attributable YLL rates

were greater in LDRs than that in HDRs for all sub-
groups. This finding is consistent with several previous
studies that investigated urban-rural mortality disparity

using relative risk (RR) [11–13]. For example, a study in
Zhejiang, China found that the RRs associated with
temperature were higher in rural areas than that in
urban areas for all causes of death, the elderly (≥65 years
old), and both sexes [12]. Hajat et al. found that lower
economic status [e.g., gross domestic product (GDP)] as-
sociated with higher heat risk [14, 15]. Low average edu-
cation also have been found worsen cold- and heat-
related mortality burden [10]. Possible reasons for this
finding were the potential differences in social environ-
ment and living conditions among different development

Fig. 3 Pooled temperature–YLL rate associations along lag 0–21 days with 95% confidence intervals (CI) by age, sex, and cause of death in HDR
and LDR. YLL rate: years of life lost per 105 populations. HDR: high-development region; LDR: low-development region
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regions such as population structure and density, life-
style and availability to adequate health care services or
home air conditioners. This result suggests that LDRs
are more vulnerable to non-optimal temperature expos-
ure and more resources should be allocated in these re-
gions to protect vulnerable populations. For instance, it
is necessary to improve health care services and provide
adaptation assistance for vulnerable populations such as
the elderly and patients with cardiopulmonary diseases
in LDRs.
We further found that cold-related YLL rates were

higher in LDRs compared with HDRs, which was con-
sistent with previous findings that socioeconomic factors
have a modifying effect on the temperature-mortality
count relationship [10, 31]. However, the heat-related
YLL rates were similar between HDRs and LDRs, which
implies that development level does not play an import-
ant role in heat-related YLL rates. This result may par-
tially be explained by urban heat-island (UHI) effect,
which has been found to have an important impact on

heat-related mortality [32]. Several previous studies re-
ported that HDRs characterized by more urbanized areas
and higher population densities were more vulnerable to
heat [5, 10]. Though populations in HDRs might not be
vulnerable to high temperature because of better adap-
tion capacity [11, 33], the presence of UHI effect in
HDRs may offset that capacity. In the context of rapid
urbanization in most parts of China, effective public
health policies designed to reduce UHI effects are neces-
sary in HDRs to mitigate the health impacts of high
temperature exposure.
We found that less YLLs attributed to non-optimal

temperature in HDRs (8.8%) than in LDRs (10.4%). This
is understandable because there are higher attributable
YLL rates at each temperature in the LDRs compared
with HDRs. We further calculated life loss per death at-
tributed to non-optimal temperature and found they
were high in HDRs than that in LDRs. Temperature-
related life loss per death is a more informative indicator
to understand health impact of temperature. Generally,

Table 2 Minimum YLL temperature (MYT) and attributable YLL (95%CI) rate associated with non-optimal temperatures by
development level

Subgroups MYT [°C, MYP (%)] Extreme cold effect Extreme heat effect

HDR LDR HDR LDR HDR LDR

Nationwide 28.8(92.9) 28.3(92.5) 5.0(3.8–6.3) 6.7(5.5–7.9) 0.3(0.1–0.5) 0.4(0.2–0.6)

Northern China 0.8(28.8) 24.1(92.3) 3.8(2.4–5.3) 4.9(0.4–9.3) 1.0(−1.6–3.6) 0.7(0.2–1.3)

Southern China 29.1(93.5) 28.8(92.4) 5.8(4.4–7.2) 6.5(5.3–7.7) 0.2(0.0–0.5) 0.3(0.1–0.5)

Age 0–64 29.0(93.4) 28.9(94.3) 1.9(0.7–3.2) 2.6(1.8–3.5) 0.1(− 0.1–0.2) 0.1(0.0–0.2)

Age65+ 28.5(92.0) 27.7(90.5) 35.5(29.2–41.9) 44.7(38.8–50.6) 2.4(1.3–3.4) 3.0(2.0–4.0)

Males 29.1(93.7) 28.7(93.7) 5.8(3.7–8.0) 7.6(6.1–9.0) 0.2(0.0–0.4) 0.3(0.1–0.5)

Females 28.5(92.0) 27.4(89.4) 4.0(2.4–5.5) 5.7(4.4–6.9) 0.4(0.2–0.7) 0.5(0.2–0.8)

Cardiovascular diseases 28.6(92.3) 28.3(92.5) 2.2(1.5–2.8) 3.3(2.8–3.8) 0.2(0.1–0.3) 0.2(0.1–0.3)

Respiratory diseases 28.4(91.7) 27.7(90.5) 0.7(0.4–1.0) 0.9(0.6–1.1) 0.0(0.0–0.1) 0.1(0.0–0.1)

Notes: MYT Minimum YLL rate temperature, MYP Minimum YLL rate percentile of the daily temperature
Extreme cold: 2.5th percentile of temperature distribution; nationwide: −8.2 °C, northern China: − 18.0 °C, southern China: 2.4 °C
Extreme heat: 97.5th percentile of temperature distribution; nationwide: 30.3 °C, northern China: 26.6 °C, southern China: 30.6 °C

Table 3 AFs attributable (95% eCI) to non-optimal temperatures by development level

Subgroups Total Cold Heat

HDRs LDRs HDRs LDRs HDRs LDRs

Nationwide 8.9(8.3–9.5) 12.2(11.0–13.5) 8.5(7.9–9.1) 10.4(9.3–11.4) 0.4(0.3–0.5) 1.9(1.1–2.6)

Northern China 7.3(4.8–9.7) 14.9(11.7–18.7) 4.0(2.3–5.7) 8.0(6.0–9.9) 3.3(1.4–5.1) 6.9(4.1–10.3)

Southern China 9.8(8.9–10.8) 12.5(11.1–13.9) 9.5(8.6–10.4) 10.7(9.4–11.8) 0.3(0.2–0.4) 1.8(1.0–2.6)

Age 0–64 6.5(3.7–9.1) 9.4(7.7–11.2) 5.3(3.7–6.7) 7.5(6.0–8.9) 1.3(− 1.0–3.4) 2.0(1.0–3.0)

Age65+ 13.3(12.1–14.6) 16.2(15.0–17.4) 12.6(11.5–13.9) 14.4(13.4–15.4) 0.7(0.4–0.9) 1.8(1.0–2.6)

Males 10.2(8.7–11.7) 11.7(10.2–13.2) 9.6(8.2–11.0) 10.1(9.2–11.0) 0.6(0.2–1.0) 1.6(0.5–2.8)

Females 8.2(7.4–9.0) 11.1(9.6–12.6) 7.7(6.8–8.5) 9.6(8.3–10.9) 0.6(0.5–0.6) 1.5(0.7–2.5)

Cardiovascular diseases 11.3(9.7–12.9) 14.6(12.8–16.5) 9.8(8.2–11.2) 12.4(11.5–13.2) 1.6(0.9–2.2) 2.3(0.7–3.8)

Respiratory diseases 13.3(10.2–16.4) 13.9(10.1–17.3) 11.2(9.0–13.4) 8.0(6.9–9.0) 2.1(− 0.4–4.6) 5.9(2.4–9.2)

Notes: HDRs High-development regions, LDRs Low-development regions
Cold: temperature below minimum YLLs temperature; Heat: temperature above minimum YLLs temperature.
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we found that AF and life loss per death resulting from
non-optimal temperature were greater in LDRs than that
in HDRs in most subgroups. However, we found the op-
posite results for patients with RESP disease. This may
be owing to AFs determined by both attributable YLL
rates and temperature distribution. Compared with
HDR, the attributable YLL rates of RESP in LDR are just
little higher and were offset by a larger proportion of
days around MYT with very low attributed YLL rates in
LDRs (Figure S5, see Supplementary material), which
might lead to lower attributable YLLs in LDRs for the
RESP subgroups compared with HDRs.
We further calculated attributable YLLs and life loss

per death for separated temperature components and
the results showed that moderate cold was responsible
for most attributable YLLs and life loss per death in both
LDRs and HDRs. This finding is in line with previous
studies based on death counts [2, 6]. However, most pre-
vious research focused on the health impact of extreme

temperature and public health policies of adaptive inter-
ventions were designed mainly for extreme climate
events [34]. In the future, more public health measures
should be taken targeting moderate cold to effectively
reduce temperature-related mortality burdens.
The present study has several strengths. First, a na-

tional multi-location analysis enabled us to synthetically
estimate the effect of ambient temperature in various de-
velopment level regions. Second, we utilized a popula-
tion adjusted YLL rate to estimate the temperature-YLL
associations, which allowed us to directly compare the
effects of temperature exposure on YLLs among differ-
ent regions. Last, we used the high-resolution interpo-
lated temperatures and instead of fixed-site monitor data
for temperature exposure of each location, which may
reduce exposure measurement error.
Some limitations of our study cannot be ignored. First,

it was an ecological study, and hence, some inherent
limitations made us unable to take individual exposure

Table 4 Temperatures-related life loss per death (95% eCI) by development level

Subgroups Total Cold Heat

HDRs LDRs HDRs LDRs HDRs LDRs

Nationwide 1.32(1.23–1.41) 1.91(1.72–2.10) 1.26(1.17–1.35) 1.62(1.45–1.79) 0.06(0.05–0.08) 0.29(0.18–0.40)

Northern China 1.16(0.76–1.54) 2.58(2.03–3.23) 0.64(0.37–0.91) 1.38(1.04–1.72) 0.52(0.22–0.82) 1.38(1.04–1.72)

Southern China 1.42(1.29–1.56) 1.93(1.71–2.15) 1.38(1.24–1.51) 1.65(1.45–1.82) 0.04(0.03–0.06) 0.28(0.15–0.41)

Age 0–64 2.03(1.17–2.84) 3.03(2.48–3.58) 1.64(1.15–2.10) 2.40(1.94–2.87) 0.39(−0.32–1.05) 0.63(0.31–0.97)

Age65+ 1.26(1.15–1.39) 1.59(1.47–1.71) 1.20(1.09–1.32) 1.41(1.31–1.52) 0.06(0.04–0.09) 0.18(0.1–0.10)

Males 1.57(1.33–1.79) 1.89(1.64–2.14) 1.48(1.26–1.69) 1.63(1.48–1.78) 0.09(0.03–0.15) 0.26(0.07–0.46)

Females 1.15(1.04–1.27) 1.66(1.42–1.87) 1.08(0.96–1.19) 1.43(1.23–1.61) 0.08(0.06–0.09) 0.22(0.10–0.37)

Cardiovascular diseases 1.42(1.21–1.61) 1.90(1.67–2.15) 1.22(1.02–1.40) 1.61(1.50–1.73) 0.20(0.11–0.28) 0.29(0.09–0.50)

Respiratory diseases 1.31(1.01–1.62) 1.53(1.11–1.90) 1.11(0.89–1.32) 0.88(0.76–0.99) 0.21(−0.03–0.45) 0.65(0.26–1.01)

Notes: HDRs High-development regions, LDRs Low-development regions
Cold: temperature below minimum YLLs temperature; Heat: temperature above minimum YLLs temperature.

Fig. 4 Attributable fraction of YLLs for separated temperature components. HDR: high-development region; LDR: low-development region; CVD:
cardiovascular diseases; RESP: respiratory diseases
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into account. Second, there were not enough study
locations in northwest China and southwest China
because of the unavailability of mortality data. Third,
the study periods in all locations were inconsistent
due to the unavailability of death data. However, a
study conducted in Shanghai indicated that both heat
and cold effects on mortality did not substantially
change during 2001–2012 [35].

Conclusion
This study investigated the associations of temperature
and YLL rate in different development regions. Compared
with HDRs, for all subpopulations, cold-related YLL rates
were higher in LDRs, while YLL rates attributable to heat
were similar. Life loss per death attributable to non-
optimal temperatures were more in LDRs than in HDRs,
and most of them were from moderate cold. Our findings
have important implications for developing targeted adap-
tive policies to reduce the temperature-related mortality
burden in different development regions.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12940-020-00653-3.

Additional file 1. Supplementary Material.
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