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Abstract: Rational medicine use in neonates implies the prescription and administration of
age-appropriate drug formulations, selecting the most efficacious and safe dose, all based on accurate
information on the drug and its indications in neonates. This review illustrates that important
uncertainties still exist concerning the different aspects (when, what, how) of rational antibiotic use
in neonates. Decisions when to prescribe antibiotics are still not based on robust decision tools.
Choices (what) on empiric antibiotic regimens should depend on the anticipated pathogens, and the
available information on the efficacy and safety of these drugs. Major progress has been made on
how (beta-lactam antibiotics, aminoglycosides, vancomycin, route and duration) to dose. Progress
to improve rational antibiotic use necessitates further understanding of neonatal pharmacology
(short- and long-term safety, pharmacokinetics, duration and route) and the use of tailored tools and
smarter practices (biomarkers, screening for colonization, and advanced therapeutic drug monitoring
techniques). Implementation strategies should not only facilitate access to knowledge and guidelines,
but should also consider the most effective strategies (‘skills’) and psychosocial aspects involved in
the prescription process: we should be aware that both the decision not to prescribe as well as the
decision to prescribe antibiotics is associated with risks and benefits.
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1. Introduction: Why a Review on the Rational Use of Antibiotics in Neonates is Valuable

The rational use of medicines is defined by the World Health Organization (WHO) with the
intention to assure that every single patient receives the medicines appropriate for his/her needs,
with doses in accordance with his/her individual characteristics, for the appropriate duration
and—preferably—at a reasonable cost [1]. The commonly used indicators of potential irrational
practices are the incidence of polypharmacy, inappropriate self-medication, failure to adhere to clinical
guidelines or dosing regimens, or the inappropriate use of antibiotics (dose, indication, duration, route
of administration) [1]. The application of these clear and obvious definitions to rational antibiotic
use in neonates has major limitations [2,3]. These limitations relate to the extensive variability in
clinical practice across the globe (e.g., empiric prescription of antibiotics, extensive variability in dosing
practices, large differences in body weight of neonates) in combination with the limited evidence to
support any of these practices. As a consequence of this extensive variability and the limited evidence,
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the commonly applied research tools to audit the rational use of antibiotics fail when applied to the
neonatal population [3–5].

To further illustrate this, these tools include the concept of defined daily dose (DDD, average
maintenance dose when used to treat its major indication in adults). Although Liem et al. reported on
an effort to develop neonatal DDD based on an assumed neonatal weight of 2 kg, the same researchers
very recently had to conclude that standardized average daily dosages of commonly used antibiotics
were not achieved [3,4]. Similarly, Laine et al. also recently reported on an attempt to quantify the
extent of off-label use of antimicrobials in neonates, but also concluded that the DDD tool has major
limitations when applied to neonates, and that novel, more accurate methods to evaluate antibiotic
use in neonates are urgently needed [5].

Other research method-related aspects that are of relevance for antibiotic consumption studies
in neonates relate to the study design, such as the statistical descriptive analysis used [6]. To further
illustrate the latest issue raised, we refer to the most recently reported study on medicine use by
Pediatrix, the leading provider of maternal–fetal and neonatal care in the United States. In its analysis
(2005–2010, n = 450,386 neonates) of medicine use, polypharmacy was common with a mean number
of medicine courses of 4 (1–14) per newborn, and 17 (2–45) courses in extremely low birth weight
(<1000 g, ELBW) neonates. More relevant to the topic of this paper, 26 different antibiotics were
classified in the top 100, 16 in the top 50, and three (ampicillin, gentamicin, vancomycin) were in the
top five of the most commonly administered drugs (Table 1) [7]. However, reflecting on the impact of
the analytical approach taken, the final sequence also depends, in part, on how the data were analyzed:
either based on exposure (number of neonates exposed during admission/1000), or on the number of
courses (number of courses/1000 admitted neonates), or on the days of use (days of use/1000 days
admitted on the unit).

Table 1. The list of the 100 most commonly prescribed medicines in the neonatal intensive care unit,
as published by Hiesh et al., contains 26 different antibiotics [7].

Rank Medicine Exposure Courses Days of Use

1 ampicillin 681 709 3069
2 gentamicin 676 785 3521
5 vancomycin 91 150 987

15 cefotaxime 43 53 316
23 tobramycin 24 34 189
24 erythromycin 24 25 103
28 clindamycin 17 19 128
38 ceftazidime 12 15 99
41 piperacillin/tazobactam 11 15 115
43 amoxicillin 11 12 72
44 metronidazole 11 13 97
45 oxacillin 10 13 97
46 nafcillin 9 14 97
48 amikacin 8.8 12 77
51 cefazolin 7.5 8.1 27
52 meropenem 7 8.9 82
60 cefipime 6.1 7.7 58
66 penicillin G 4.7 4.9 38
74 rifampin 3.6 3.8 36
77 imipenem + cilastatin 3.0 3.3 29
90 cephalexin 1.9 2.0 9.5
91 ceftriaxone 1.8 1.8 5.7
94 sulfamethoxazole + trimethoprim 1.6 1.8 16
96 cefoxitin 1.5 1.6 4.9
98 fosphenytoin 1.4 1.6 10

100 linezolid 1.3 1.6 14
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Along the same line on the relevance of research tools to assess the use of medicines in neonates,
Nellis et al. [8] compared two cross-sectional study designs (a service evaluation survey for 3 days,
compared to a single day web-based point prevalence study). The service evaluation survey resulted in
a significant higher likelihood to capture a given compound. Unfortunately, this study did not report
on observations specific to antibiotics [8,9]. However, the same European Study of Neonatal Exposure
to Excipients (ESNEE) research group also reported on the prescription practices of antibiotics in
neonates in a point prevalence study. In this dataset, the 12 most commonly prescribed antibiotics
(in descending order) were gentamicin, penicillin G, ampicillin, vancomycin, amikacin, cefotaxime,
ceftazidime, meropenem, amoxicillin, metronidazole, teicoplanin and flucloxacillin, covering 92% of
all antibiotics prescribed. This sequence is rather similar to the sequence described by Hsieh in the
US cohort (Table 1) [7–9]. Finally, another point prevalence study on antibiotic prescribing included
589 neonates in 50 neonatal units from 14 different European countries (Antibiotic Resistance and
Prescribing in European Children, ARPEC). This study included 1712 neonates, of whom 532 (31%)
were exposed to antibiotics in the point prevalence study, ranging from 19.9% in a general neonatal
ward to 39% in a neonatal intensive care setting [10].

Based on the illustrations provided, it should at least be obvious that exposure to antibiotics is
very common as these medicines are the most frequently prescribed (Anatomical Therapeutic Chemical
Classification, ATC) group in hospitalized neonates. Obviously, frequent prescription does not in
itself reflect rational medicine use. This is because rational medicine use implies the prescription and
administration of a safe formulation using the optimal dose, both based on accurate information on
the medicine and its indications in neonates [11,12]. In this review, we will illustrate that important
uncertainties still exist on the different aspects (when, what, and how, most prominent on the ‘when’
aspect) of antibiotic use in neonates, all related to rational drug use. To make relevant progress on the
rational use of antibiotics in neonates, additional tools validated in this population are needed.

2. When to Prescribe Antibiotics in Neonates

At present, we still lack sufficiently robust decision tools to disentangle (sensitivity vs. specificity)
infectious events from other commonly observed events in neonates. This is likely even more relevant
for early onset sepsis (EOS). Up to 10% of newborns are screened, while only a minority of these
screened cases (<5%) are subsequently classified as having EOS (either culture proven, or based on
clinical assessment or biomarker driven ‘blood-culture negative sepsis’) [13,14]. This results in an
incidence of culture-confirmed EOS of about 0.4–0.8/1000 in term neonates, and about a 10-fold higher
incidence of cases classified as culture-negative sepsis [14]. This over-prescription can be explained by
the relevant mortality (10–12%) and morbidity related to this diagnosis.

Prediction tools have been developed, but do not yet have sufficient sensitivity and specificity
to be accepted by the community. The use of an EOS calculator (gestational age, maternal
antepartum temperature, duration of rupture of membrane, maternal Group B Streptococcus status,
intrapartum antibiotics, clinical exam = well appearing, equivocal, clinical illness; threshold for
empirical prescription of antibiotics = risk > 3/1000) resulted in a decrease in blood culture use
and empirical antibiotic administration from 14.5 to 4.9% and 5.0 to 2.6%, respectively, without
apparent negative effects [15]. For late onset sepsis (LOS), prediction tools for bloodstream infection
based on deviant heart rate characteristics (HRC score, driven by decreased variability and transient
decelerations) have been developed, although these tools also have their limitations [16]. As reported
by Coggins et al., elevated HRC scores had limited ability to detect blood stream infections (BSI),
since these scores were often elevated in NICU patients who had no bloodstream infection. In infants
with blood stream infections (n = 46), 37% had at least one HRC score >2, and 11% had at least one
HRC score >5, suggesting that both the sensitivity and specificity of the current tools are still poor [17].

In this specific population, false negative blood cultures can be explained by maternal and
subsequent fetal exposure to antibiotics, or more commonly, because the volumes of blood collected
were too small [14,18]. In a recent German survey, the majority (59%) of respondents aimed to collect
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0.5 mL. In a laboratory setting and using a quantitative approach, it has been suggested that 1.0 mL
has excellent sensitivity even in the setting of quantitative low bacteremia, while 0.5 mL is sufficient to
detect moderate or high grade bacteremia [19].

Due to these limitations in the sensitivity and specificity of the biomarkers currently available
in the routine clinical setting, structured guidelines may result in more consistent practices, but also,
prolonged antibiotic exposure (+10 h), an increase in the number of lumbar punctures (14 to 23%)
and delayed discharge (length of stay >5 days: 20.9 to 27.7%) in term newborns, as has been reported
following the implementation of the CG149 NICE guidelines in the United Kingdom [20]. In contrast,
procalcitonin (NeoPins study) turned out to be superior to standard care in reducing antibiotic therapy
in neonates with suspected early-onset sepsis, with a median reduction in the duration of exposure
from 65 to 55 h. Non-inferiority for re-infection or death could not be shown due to the low occurrence
of re-infections and absence of study-related death [21].

3. What Antibiotic Regimen to Prescribe in Neonates

The choices to be made when prescribing empiric antibiotic regimens should depend on the
anticipated pathogens and their resistance pattern, and on the available information on the safety
and side effects of the antibiotics, specifically in neonates. Obviously, once the pathogen is isolated,
the best targeted and tailored treatment regimen should be selected [22]. Pathogens to target for
in EOS are either Gram-negative organisms (Escherichia coli, Haemophilus influenzae, Citrobacter spp.,
or Enterobacter spp.) or Gram-positive organisms (Streptococcus agalacticae, Streptococcus viridans,
Listeria monocytogenes, Staphylococcus aureus or Pneumococcus). LOS is most commonly due to
coagulase-negative Staphylococcus, as well as Gram-negative organisms, and Staphylococcus aureus
can be isolated. It is hereby important to be aware that both EOS and LOS are associated with
relevant morbidity (including neurocognitive outcome) and mortality, and this is also the case of
coagulase-negative staphyloccal infections [23,24].

For EOS, a very recently published survey on 80 German NICUs reconfirmed that the majority
(89%) of units prescribe a combination of a beta-lactam (mainly ampicillin, sometimes penicillin G) and
an aminoglycoside (gentamicin > tobramycin > amikacin), while only a minority use piperacillin (11%),
piperacillin-tazobactam (4%), cefotaxime (10%) or ampicillin-sulbactam. For LOS, practices were much
more heterogeneous, with third-generation cephalosporins (52%), or carbapenems (meropenem 18%),
while 48% of the units use vancomycin empirically before any methicillin-resistant Gram-positive
pathogen is detected [18]. These practices are, to a large extent, in line with reported practices in
other countries or regions [7,13,22]. However, drug choices are relevant when we consider potential
side effects.

In our assessment, routine TDM for aminoglycosides in the first day(s) of EOS empiric treatment to
avoid oto- or nephrotoxicity is not necessary, unless in very specific settings (asphyxia, extra-corporeal
membrane oxygenation, congenital renal dysfunction), but TDM is very relevant when aminoglycoside
exposure is continued beyond 48–72 h [25]. In contrast, vancomycin administration warrants TDM
because there is still uncertainty on the dosing regimens (cf. infra, 4.). Although the use of broad
spectrum antibiotics may be perceived to be more convenient since this avoids these potential toxic
effects and the need for TDM, the use of third-generation cephalosporins or carbapenems is associated
with a clinically relevant higher risk to developing invasive fungal infections [26].

Moreover, it has been well documented that the antibiotic policy prevents the emergence of
resistant bacilli in neonates. When comparing two commonly applied antibiotic policies for empiric
treatment (cefotaxime + amoxicillin vs. penicillin G + tobramycin), an 18-fold higher risk to observed
colonization with resistant pathogens was documented in favor of the penicillin G + tobramycin
regimen [27].
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4. How to Prescribe Antibiotics in Neonates

It is reasonable to assume similarity in antimicrobial pharmacodynamics, so that similar
time–concentration profiles should be aimed for in neonates when compared to other
populations [28,29]. Three key patterns have been defined, depending on the mechanisms of the
specific antibiotic to attain maximal bacterial killing. These patterns are either (i) the proportion of
time that a given antibiotic remains above a given minimal inhibitory concentration (MIC) value
(such as beta-lactams); (ii) the peak concentration of a given antibiotic above a given value (such as
aminoglycosides); or (iii) a mix of both, with the area under the concentration–time curve above a given
target concentration (antibiotic specific)(such as vancomycin) [29,30]. These patterns are not different
in neonates, so the main effort relates to tailoring the doses administered to the PK characteristics of
the newborn [30].

Intravenous drug administration is hereby the most commonly used route of administration
in hospitalized newborns, although there are also challenges (such as slow intravenous flow rates,
small drug volumes, effects related to the dead space or flush volumes) related to this route that
may result in delays or variability in the rate of drug delivery in neonates [31]. Likely more relevant,
considerable between-unit differences in antibiotic dosing regimens were observed both in a survey
in 44 French units, as well as in a European point prevalence study on antibiotic dosing in the
ESNEE study [32,33]. The development of online (inter)national pediatric drug formularies, at
best disconnected from the different clinical syndrome-driven guidelines (such as EOS, LOS, NEC),
was effective in the Netherlands. Such an approach is especially of relevance in the setting of a lack
of evidence-based dosing guidelines, and applied a framework to provide dosing guidelines based
on the best available evidence from registration data, investigator-initiated research, professional
guidelines, clinical experience or consensus [34]. Once there is reasonable consensus, neonatal DDD
can be developed.

4.1. Beta-Lactam Antibiotics

The bactericidal effect of beta-lactams is by interfering with peptidoglycan cross-linking and
subsequent interfering with the bacterial cell wall structure. The distribution of antibiotics is
driven by maturational differences in body composition (water%). Protein binding may also be of
relevance for some of the protein-bound beta-lactam antibiotics, such as cefazolin or ceftriaxone,
since it is the fraction of time (%fT) during which the free antibiotic is above a given MIC
(% f T > MIC is the target). Total plasma protein increases in early infancy to reach adult levels at
10 to 12 months. Within the neonatal age range, albumin significantly increases with postmenstrual
age, but this only explained 20% of the variability, suggesting that there are also non-maturational
factors involved [35,36]. These maturational differences affect the ratio between the total and the
unbound (active) concentrations, as modeled for cefazolin in neonates [37].

Subsequent elimination is almost exclusively by renal elimination, but covers both glomerular
filtration as well as renal tubular transport (excretion and absorption). The main factors involved in
the development of renal function are gestational age (GA) and the dramatic sequential hemodynamic
changes after birth following a fetal setting dominated by high vascular resistance and lower renal
blood flow. The postnatal increase is due to the increased cardiac output and the reduced renal vascular
resistance, resulting in increased renal blood flow, changes in intra-renal blood flow distribution,
and higher permeability of the glomerular membrane [38,39]. This translates in dosing guidelines
that consider gestational age or birth weight and postnatal age, as reflected in the dosing regimens
for penicillin G (25,000 IU/dose, q6h–8h–12h based on birth weight/gestational and postnatal
age) [40], cefazolin (weight and postnatal age) [37], cefotaxime (gestational and postnatal age) [41] and
meropenem (20–40 mg/kg, q8h depending on gestational age and MIC) [42]. Interestingly, this last
paper also suggested an evaluation of the concept of prolonged infusion. Using this approach, the same
24 h dose exposure will result in a higher time above a given MIC (Figure 1). Recently, this approach
(20 or 40 mg/kg, but over 4 h instead of 30 min) has been proven to result in improved survival and
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faster reduction in inflammation markers in a cohort of 102 neonates with proven Gram-negative
sepsis [43].Healthcare 2018, 6, x FOR PEER REVIEW  6 of 12 
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interval, sometimes beyond 48 h as validated for an amikacin dosing regimen in neonates, with an 
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ibuprofen is co-administered (Table 2) [44–46]. A similar approach with higher doses/administration 
and further extended dosing intervals has been suggested for gentamicin and tobramycin, with 
additional adaptations in the setting of asphyxia and hypothermia, or when ibuprofen is co-
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vancomycin dosing, with an upper limit of 700–720 to avoid an unacceptable toxicity risk (mainly 
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Figure 1. Illustration on how prolonged infusion of the same dose results in a higher fraction of time
above a given minimal inhibitory concentration (MIC) value, as applicable for beta-lactam antibiotics.

4.2. Aminoglycosides

The dosing regimens for aminoglycosides should maximize the Cmax (peak/MIC > 8–10) to attain
efficacy, while lower trough values (Ctrough) should be aimed for to avoid toxicity (renal, hearing).
This has been translated in the ’extended daily dosing interval’ concept.

Since aminoglycosides are water soluble (distribution, Cmax) and are subsequently cleared by
glomerular filtration (renal, Ctrough), this results in a CATCH-22 situation in neonates. Due to the higher
relative distribution volume in neonates (L/kg, body water content), a higher mg/kg dose is needed,
while the reduced glomerular filtration subsequently necessitates a further extended time interval,
sometimes beyond 48 h as validated for an amikacin dosing regimen in neonates, with an additional
extension of 12 h (*) in the setting of asphyxia and hypothermia, and 10 h (**) when ibuprofen
is co-administered (Table 2) [44–46]. A similar approach with higher doses/administration and
further extended dosing intervals has been suggested for gentamicin and tobramycin, with additional
adaptations in the setting of asphyxia and hypothermia, or when ibuprofen is co-administered [47–49].

Table 2. Amikacin dosing regimen following prospective validation [44–46].

Weight (gram) Postnatal Age < 14 Days *,** Postnatal Age ≥ 14 Days

<800 g 16 mg/kg/48 h 20 mg/kg/42 h

800–1200 g 16 mg/kg/42 h 20 mg/kg/36 h

1200–2000 g 15 mg/kg/36 h 18 mg/kg/30 h

2000–2800 g 15 mg/kg/36 h 18 mg/kg/24 h

≥2800 g 15 mg/kg/30 h 18 mg/kg/20 h

(*): +12 h in the setting of hypothermia + asphyxia; (**): + 10 h when ibuprofen is co-administered.

4.3. Vancomycin

The area under the total concentration–time curve (0–24 h, AUC24h) divided by the MIC
(pathogen-specific) (AUC24h/MIC) of 400 is the most commonly accepted efficacy target to guide
vancomycin dosing, with an upper limit of 700–720 to avoid an unacceptable toxicity risk (mainly renal).
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However, this target is based on Staphylocccus aureus pneumonia data in adults, not really reflecting
neonatal clinical infections [25,50]. Current consensus guidelines recommend measuring trough
vancomycin concentrations during intermittent dosing as a surrogate for the AUC24h [25,50].

One approach to improve this setting is use of the personalized Bayesian dose adjustments tools of
vancomycin tailored to neonates, such as the DosOpt [51]. As illustrated by Zhao et al., this necessitates
further external validation since the external predictive performance validation of six published
vancomycin models in neonates underperformed. This underperformance was only in part explained
by differences in the analytical techniques (assays) for creatinine and vancomycin [52]. Maturational
differences in vancomycin protein binding are likely also of relevance, since the free vancomycin
fraction is higher in neonates when compared to children or adults [53].

4.4. Other Routes of Administration

While the higher discussed intravenous drug administration is the most commonly used
route of administration in hospitalized newborns, there are some other routes (intramuscular, oral)
worth considering.

Intramuscular administration turned out to be effective in the African Neonatal Sepsis Trial
(AFRINEST) studies in neonates with suspected infection in poor resource and outpatient settings [54].
A relevant physiological factor that influences drug absorption from an intramuscular injection site
is the blood flow to and from the injection site and the muscle mass (total surface area). The muscle
activity also displays maturational (age) and non-maturational (critical illness, neuromuscular diseases,
muscular relaxants) covariates [30]. Oral antibiotics lead to slower absorption, lower bioavailability
and more variability in neonates compared to parenteral administration, but adequate serum levels
can be reached. The antibiotic duration and timing of the switch from an intravenous to oral route
for bacterial infections in children have recently been reviewed, but similar concepts need further
exploration in neonates [55].

4.5. Duration of Treatment

When considering the duration of treatment for EOS or LOS and its efficacy, there is only very
limited evidence on the duration, except for the fact that the pathogen is relevant [55]. We aim to
provide some pieces of information on the blood culture positive clinical outcome data in neonates
to further illustrate the complexity. Two studies assessed the outcome in a variety of isolated
pathogens [56,57], and two studies assessed pathogen-specific outcome [58,59].

Gathwala et al. randomized 60/181 (pre)term neonates (>1.5 kg) with a positive blood culture
(72% EOS, order of frequency: Pseudomonas, Acinetobacter, Klebsiella, Enterobacter, Escherichia coli,
Staphylococcus aureus) that were recovered clinically on day 7, to either 10 or 14 days. In this
setting, there were no significant differences between both groups, except for a shorter hospitalization
(mean 13 vs. 17.5 days) in the 10 days group [56]. Rohatgi et al. randomized 132 (pre)term neonates
(>1.5 kg) blood culture (Staphylococcus epidermidis was an exclusion criterium) positive results
(65% EOS, in order of frequency: Klebsiella spp., Staphylococcus Aureus, Enterobacter, Methicillin Resistant
Staphylococcus Aureus, Enterococcus, Acinetobacter) in two different groups (duration of treatment) [57].
There was a shorter hospitalization in the 7 days group (mean 17 versus 19.4 days) when compared to
the 10 days group, without any other differences in outcome, including safety aspects. Both studies
were conducted in a single Indian neonatal intensive care unit [56,57].

Linder et al. reported on a retrospective analysis of medical files of 126 very low birth weight
infants with late onset coagulase-negative Staphylococcus sepsis, treated for 5, 6–7, 8–10, or >10 days
in 38%, 25%, 24% and 12% of the sample, respectively, after the last positive blood culture. Based on
their analysis on the safety and outcome, these authors concluded that treatment with vancomycin for
5 days after the last positive blood culture was associated with a satisfactory outcome without adverse
effects [58]. In a small trial in 69 neonates with a positive blood culture, Chowdhary et al. observed
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that treatment failure in cases randomized to 7 days was more common when compared to 14 days
(4/7 vs. 0/7 cases) in Staphylococcus aureus-positive cases [59].

The duration of treatment is not only related to a potential risk of efficacy failure (when too
short), but is also of relevance when considering safety issues (when too long). A recent meta-analysis
confirmed that prolonged antibiotic exposure in uninfected preterm neonates was associated with a
higher risk for necrotizing enterocolitis or death [26]. These findings become even more relevant when
we consider the culture-negative neonatal sepsis concept, in need of balanced decisions on efficient
sepsis care as well as on antimicrobial stewardship [14].

5. Discussion: How to Improve the Current Setting

Rational antibiotic use implies the prescription and administration of a safe formulation using
the optimal dose, based on accurate information on the medicine and based on a valid indication in
neonates [11,12]. Based on the issues discussed on when, what and how, it is obvious that this is not
yet the case for antibiotic use in neonates. This discussion provides a framework on how progress can
be made to further ensure rational (safe and effective) antibiotic use in neonates.

5.1. Understand Neonatal Pharmacology

There is a significant improvement in the knowledge on pharmacokinetics in neonates, and the
impact of the maturational and non-maturational covariates on dosing regimens (how to achieve the
target exposure. This has resulted in an increased volume of scientific knowledge, but we still fail to
implement this knowledge in our daily practice [14,18,22]. In contrast, the knowledge on the short- and
mainly long-term side effects of perinatal exposure to antibiotics (pharmacodynamics) is still much
more limited and is an area in need of further research. This also includes aspects such as the risk of
developing atopy or obesity [26,60]. This research should include the search for mechanisms, since
the long-term effects are at least in part explained by their (even transient) impact on the intestinal
microbiome [60].

5.2. Let Us Make Our Practices More Targeted and Smarter

At the different levels (when, what and how), we can make more targeted decisions.
Certainly, there is a lot of progress to be made in the prediction models and better use of the early
biomarkers of sepsis, such as IL-6 or pro-calcitonin. Similarly, the use of structured screening for
colonization may assist us to improve our knowledge on the pathogens to target when we have to
make a choice on empiric-unit or patient-specific antibiotic regimens [18]. The integration of more
advanced TDM techniques and Bayesian prediction tools [25,51] may hereby assist us to reduce the
burden and improve the decisions made based on individual TDM observations. However, such tools
need prospective validation in the population of interest.

5.3. We Should be Aware of Our Limitations

As already mentioned in the Special Issue, we like to believe that decisions on medicine use
in neonates are driven by rational processes, but we should also explore the psychosocial aspects
that guide our decisions [11,61]. Progress on the rational use of antibiotics does not only depend on
the availability of high quality data on efficacy and safety (‘knowledge’) and the related new tools
(‘methods’), but also on the subsequent approaches taken to streamline access to such data and the
development of implementation strategies. Data access and implementation strategies should not only
facilitate technical access to data or guidelines, but should also consider the most effective strategies
(‘skills’) to approach caregivers not only as rational decision makers, but also cover the psychosocial
aspects involved in the decision process of the prescription of medicines [11,61]. The recent German
survey hereby illustrated again the significant gap between the available guidelines and the daily
practices in the different units [18]. We should at least be aware that both the decision not to prescribe
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antibiotics, as well as the decision to prescribe or continue antibiotics, will result in potential risks
and benefits.
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