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The relatively lower protection rate of the alum-adjuvanted inactivated severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines reminds us of the
antibody-dependent enhancement (ADE) phenomenon observed in preclinical studies
during the development of vaccines for Middle East respiratory syndrome coronavirus
(MERS-CoV) and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). In this
study, using the S1 segment of the SARS-CoV-2 spike protein or inactivated whole
SARS-CoV-2 virus as an antigen and aluminum as an adjuvant, the risk of ADE of infection
with T helper 2 (Th2)-oriented immune serum from mice (N=6) and humans (N=5) was
examined in immune cell lines, which show different expression patterns of Fc receptors.
Neither the immune serum from alum-adjuvanted S1 subunit vaccines nor inactivated
SARS-CoV-2 vaccination enhanced SARS-CoV-2 S pseudotyped virus infection in any of
the tested cell lines in vitro. Because both of these Th2-oriented immune sera could block
SARS-CoV-2 infection without ADE of infection, we speculate that the lower protection
rate of the inactivated SARS-CoV-2 vaccine may be attributed to the lower neutralizing
antibody titers induced or the pulmonary eosinophilic immunopathology accompanied by
eosinophilic infiltration in the lungs upon virus exposure. Adjustment of the immunization
schedule to elevate the neutralizing antibody levels and skew adjuvants toward Th1-
oriented responses may be considered to increase the efficacies of both inactivated and
spike protein-based subunit SARS-CoV-2 vaccines.

Keywords: inactivated SARS-CoV-2 vaccine, spike protein subunit vaccine, aluminum adjuvant, Th2, antibody-
dependent enhancement of infection
INTRODUCTION

Previous experience on the development of coronavirus vaccines for severe acute respiratory
syndrome coronavirus 1 (SARS-CoV-1) and Middle East respiratory syndrome virus (MERS-CoV)
has revealed that the T helper 2 (Th2) response bias of these vaccines is accompanied by a
pulmonary immune pathology characterized by eosinophil infiltration upon virus challenge,
although the subunit vaccines based on either the spike protein or the inactivated vaccine
org April 2022 | Volume 13 | Article 8828561
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combined with aluminum adjuvant exert certain protective
effects on reducing the viral loads in animal models during a
subsequent challenge (1–4). In vitro analyses show that serum
obtained after the administration of these vaccines could
enhance viral infection, mainly through the Fc receptors (FcRs)
of immune cells (5, 6). Although these infections have been
proven to be abortive, viral elimination is reportedly associated
with the production of multiple antiviral and proinflammatory
cytokines, which may result in vaccine-associated enhanced
respiratory disease (VAERD) (5, 7–11). Correspondingly,
adjuvants that promote Th1 response bias have been adopted
to avoid or reduce the risk of VAERD and improve the protective
effect of these vaccines in preclinical studies (12–14).

Coincidentally, all successful SARS-CoV-2 vaccines with a
protection rate greater than 90% have exhibited Th1-cell-skewed
responses of their spike protein antigens during preclinical and
clinical studies (15–19). These vaccines include the mRNA
vaccine BNT162b2 developed by BioNTech (Germany),
mRNA-1273 developed by Moderna (USA), and the subunit
vaccine NVX-CoV2373 developed by NOVAVAX (USA). While
Th1-oriented responses are induced by the intracellular
translation of spike proteins and the innate immunity
mobilization ability for mRNA vaccines, NVX-CoV2373 relies
on its Th1-cell-biasing adjuvant Matrix-M (20–22).

Aluminum, which induces typical Th2 response bias for subunit
and inactivated vaccines, has recently been the only adjuvant in
vaccines licensed worldwide for human use (23). Aluminum has
been applied as the adjuvant in inactivated SARS-CoV-2 vaccines,
which show a protection rate ranging from 50.7% to 83.5%
according to recently published clinical phase III data (Clinical
trials registration numbers: NCT04510207, NCT04456595,
NCT04582344, and NCT04651790) (24–27). No enhanced
respiratory disease (ERD) typical of an increased eosinophilic
proinflammatory pulmonary response upon challenge has been
detected in preclinical studies of these inactivated SARS-CoV-2
vaccines in either murine or nonhuman primate (NHP) pneumonia
models (28–32). However, whether the relatively lower vaccine
efficacy originates from lower induction of neutralization antibody
production or the possibility of antibody-dependent enhancement
(ADE) of infection caused by Th2-oriented serum and a subsequent
pulmonary immune pathology remains to be determined (28–30).

S1 is the coronavirus spike protein segment that contains the
N-terminal segment and the receptor-binding domain (RBD)
responsible for viral attachment to host cells and is thus widely
considered a potential coronavirus vaccine target (4, 33–35).
When adjuvanted with alum, serum obtained after SARS-CoV-1
S1 subunit vaccination reportedly induces ADE of infection
similar to that observed with serum obtained after vaccination
with inactivated whole SARS-CoV-1 viruses (5). Considering
several IgG1 subtype monoclonal antibodies targeting SARS-
CoV-2 spike protein have been reported to induced ADE of
infection in vitro recently, the risk of Th-2 oriented immune
serum after SARS-CoV-2 vaccination that containing polyclonal
antibodies targeting the spike protein to enhance virus infection
is to be assessed (36–38). In this study, using the S1 segment of
SARS-CoV-2 and inactivated whole SARS-CoV-2 virus as
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antigen and aluminum as an adjuvant, we studied the risk of
ADE of infection with Th2-oriented immune serum from mice
and humans in immune cell lines expressing different patterns of
FcRs. We aimed to provide helpful clues regarding adjusting
immunization schedules or using new adjuvants to develop more
effective subunit/inactivated SARS-CoV-2 vaccines.
MATERIALS AND METHODS

Cells and Human Serum Samples
Raji (Burkitt’s lymphoma/B lymphoblasts), THP-1 (human acute
monocytic leukemia cells), and K562 (human chronic
myelogenous leukemia cells) cells were cultured in Roswell
Park Memorial Institute (RPMI) 1640 medium (BD, USA)
supplemented with 10% v/v fetal bovine serum (FBS, Biological
Industries, Israel) and 100 U/mL penicillin-streptomycin
(Thermo Fisher, USA). Vero (African green monkey kidney
epithelial cells) and KMB17 (human embryonic lung
fibroblast-like cells) cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, BD, USA) supplemented with 10% v/v
FBS and 100 U/mL penicillin-streptomycin. All cells were
obtained from the Conservation Genetics Chinese Academy of
Sciences Kunming Cell Bank and maintained at 37°C in an
environment with 5% CO2 before use.

Human sera from a phase II clinical trial (Clinical trials
registration number: NCT04412538) of an inactivated SARS-
CoV-2 vaccine adjuvant with aluminum and SARS-CoV-2-
infected human convalescent serum (HCS) were supplied by
Professor Qihan Li from the Institute of Medical Biology,
Chinese Academy of Medical Sciences (IMB, CAMS) (39).
Specifically, healthy volunteers aged 18-59 years were
intramuscularly inoculated twice with the KMS-1 SARS-CoV-2
strain (GenBank accession number MT226610.1) that was
double inactivated by formaldehyde plus b-propiolactone and
adjuvanted with aluminum hydroxide at medium doses
(containing 100 enzyme-linked immunosorbent assay units
(EUs) of viral antigen) or high doses (containing 150 EUs of
viral antigen). Fourteen or 28 days after boost immunization,
immune serum was collected to determine the authentic SARS-
CoV-2 neutralization titers. Briefly, diluted serum samples (1:4,
1:8, 1:16, 1:32, 1:64, 1:128, and 1:256) were incubated at 37°C for
2 h with a virus at a titer 100 times higher than the 50% cell
culture infectious dose (CCID50). The mixture was then added
to Vero cells in 96-well plates and incubated at 37°C. After 1
week, the viral cytopathic effect (CPE) was observed and assessed
with an inverted microscope (Nikon, Tokyo, Japan). The
neutralization titers were defined as the highest dilution at
which no CPE was observed, and neutralization titers under 4
were defined as 1 for calculation. Typical serum (N=5) with
positive seroconversion, including neutralization titers equal to
4, 8, 32, 128, and 256, was collected randomly for this study.

Immunization of Mice
Specific pathogen-free (SPF) female BALB/c mice at 6 weeks of
age (14-17 g) were supplied and maintained by the Central
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Services of the IMB, CAMS. The animals were randomly divided
into 3 groups, and each group consisted of 6 mice (N=6). SARS-
CoV-2 S1 proteins expressed by HEK293 cells were purchased
from Sino Biological Inc. (China). The purity of S1 was >90% as
determined by SDS–PAGE and >95% as determined by size-
exclusion chromatography high-performance liquid
chromatography. S1 was diluted to 5 mg/mouse/dose in 25 µL
of phosphate-buffered saline (PBS, pH 7.40) and mixed with the
same volume of aluminum (Thermo Fisher, USA) to induce a
typical Th2 response or nucleic acid immunostimulant mixtures
that have been proven to induce a typical Th1 response (40). The
nucleic acid immunostimulant mixtures contained 20 µg/mouse/
dose oligodeoxynucleotide containing CpG motifs (CpG ODN
2395, from In vivoGen, USA) and 25 µg/mouse/dose low-
molecular-weight polyinosinic-polycytidylic acid (poly(I:C),
from In vivoGen, USA). Fifty microliters of immunogens or
PBS (sham group) were administered intramuscularly to the
thigh muscle three times at 2-week intervals.

Enzyme-Linked Immunosorbent Assay
(ELISA) of Antibody Titers
Two weeks after the final immunization, mice were anesthetized by
an intraperitoneal injection of tribromoethanol, and blood was
collected via cardiac puncture. After overnight clotting at 4°C,
serum was collected by centrifugation at 1000 g for 10 min and
pooled for further analysis. S1-specific IgG/IgG1/IgG2a titers were
detected by ELISA (41, 42), and the IgG1-to-IgG2a titer ratio was
calculated to evaluate the Th1-Th2 balance described previously (43,
44). Specifically, HEK293 cells expressing SARS-CoV-2 S1 protein
(Sino Biological Inc., China) at 2 µg/mL were coated on 96-well
plates overnight at 4°C. The plates were washed with wash buffer
(0.05% (v/v) polysorbate 20 in PBS) once and then blocked with 5%
(v/v) skim milk dissolved in wash buffer for 1 h at 37°C. The plates
were washed four times and incubated with serially diluted mouse
sera for 1 h at 37°C. After five washes, the plates were incubated with
goat anti-mouse IgG/IgG1/IgG2a HRP-conjugated secondary
antibodies (Thermo Fisher Scientific, USA) for 1 h at 37°C. After
five washes, 3,3’,5,5’-tetramethylbenzidine (TMB, BD Bioscience,
USA) substrate was added, the plates were incubated in the dark at
room temperature for 10 min. The reactions were stopped by
adding 2 M sulfuric acid, and the absorbance at 450 nm was
detected using a microplate reader (Bio-Tek Instruments, Inc.,
USA). The antibody titers were defined by end-point dilution
with a cutoff signal of OD450 = 0.1.

Western Blot
Cells were cultured in 6-well plates until the concentration reached
1×106 cells/mL for protein expression analysis. After three washes
with PBS, radioimmunoprecipitation (RIPA) lysis buffer (Sigma,
USA) supplemented with 1% protease inhibitor cocktail
(MedChemExpress, USA) was added for the extraction of
cellular protein. After quantification with a bicinchoninic acid
(BCA) protein assay kit (Beyotime, China), 10 mg of total protein
was subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS–PAGE) and transferred to a polyvinylidene
fluoride (PVDF) membrane. After blocking with 5% milk,
Frontiers in Immunology | www.frontiersin.org 3
antibodies (Abcam, USA) against angiotensin-converting
enzyme 2 (anti-ACE2, 1:5 000), FcgR1 (anti-CD64, 1:10 000)
and FcgR2 (anti-CD32A+CD32B+CD32C, 1:10 000) were used
for assessing the protein expression of cells. A mouse monoclonal
antibody against b-actin (Multi Sciences Biotech, China) was used
to identify the quality of the protein extracted. Detection was
performed using the enhanced chemiluminescence (ECL) reagent
(Multi Sciences Biotech, China).

Reverse Transcriptase PCR (RT–PCR)
Cells were cultured in 6-well plates at a concentration of 1×106

cells/mL for gene transcription analysis. Total RNA of cells was
isolated with TRIzol™ Reagent (Thermo Fisher Scientific, USA)
and stored at -80°C until use. According to the manufacturer’s
instructions, cDNAs were constructed with a PrimeScript™ RT
Reagent Kit with gDNA Eraser (Takara, China). Briefly, 2 mL of
5×gDNA Eraser Buffer, 1 mL of gDNA Eraser, and 7 mL of RNA
dissolved in RNase-free water were mixed to obtain a total
volume of 10 mL. After incubation at 42°C for 2 min, the
mixture was then added to the reaction solution, which
contained 1 mL of PrimeScript RT Enzyme Mix I, 1 mL of RT
Primer Mix, 4 mL of 5× PrimeScript Buffer, and 4 mL of RNase-
free water. cDNAs were synthesized using the following PCR
procedure: 37°C for 15 min, 85°C for 5 s, and maintained at 4°C.

RT–PCR was performed using previously described primer
pairs to examine the expression of the genes encoding human
ACE2, human FcgR1A, human FcgR2A, human FcgR2B, and
human glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(5). The PCRs were initialized using a general procedure of
94°C for 5 min, 30 cycles of denaturation at 94°C for 45 s,
annealing at 60°C for 45 s, and extension at 72°C for 45 s, and a
final extension step of 72°C for 7 min. The PCR products were
verified by 2% agarose gel electrophoresis.

Pseudovirus-Based Neutralization Assay
SARS-CoV-2 S pseudotyped virus was used for neutralization
assays in biosafety level 2 facilities. This pseudovirus was based
on vesicular stomatitis virus (VSV) with the G gene replaced by
the firefly luciferase reporter gene and the spike protein from
SARS-CoV-2 incorporated as the membrane protein (45).
Specifically, the pseudoviruses were diluted to 1.3×104 50%
tissue culture infectious dose (TCID50)/mL with complete
DMEM before use. Fifty microliters of diluted SARS-CoV-2 S
pseudovirus and 50 mL of immune serum in serial dilutions were
coincubated at 37°C in an environment with 5% CO2 for 60 min.
Subsequently, 100 mL of Vero-E6 cells (2×105 cells/mL) was
seeded in each mixture for another 24 h at 37°C in an
atmosphere with 5% CO2. Finally, 100 mL of supernatant was
discarded before testing. A cell control (CC), in which only cells
with culture medium were added, and a virus control (VC), in
which only pseudovirus and cells but no serum were added, were
established separately. According to the manual protocol, the
luciferase activity was assayed using a Britelite Plus Ultra-High
Sensitivity Luminescence Reporter Gene Assay System
(PerkinElmer, USA) and monitored using an EnSight™

Multimode Plate Reader (PerkinElmer, USA) (45).
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Pseudovirus-Based Antibody-Dependent
Enhancement (ADE) of Infection In Vitro
The ADE of infection was evaluated in vitro using immune cell
lines with different FcR expression patterns. Briefly, 25 mL of
serially diluted serum and 25 mL of SARS-CoV-2 S pseudovirus
(containing 250 TCID50 pseudoviruses) were incubated at 37°C
in an atmosphere with 5% CO2 for 60 min. Then, 100 mL of cells
(2×105 cells/mL) was added to the mixtures for an additional 24
h of incubation. Afterward, the plates were centrifuged for 10
min at 300 ×g, and 50 mL of cell supernatant was discarded
before testing. Cell control (CC), virus control (VC), and
luciferase activity assays were performed as described above (37).

Data Analysis
The data were processed with GraphPad Prism 7.0 (San Diego,
CA, USA) and are shown as the means and standard deviations.
RESULTS

In SARS-CoV-2 S1 Subunit Vaccine-
Immunized Mice, Aluminum Induces Th2
Responses, and Nucleic Acid Adjuvants
Induce Th1 Responses
Two weeks after the third immunization (Figure 1A), vaccines
with nucleic acid adjuvants (i.e., 20 mg of CpG ODN 2395 + 25
mg of poly(I:C)/mouse/dose) induced total S1-specific IgG
antibody titers that were twofold higher (32,000 compared
with 16,000) than those obtained with alum adjuvants
(Figure 1B) and substantially higher production of S1-specific
IgG2a subtype antibody (64,000 versus 500) (Figure 1C).
Frontiers in Immunology | www.frontiersin.org 4
Although the S1-specific IgG1/IgG2a ratio in nucleic acid-
adjuvanted immunized serum was 0.25, the IgG1/IgG2a ratio
in alum-adjuvanted immunized serum was as high as 64, which
is a typical Th2-oriented immune response (Figure 1D).

Certification of Receptor Expression
Both expressed proteins (Figure 2A) and transcribed genes
(Figure 2B) of ACE2 (the main receptor for SARS-CoV-2
infection) but not any type of FcgR were detected in Vero cells
that were used for the proliferation of SARS-CoV-2 for inactivated
vaccines, which makes Vero cells suitable for detection of the FcgR-
independent enhancement of infection by serum (4, 46).

The protein level of FcgR1 in THP-1 and KMB17 cells was
detected (Figure 2A). According to a detailed subtype analysis at
the gene transcription level (Figure 2B), FcgR1A was expressed
in THP-1 cells, and the other type of FcgR1, i.e., FcgR1B, was
expressed in KMB17 cells, possibly as a pseudogene.

FcgR2 was detected at the protein level in Raji and THP-1
cells (Figure 2A). According to a detailed subtype analysis at the
transcribed gene level (Figure 2B), FcgR2B was expressed in Raji
cells, and FcgR2A was expressed in THP-1 cells. Although the
gene transcription of FcgR2A was also detected in K562 cells, a
Western blot assay indicated that the corresponding protein was
not expressed (Figure 2A).

Th2-Oriented Immune Serum From
S1-Based Subunit Vaccines Does Not
Enhance Infection In Vitro
For the pseudovirus-based neutralization assay, although no
luminescence was detected in the Vero cell control (CC), the
luminescence of the virus control (VC) group was as high as 6×105,
A

B C D

FIGURE 1 | Alum induced a Th2-oriented immune response, whereas nucleic acids induced a Th1-oriented response when adjuvanted with the S1 protein.
(A) Immunization schedule, N=6 in each group; (B) S1-specific IgG titers of immune serum; (C) S1-specific IgG1 and IgG2a titers in immune serum; (D) IgG1/IgG2a ratio
of immune serum. All of the above titers were detected in pooled serum from each immunized group, and the means and standard deviations of duplicates are shown.
April 2022 | Volume 13 | Article 882856
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which implied successful infection of Vero cells by SARS-CoV-2 S
pseudotyped virus. Although the serum of PBS-administered mice
(Sham in Figure 3A) showed no influence on pseudovirus infection,
serum from S1-immunized mice blocked pseudovirus entry. If a
luminescenceof1×105was takenas the cutoff value (whichrepresents
a more than 80% reduction in luminescence compared with that of
the VC control), the virus neutralization titer (VNT) for serum from
the nucleic acid-adjuvanted S1 subunit vaccine group was
approximately 1150, which was higher than that for serum from
the alum-adjuvanted S1 subunit vaccine group (VNT=700).

In the in vitro assays of the pseudovirus-based ADE of infection,
even luminescence as low as 1×104 (1/10 of that in the pseudovirus-
based neutralization assay in Figure 3A, and background values
around those detected in the VC control groups for each of the four
cells) was taken as the cutoff value, and serum from neither the
nucleic acid-adjuvanted S1 subunit vaccine group nor the alum-
adjuvanted S1 subunit vaccine group showed ADE of infection in
any of the four tested cell lines (Figures 3B–E). These cell lines
included Raji cells that were confirmed to exhibit FcgR2B
expression, which contributes to the enhancement of SARS-CoV-
2 infection (37, 46), and THP-1 cells were confirmed to exhibit
FcgR2A expression, which contributes to enhancement of MERS-
CoV (47) and SARS-CoV-1 (5, 48) infection.

Th2-Oriented Immune Serum After SARS-
CoV-2 Inactivated Vaccine Administration
Does Not Enhance Infection In Vitro
Considering that differences exist between the Fc fragment of
mouse IgG and human IgG and that antibodies targeting other
parts of the SARS-CoV-2 antigen except for the S1 segment may
also show potential to promote infection, human sera after an
inactivated SARS-CoV-2 vaccine adjuvant with alum were also
tested in the abovementioned cell lines.

For the pseudovirus-based neutralization assay (Figure 4A),
none of the five sera from the SARS-CoV-2 inactivated vaccine
groups, nor the six HCSs efficiently blocked the entrance of
pseudovirus at a dilution of 1:1000, as reflected by corresponding
luminescence reads that were higher than the cutoff value of
1×105 established in the previous section (Figure 3A).
Frontiers in Immunology | www.frontiersin.org 5
In the in vitro assay of the pseudovirus-based ADE of
infection, none of the five sera from the SARS-CoV-2
inactivated vaccine groups, nor the six HCSs showed ADE of
infection (shown as luminescence lower than 1×104, the cutoff
value for ADE discussed in the above subsection) in all four cell
lines with serum dilutions from 1:1000 to 1:4000 (Figures 4B–E),
as previously reported for the dilutions to detect ADE of
infection with the SARS-CoV-1 subunit and inactivated
vaccines adjuvanted with alum (5).
DISCUSSION

According to preclinical studies of MERS-CoV and SARS-CoV-1
vaccines, both alum-adjuvanted spike-protein-based subunits and
inactivated vaccines provide partial protection upon challenge,
which means that although the viral loads are lower than those in
infected control animals, pulmonary immunopathology has been
observed in both murine and NHP models (1–4). Notably, these
immunopathologies were exacerbated compared with those of the
infected control animals and were thus designated VAERD. An in
vitro analysis showed that sera from these vaccines could enhance
the infection of viruses in immune cell lines with different patterns
of FcRs (5, 6). Concurrent with the reduced viral loads observed in
vivo, these in vitro infections are abortive, but eliminating the virus
is associated with releasing multiple proinflammatory cytokines
that may cause a pulmonary immune pathology in vivo (5, 7–10).

Mouse serum resulting from three administrations of S1 protein
adjuvanted with nucleic acid adjuvants induced higher SARS-CoV-
2 neutralization titers than those in human serum after two
administrations of inactivated SARS-CoV-2 vaccines, as reflected
by the results showing that mouse serum resulting from the
administration of S1 protein adjuvanted with nucleic acid
adjuvants could still efficiently block the entrance of pseudovirus
at a dilution of 1:1150 (Figure 3A), whereas none of the sera from
alum-adjuvanted inactivated SARS-CoV-2 vaccines could block the
entrance of pseudovirus at a dilution of 1:1000 (Figure 4A). The
extent to which formaldehyde treatment alters the native
conformations of viral immunogens and may therefore affect the
A B

FIGURE 2 | Fc receptor expression patterns in immune cell lines. (A) The protein expression levels of ACE2, FcgR1 and FcgR2 were detected by Western blot.
(B) The gene expression of ACE2 and more specific FcgR subtypes, including FcgR1A, FcgR2A, and FcgR2B, was detected by RT-PCR.
April 2022 | Volume 13 | Article 882856
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humoral immune responses elicited by inactivated vaccines remains
to be further investigated.

Consistent with previous reports on anti-SARS-CoV-1
antibodies in which none of the sera-inducing ADE of
Frontiers in Immunology | www.frontiersin.org 6
infection contain IgG2a antibodies (5), recent reports suggest
that the SARS-CoV-2-targeting antibodies inducing ADE of
infection are all IgG1 subtype monoclonal antibodies (36–38).
Compared with immune sera from SARS-CoV-1 and MERS,
A

B C

D E

FIGURE 3 | Th2-oriented immune serum after S1-based subunit vaccine administration does not enhance infection in vitro. (A) Pseudovirus-based neutralization
assay of immune serum in Vero cells that express ACE2. (B–E) Assay of pseudovirus-based antibody-dependent enhancement of infection with immune serum in
different FcgR-expressing cells. Poly(I:C)+CpG, nucleic acid-adjuvanted plus S1-purified protein immune serum; Alum, alum-adjuvanted plus S1-purified protein
immune serum; Sham, serum from mice intramuscularly administered PBS instead of immunogens. All of the above analyses were performed using pooled serum
from each immunized group. The means and standard deviations of duplicates are shown.
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which mainly depend on FcgR1 and FcgR2a for ADE of infection,
ADE of infection by monoclonal antibodies against SARS-CoV-2
could be independent of FcgR (i.e., ACE2-dependent) or
dependent on FcgR2b or FcgR1 (5, 37, 46). Nonetheless, after
administering either alum- or nucleic acid-adjuvanted spike
protein, immune serum contained polyclonal antibodies of
both the IgG1 and IgG2a subtypes, although at different
proportions (Figure 1). None of these polyclonal antibodies
induced either ACE2-dependent or FcgR-dependent
enhancement of infection, even at subneutralizing or non-
neutralizing concentrations (Figure 3). A similar conclusion
could also be drawn for human serum after inactivated SARS-
CoV-2 vaccines that contain full-length spike proteins and other
antigens, e.g., nucleocapsid proteins (5, 49) (Figure 4).

These results again turned our attention to Th2-type
immunopathology. Previous preclinical research on both spike
Frontiers in Immunology | www.frontiersin.org 7
protein-based SARS-CoV-1 subunit vaccines and inactivated
vaccines have shown that formulations with Th1-oriented
adjuvants, including delta inulin and Toll-like receptor agonists,
could prevent or reduce excess eosinophilic infiltration in the lungs,
alleviate pulmonary eosinophilic immunopathology and enhance
vaccine protection in mouse models (12, 13). These SARS-CoV-1
vaccine preclinical studies are consistent with SARS-CoV-2 phase
III clinical trials due to the higher protection rate of Th1-oriented
mRNA vaccines and M-matrix-adjuvanted spike protein-based
subunit vaccines (50–52). Indeed, trace amounts of virus that
vaccinated people primarily encounter could be eliminated more
easily than the high dose of viruses administered to animal models,
and this finding stresses the influence of the immune pathology on
the comparably lower protection rate of inactivated SARS-CoV-2
vaccines adjuvanted with alum, which induced typical Th2-oriented
immune responses (24–27, 53). Although no ERD typical of an
A

B C

D E

FIGURE 4 | Th2-oriented immune serum after SARS-CoV-2 inactivated vaccine administration does not enhance infection in vitro. (A) Pseudovirus-based
neutralization assay of human serum with low to high authentic SARS-CoV-2 neutralization titers (from 4 to 256) in Vero cells that express ACE2. The sample ID and
authentic SARS-CoV-2 neutralization titer are shown in the table on the right. (B–E) Assay of pseudovirus-based antibody-dependent enhancement of infection with
human serum in cells with different FcgR expression patterns. V1-V5, human sera after inactivated SARS-CoV-2 vaccination; HSC1-6: human convalescent serum.
Each sample is shown separately.
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increased eosinophilic proinflammatory pulmonary response upon
challenge has been detected in preclinical studies of these inactivated
SARS-CoV-2 vaccines in both murine and NHP pneumonia
models (28–30), a recent parallel preclinical study of a SARS-
CoV-2 mRNA vaccine and a full-length spike protein subunit
vaccine adjuvanted with alum showed VAERD in mouse
pneumonia models for the later (54). This result appears to be
more reasonable and consistent with the conclusions from previous
SARS-CoV-1 and MERS-CoV studies.

In conclusion, our studies demonstrated that Th2-oriented
immune serum after SARS-CoV-2 vaccination does not enhance
infection in vitro. We infer that the lower protection rate of
inactivated SARS-CoV-2 vaccines may result from lower or
waning induction of neutralization antibody production or a
pulmonary eosinophilic immunopathology accompanied by
eosinophilic infiltration in the lungs upon virus exposure. The
immunization schedule and new adjuvants that can elevate
neutralizing antibody levels and induce Th1-oriented responses to
avoid a potential pulmonary eosinophilic immunopathologymay be
considered to elevate the protection rate of both inactivated and
spike protein-based subunit SARS-CoV-2 vaccines (55–58).
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