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A B S T R A C T   

The COVID-19 pandemic that has hit the whole world has caused losses in various aspects. Several countries have 
implemented lockdowns to curb the spread of the SARS-CoV-2 virus that caused death. However, for developing 
countries such as Indonesia, it is not suitable for lockdown because it considers the economic recession. Instead, 
the Large-scale Social Restrictions (LSSR) regulation is applied, the same as the partial lockdown. Thus, it is 
hypothesized that implementing LSSR that limits anthropogenic activities can reduce heat emissions and air 
pollution. Utilization of remote sensing data such as Terra-MODIS LST and Sentinel-5P images to investigate 
short-term trends (i.e., comparison between baseline year and COVID-19 year) in surface temperature, Surface 
Urban Heat Islands Intensity (SUHII), and air pollution such as NO2, CO, and O3 in Malang City and Surabaya 
City, East Java Province. Spatial downscaling of LST using the Random Forest Regression technique was also 
carried out to transform the spatial resolution of the Terra-MODIS LST image to make it feasible on a city scale. 
Raster re-gridding was also implemented to refine the Sentinel-5P spatial resolution. The accuracy of LST spatial 
downscaling results is quite satisfactory in both cities. Surface temperatures in both cities slightly decreased 
(below 1 ◦C) during LSSR was applied (P < 0.05). SUHII in both cities experienced a slight increase in both cities 
during LSSR. NO2 gas was reduced significantly (P < 0.05) in Malang City (~38%) and Surabaya City (~28%) 
during LSSR phase due to reduced vehicle traffic and restrictions on anthropogenic activities. However, CO and 
O3 gases did not indicate anomaly during LSSR. Moreover, this study provides insight into the correlation be-
tween SUHII change and the distribution of air pollution in both cities during the pandemic year. Air temperature 
and wind speed are also added as meteorological factors to examine their effect on air pollution. The proposed 
models of spatial downscaling LST and re-gridding satellite-based air pollution can help decision-makers control 
local air quality in the long and short term in the future. In addition, this model can also be applied to other 
ecological research, especially the input variables for ecological spatial modeling.   

1. Introduction 

COVID-19 has hit the world, causing losses in many aspects. COVID- 
19 was first identified in Wuhan City, Hubei Province, China, in 
December 2019 (Huang et al., 2020; Q. Li et al., 2020). The outbreak 
was caused by Severe Acute Respiratory Syndrome COVID-19 virus 2 
(SARS-CoV-2) (Desjardins et al., 2020; WHO, 2020b). >140 countries 
have confirmed the case categorized as a pandemic. As of June 30th, 
2020, globally, the total confirmed cases reached 10,245,317, with 
502,123 deaths (Roser et al., 2020). countries have carried out various 
measures to inhibit the spread of COVID-19 by implementing social 

distancing, physical distancing, and lockdown (Galvin et al., 2020; 
WHO, 2020a). Most countries have implemented lockdown to inhibit 
the spread of this virus (Mandal and Pal, 2020). This regulation effec-
tively curbed the spread of the SARS-CoV-2 virus because anthropogenic 
activities are very limited. Still, it requires the readiness of a country 
regarding food subsidies from the government and the mental readiness 
of the community. This may not be in line in developing countries, 
especially Indonesia, so applying semi-lockdown/partial lockdown is 
more suitable. 

Indonesia implements several partial lockdown schemes, including 
the Large-Scale Social Restrictions (LSSR) policy, Local Social 
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Restrictions policy, and the Implementation of Restrictions on Com-
munity Activities Micro-scale policy. From this perspective, geographi-
cally, they can be called multi-scale anthropogenic space restrictions. 
East Java is one of the provinces that implements LSSR in some urban 
areas because of the second-highest number of cases on the national 
scale as it is known that, in general, urban areas as the center of the 
spread of COVID-19. Surabaya and Malang are two cities in East Java 
that implement LSSR. 

LSSR Surabaya was held from April 28th to June 7th, 2020 (Tohar-
udin et al., 2020), while in Malang from May 17th to May 30th, 2020. 
During this LSSR, restrictions were placed on several activities such as 
religious, public, socio-cultural, and transportation (Jatim, 2020). This 
restriction is the same as a partial lockdown in which community ac-
tivities still exist; however, it decreased intensity. Industrial operations 
are still running, but health protocols are more emphasized using a 
shifting work system (i.e., morning, afternoon, and evening). In addi-
tion, traditional markets for the primary needs of the community are still 
open but apply an open-closed system (i.e., one day open, one day 
closed, etc.). Activities that are of medical importance are prioritized 
without any restrictions on movement. Land, water, and air vehicles 
outside the city are not allowed to enter the city unless an urgent need or 
an important assignment letter from the government is obtained. 
Entertainment, recreation, urban parks, and education are temporarily 
suspended. Restrictions on activities may affect economic and environ-
mental conditions. The effect of restrictions on economic conditions may 
have a more negative impact, but such restrictions can reduce the 
adverse impact on the quality of the environment, namely micro-climate 
change due to anthropogenic activity (Mandal and Pal, 2020). 

One of the urban environmental problems is the development of 
Urban Heat Islands (UHI) caused by land cover material and human 
activities. UHI accumulates heat in urban areas due to higher tempera-
tures than in the surrounding suburbs and countryside. Generally, UHI 
can be categorized based on the methods and height of its formation, 
namely Atmospheric Urban Heat Islands (AUHI) and Surface Urban Heat 
Islands (SUHI). However, UHI is usually thought of as the atmospheric 
temperature. AUHI is divided into two layers, namely the Urban Canopy 
Layer (UCL), which is a layer of the urban atmosphere that is limited 
from the surface to the average building height, and the Urban Boundary 
Layer (UBL) is a layer above the UCL which is influenced by the urban 
surface (Voogt and Oke, 2003). UCL can be measured using in-situ 
sensors mounted on meteorological stations or sensor tracks on vehi-
cles (Nichol et al., 2009; Schwarz et al., 2012; Voogt and Oke, 2003). 

Meanwhile, UBL is observed through tower platforms, radiosondes, 
balloons, or aircraft mounted with special sensors. SUHI is the difference 
in brightness temperature of objects between urban and non-urban areas 
as measured by remote sensing satellite thermal sensors. More specif-
ically, the remote sensor captures the spatial pattern of upwelling 
thermal radiance, also known as directional radiometric temperatures or 
directional brightness radiometric (Voogt and Oke, 2003). SUHI is 
measured indirectly, which means it requires consideration of atmo-
spheric intervention and surface radiation characteristics that affect the 
emission and reflection of radiation in the electromagnetic spectrum 
detected by the sensor. In addition, AUHI correlates with SUHI but is 
measured empirically. Temperature advection is influenced by varia-
tions in the spatial configuration of urban surfaces, such as thermal and 
humidity properties, complex surfaces, and aerodynamic roughness 
which results in different energy balances and surface temperatures 
(Voogt and Oke, 2003). In addition, surface imperviousness, vegetation 
cover, and local climate zone are also important factors for the linear 
relationship between AUHI and SUHI (Gawuc et al., 2020). This is due to 
the high thermal inertia of the artificial surfaces compared to the natural 
surfaces. In addition, natural areas with abundant vegetation increase 
absolute humidity, so cooling rates are higher than in urban areas, 
which can cause near-ground air temperature inversion after sunset. 

Land Surface Temperature (LST) is one of the important environ-
mental variables for surface SUHI studies in urban areas. Land cover 

material with high heat energy absorption ability causes the tempera-
ture to increase because of low albedo (Berila and Isufi, 2021). 
Anthropogenic activities such as transportation, industrial, heating, and 
air conditioning emissions can affect surface UHI (Shi et al., 2019; Wang 
et al., 2018). An alarming increase in urban temperature can harm 
human health, especially young children, the elderly, and people with a 
history of respiratory disease. This issue must be highlighted because it 
is directly related to a new respiratory disease, i.e., COVID-19. Moni-
toring the formation of SUHI is easier by using remotely sensed data, 
especially LST parameters that have been widely implemented in urban 
climate studies and algorithm development innovations. 

LST is acquired from remote sensing data, particularly from satellites 
with thermal sensors. Generally, previous research for LST-based envi-
ronmental quality analysis uses Landsat ETM+ and TIRS (Thermal 
Infrared Sensors) for moderate-scale mapping studies (Lillesand and 
Kiefer, 2000). However, the biggest weakness in Landsat imagery data is 
prone to cloud coverage, with a percentage of 41.05% at the 30% CC 
threshold in wet tropical Southeast Asia (Li et al., 2018; Martinuzzi 
et al., 2007). Landsat also has a low temporal resolution (16 days) for the 
micro-scale landscape change study, so an alternative is needed to 
address this problem. 

Atmospheric emissions from natural and anthropogenic sources can 
harm human health. Limited anthropogenic activities during the 
pandemic significantly improves global air quality and reduces local 
emissions. Furthermore, this is evident in large cities with high popu-
lation density, which contributes to anthropogenic emissions. Lockdown 
regulations implemented during the pandemic reap significant results in 
reducing air pollution on a global scale (Das et al., 2020) and in some 
regions such as the United States (Berman and Ebisu, 2020), Southeast 
Asia (Metya et al., 2020), Indian (Singh and Chauhan, 2020a), China 
(Chen et al., 2020) investigated through ground-based station or remote 
sensing. Some of these studies indicate that reducing anthropogenic 
activity caused by lockdown regulations (partial or strict) plays an 
important role in air quality restoration. 

The combination of ground-based measurement with remote sensing 
does offer an accurate estimate of surface air temperature and air 
pollution mass concentrations with adequate spatial and temporal var-
iations. However, not all regions provide quality ground-based data, 
such as the number of observation stations and the completeness of the 
data. In addition, another problem is the low visual quality of the 
medium-scale thermal sensor remote sensing data (i.e., Landsat TIRS) 
due to intensive cloud formation in the equatorial region, particularly in 
Indonesia. Therefore, this study offers an LST downscaling process of 
Terra-MODIS LST imagery with a resolution of ~1 km because it pro-
vides daily temporal. Previous research reports that Terra-MODIS LST 
can be sharpened spatial resolution based on elevation, spectral band, 
and vegetation factors as an independent factor – certainly use a higher 
spatial resolution (Duan and Li, 2016; Peng et al., 2019; Wang et al., 
2020a, 2020b; Yang et al., 2019). However, various spatial downscaling 
techniques are used for atmospheric studies, especially LST, e.g., spatial 
statistics, machine learning, artificial intelligence, etc. Sentinel-2 im-
agery is used as an independent variable for the urban scale because of 
its good spatial and temporal resolution. In addition, air pollution 
mapping emphasizes using remote sensing data in this paper. This 
research is rarely conducted in big cities in Indonesia, especially the 
cities with the densest population in East Java Province. 

In this context, the main purpose of this paper is to investigate short- 
term trends in surface temperature accompanied by an analysis of SUHI 
intensity and air pollution such as nitrogen dioxide (NO2), carbon 
monoxide (CO), and ozone (O3) based on remote sensing in Malang City 
and Surabaya City. Mapping LST, SUHII, and air pollution with geo-
spatial data focused on before, during, and after LSSR, especially using 
remote sensing data from particular satellites, are presented in this 
paper. Anomalies or changes are detected using a baseline year (i.e., 
2019) and COVID-19 year (i.e., 2020). Spatial downscaling is conducted 
to sharpen LST information pixels-based to map LST and SUHI intensity 
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on an urban scale. 

2. Materials and methods 

2.1. Study area 

The scope of this study covers two metropolitan cities in East Java 
Province, i.e., the City of Surabaya and the City of Malang (Fig. 1). 
Astronomically, Surabaya is located at 7.207◦ - 7.356◦ S and 112.62◦ - 
112.808◦ E. Meanwhile, Malang is located at 7.911◦ - 8.051◦ S and 
112.568◦ - 112.694◦ E. Geographically, Surabaya is a coastal city with a 
gentle topography at 38.2 ± 7.2 masl. Malang is a city flanked by a 
mountain complex at 504.5 ± 48.3 masl with varied topography but 
slightly wavy relief. 

Surabaya’s average annual ambient air temperature ranges from 
24.26 ◦C to 32.74 ◦C. Malang is lower than Surabaya, with a minimum 
span of 18.55 ◦C and a maximum of 28.98 ◦C. On the other hand, Sur-
abaya’s annual rainfall is around 1790 mm, and Malang’s is around 
2210 mm. January to March and November to December are the months 
that receive the highest rainfall. 

Surabaya is divided into several smaller administrative units (i.e., 
urban communities/wards) with 154 wards and Malang with 54 wards. 
Both cities are dominated by built-up land, with a ratio of 73% and 77% 
for Malang and Surabaya, respectively. Other land uses are agricultural 
land, pond land (especially in the eastern part of Surabaya), and several 
open spaces and green spaces. Surabaya City has a population of about 
2,887,223 people with a population density of 8795 people/km2 (BPS 
Kota Surabaya, 2021). Meanwhile, Malang City has 843,810 people with 

a high population density of 9582 people/km2 (BPS Kota Malang, 2021). 
These two cities are the most densely populated in East Java Province. 
Residential areas will continue to grow and spread to suburban areas so 
that there can be a substantial increase in the population. In addition, 
the population is an important factor in the formation of SUHII, espe-
cially in major cities (Cui et al., 2016). This is associated with the rate of 
urbanization and reduced vegetation cover replaced by buildings, roads, 
parking lots, pavements, and other structures. Adequate infrastructure 
and the availability of public facilities trigger population mobility to 
meet the needs of life. The use of public and private transportation to 
industrial areas in both cities can contribute to air pollution. Coupled 
with the high population density in both cities, this triggers more 
intensive fuel-burning activities. 

2.2. Data preparation and image pre-processing 

2.2.1. Satellite LST product 
Terra-Moderate Resolution Imaging Spectroradiometer (Terra- 

MODIS) imagery is used in this study, specifically MOD11A1_L3v006 
products with a spatial resolution of ~1 km. This imagery product is 
level-3, specifically Land Surface Temperature (LST) daily Global in-
formation. The algorithm for generating LST uses split-windows. This 
algorithm can produce more accurate LST values and low sensitivity to 
uncertainty in-band emissions and instrument interference (Mao et al., 
2005; Zhengming Wan and Dozier, 1996). Bands 31 and 32 on MODIS 
are used as variables of the algorithm. We get this data from a Google 
Earth Engine platform. Optical imagery data has been processed up to 
level-2 or level-3 in images with additional image-processing eliminates 

Fig. 1. Study area map in a) Surabaya City and b) Malang City with land use/landcover information.  
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clouds and can perform overlapping analysis on the same image scene. 
Still, it differs temporally so that null pixels can be updated with images 
with pixel values at the same location (Huntington et al., 2017). 

2.2.2. Sentinel-2 satellite data 
Sentinel-2 Multispectral Instrument (MSI) consists of two satellites, i. 

e., Sentinel-2A and Sentinel-2B carrying sensors at 10 m, 20 m, and 60 m 
spatial resolutions. Sentinel-2 provides a red-edge band capable of 
capturing substantial vegetation reflectance in the near-infrared. As 
shown in Table 1, the twin satellites have spectral bands with different 
wavelengths. Sentinel-2 satellite imagery acquired via Google Earth 
Engine platform (Google Earth Engine, 2012) to get a cloud-free image. 
The acquired image product is Level-2A reflectance data, which means 
that geometric, radiometric, and atmospheric corrections have been 
made. Then, the band sharpened at a spatial resolution of 20 m to 10 m 
using the High-Pass Filter technique (Chavez et al., 1991). This tech-
nique can sharpen the spatial resolution by extrapolating edge infor-
mation from the high-resolution band to the lower spatial resolution 
band. In addition, this technique has several advantages, i.e., lower 
spectral information distortion compared to Hue-Intensity-Saturation 
and Principal Component Analysis techniques, can be applied to all or 
part of the bands, and low-frequency noise in higher spatial resolution 
images. 

2.2.3. Independent variables for downscaling LST 
Terra-MODIS LST and Sentinel-2 image data were taken before LSSR 

(30th March to 28th April 2020), during LSSR (29th April 2020 to 28th 
May 2020), and after LSSR (29th May 2020 to 27th June 2020) time-
frames. We took the mean of the temporal measures with four-week 
accumulations in each period. Sentinel-2 data were used because 
Landsat thermal sensor data from before LSSR to after LSSR had poor 
visual quality due to clouds in Surabaya and Malang. As shown in 
Table 2, several reflectance bands and spectral indices were used for the 
LST downscaling process, including bands 2, 3, 4, 5, 6, 7, 8, 8a, 11, 12, 
NDVI (Normalized Difference Vegetation Index), NDWI (Normalized 
Difference Wetness Index), NDBI (Normalized Difference Built Index), 
and BSI (Bare Soil Index). 

Meanwhile, elevation data obtained from IFSAR, TERRASAR-X, and 
ALOS-PALSAR data fusion results using the mass point data assimilation 
method, namely GMT-surface with the tension of 0.32 (BIG, 2008; Hell 
and Jakobsson, 2011). The image fusion result is called DEMNAS, ac-
quired by the Geospatial Information Agency with a spatial resolution of 
8.25 m in 2008. Terra-MODIS LST, Sentinel-2, and DEMNAS data are 
used for Spatial Downscaling LST from coarse-resolution to finer- 
resolution (i.e., 10 m). We performed spatial aggregation of elevation 

Table 1 
Spectral bands, spatial resolution, and wavelengths on Sentinel-2A and Sentinel- 
2B images.  

Bands Spatial Resolution 
(m) 

Wavelength (nm) Description 

Sentinel- 
2A 

Sentinel- 
2B 

B1 60 443.9 442.3 Aerosol 
B2 10 496.6 492.1 Blue 
B3 10 560 559 Green 
B4 10 664.5 665 Red 
B5 20 703.9 703.8 Red Edge 1 
B6 20 740.2 739.1 Red Edge 2 
B7 20 782.5 779.7 Red Edge 3 
B8 10 835.1 833 Near-infrared 

B8A 20 864.8 864 Red Edge 4 
B9 60 945 943.2 Water Vapor 
B10 60 1373.5 1376.9 Cirrus 

B11 20 1613.5 1610.4 
Shortwave-infrared 

1 

B12 20 2202.4 2185.7 
Shortwave-infrared 

2  

Table 2 
Information on independent variables used for spatial downscaling of LST on 
Terra-MODIS LST imagery in the study area.  

Variables Spatial 
Resolution 
(m) 

Description Source 

B2 10 Blue 

Acquired from Sentinel-2 MSI 

B3 10 Green 
B4 10 Red 
B5 20* Red Edge 1 
B6 20* Red Edge 2 
B7 20* Red Edge 3 

B8 10 
Near-infrared 

(NIR) 
B8A 20* Red Edge 4 

B11 20* 
Shortwave- 
infrared 1 
(SWIR1) 

B12 20* 
Shortwave- 
infrared 2 
(SWIR2) 

NDVI 10 

Normalized 
Difference 

Vegetation Index 
is a ratio between 
energy absorbed 
by vegetation in 
the red band and 
energy reflected 
near-infrared, 

usually for 
detecting 
vegetation 
surfaces. 

(NIR − RED)
(NIR + RED)

(Purevdorj et al., 1998) 

NDWI 10 

Normalized 
Difference Water 
Index is an ratio 
between green 

and NIR to 
identify liquid 

water molecules in 
vegetation and 
water bodies 

because of their 
strong absorbing 
properties from 
the visible to 

infrared spectrum. 

(GREEN − NIR)
(GREEN + NIR)

(Gao, 1996) 

NDBI 10 

Normalized 
Difference Built- 

up Index is a ratio 
for identifying 

artificial surfaces 
because it has a 

strong reflectance 
in the SWIR band 
to suppress the 

influence of 
vegetation 

surfaces from the 
NIR band. 

(SWIR − NIR)
(SWIR + NIR)

(Zha et al., 2003) 

BSI 10 

Bare Soil Index 
uses blue, red, 

NIR, SWIR bands 
to identify soil 
variations. The 

index is calculated 
by the ratio 

between the SWIR 
and red bands to 
the Blue and NIR 

bands. 

((RED + SWIR) − (NIR + BLUE) )
((RED + SWIR) + (NIR + BLUE) )

(Roy et al., 1996) 

DEM 8.25* 

Digital Elevation 
Model represents 

the vertical 
distance between 
the topography of 

Aquired from DEMNAS 

(continued on next page) 
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data that follows the spatial resolution of Sentinel-2 data to be consis-
tent, analyzable, and avoid errors during spatial downscaling. 

2.2.4. Satellite air pollution product 
Air pollution data were acquired from Sentinel-5 Precursor Tropo-

spheric Monitoring Instrument imagery, which are. Available and easily 
accessible via the Google Earth Engine platform. Sentinel-5P spatial with 
resolution of around 0.01 arc degrees are high enough to study atmo-
spheric concentration estimation with a metropolitan city-scale 
coverage. Air pollution parameter data such as nitrogen dioxide 
(NO2), carbon monoxide (CO), and ozone (O3) are available starting 
from the middle of 2018. The vertical column density (mol/m2) is the 
physical quantity or air pollution unit. Temporal analysis for changes in 
air pollution is the same as for data acquisition of Terra-MODIS LST 
imagery. 

2.2.5. ERA5-land reanalysis data 
Satellite-based meteorological data were used in this study. ERA5- 

land reanalysis (monthly) image produced by the European Center for 
Medium-range Weather Forecasts (ECMWF) under the auspices of the 
Copernicus Climate Change Service. The parameters eastward- 
northward components of wind speed and air temperature with a 
spatial resolution of 0.1◦ × 0.1◦ are used in this study. Local and regional 
meteorological conditions can affect air pollution concentration in the 
atmosphere (Kanniah et al., 2020). Data acquired from the Google Earth 
Engine platform (Google Earth Engine, 2012). 

2.3. Methodology 

2.3.1. Spatial downscaling land surface temperature using random Forest 
regression 

Random Forest Regression (RFR) is an ensemble machine learning 
technique for non-linear statistical analysis between variables consisting 
of multiple regression trees. The dependent variables and predictors 
become input data for the construction of the RFR model. Each tree is 
given a random sample of observations by replacing the observation 
values on the training data (i.e., bootstrap sampling technique) to in-
crease the homogeneity between the features of each sub-node (Brei-
man, 2001). The prediction results of each trained tree are then 
calculated on average with the entire tree to predict the target data. This 
is an advantage for the RFR model because it can control high- 
dimensional data (Breiman, 2001). In other words, it can minimize 
the variance between variables. In addition, implementing the RFR 
model for LST downscaling needs; in fact, it is better than other 
regression models in terms of algorithm complexity and minimal 
sensitivity to multicollinearity resulting in quite a good accuracy (Li 
et al., 2019). In addition, it can model well even in heterogeneous 
landscape areas (R. Wang et al., 2020a). 

Spatial downscaling LST starts from the Terra-MODIS LST image, 
which has a coarse-resolution converted to a finer-resolution. We set two 
main hyper-parameters in the RFR model, i.e., the number of variables 
randomly sampled as candidates at each split (mtry) by five and the 
number of trees (ntree) by 1000. Setting ntree of at least ~1000 can 

improve the performance and accuracy model, but it is not recom-
mended to add too many trees (Li et al., 2013; Probst et al., 2019). The 
ratio of sharing the dataset for training and validation is 8:2. LST is more 
optimal through many factors, including solar radiation, topography, 
land cover, wind, and soil moisture (Hengl et al., 2012; Yang et al., 
2019). However, we used multispectral band variables, spectral indices, 
and terrain factors to consider data availability in the study area. The 
LST spatial downscaling process in detail refers to several previous 
works of literature that also use the RFR model (Bartkowiak et al., 2019; 
W. Li et al., 2019; R. Wang et al., 2020a) include (1) spatial resolution 
upscaling transformation on predictor variables following the Terra- 
MODIS image, (2) running LST prediction process on coarse-resolution 
variables to obtain non-linear regression models trained for the down-
scaling process, (3) obtaining residual values as an error model which is 
then re-gridding the pixel resolution following the finer-resolution using 
the spline interpolation technique, and (4) LST downscaling by allo-
cating the finer-resolution predictor variable into the RFR model that 
has been trained previously and substituting the error model. Overall, 
the spatial downscaling process were implemented in ArcGIS Pro soft-
ware version 2.5 (ESRI Inc, 2020) for pre-processing LST data along with 
independent variables and mapping downscaled LST; then, software R- 
studio version 1.3.1093 (R Core Team, 2021; RStudio Team, 2020) for 
the spatial downscaling process. 

2.3.2. Surface Urban heat intensity analysis 
Surface urban heat island intensity (SUHII) provides micro-climate 

zone information regarding the LST differences between urban and 
rural zones. The SUHII calculation is described as follows (Estoque and 
Murayama, 2017): 

SUHII = LSTUZ − mean LSTRZ (1)  

where, LSTUZ is the LST value of the entire pixel-based area and mean 
LSTRZ is the average value of the surrounding green space in the study 
area. We also present an analysis of the SUHII profile based on the 
integration of the buffer zoning method from the city center at 500-m 
intervals (Zhao et al., 2017) and Euclidean direction based on com-
pass direction (i.e., North, 337.5–360◦ & 0–22.5◦; North-west, 
292.5–337.5◦; West, 247.5–292.5◦; South-west, 202.5–247.5◦; South, 
157.5–202.5◦; South-east, 112.5–157.5◦; East, 67.5–112.5◦ and North- 
east, 22.5–67.5◦). 

2.3.3. Raster re-gridding for satellite-based air pollution 
The satellite-based pollutant gas dataset is a grid of pixels high-

lighted at a city scale. The spatial configuration of pollutant gases is 
naturally more subtle such as ambient air temperature, because it is 
related to air movement. Raster re-gridding is implemented for 
smoothness and continuity purposes. We use a surface interpolation 
approach to achieve this goal. Splines distinguish between phenomenal 
surfaces with smooth curves and sharp edges between the measured 
samples (Simpson and Wu, 2014). Spline interpolation is more suitable 
for applying based on the shape of the sample distribution, and the 
phenomena studied. Previous works of literature have also applied this 
technique to map ambient air pollution through ArcGIS software with 
good visualization results (Fang and Lu, 2011; Gharagozlou et al., 2014; 
Mirsanjari et al., 2020). The spatial resolution output follows the 
downscaled Land Surface Temperature. The type of spline used is ten-
sion with the calculation of the first derivative (slope) and the second 
derivative (rate of change in slope), which makes the surface smoother 
although increasing the computational load (Childs, 2004). The raster 
re-gridding process uses ArcGIS Pro software version 2.5 and spatio-
temporal air pollution mapping. 

2.3.4. Anomaly detection for land surface temperature and air pollution 
We investigated short-term anomalies in LST and air pollution by 

conducting a comparative analysis between the baseline year (i.e., 

Table 2 (continued ) 

Variables Spatial 
Resolution 
(m) 

Description Source 

the earth’s surface 
(trees, building, 

and other objects 
are not included) 
and the reference 
point, namely sea 

level.  

* Resampled to 10 m. 
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2019) and COVID-19 year (i.e., 2020), as done by several previous 
studies (Naqvi et al., 2021; Shikwambana et al., 2021; Singh and 
Chauhan, 2020a). This analysis implies the possible impact of the 
pandemic on reductions in heat production and gas emissions identified 
at initial outbreak entry (particularly in the study area), restriction stage 
(i.e., semi-lockdown), and easing of restrictions compared to 2019 based 
on meteorological conditions that are assumed to be similar. In addition, 
this comparative analysis aims to determine the pattern of changes in 
each period (before LSSR, during LSSR, and after LSSR), which shows 
the same or different pattern of changes. We also performed statistical 
analysis with a 95% confidence interval to determine whether the 
changes were significant or insignificant. We implemented the inde-
pendent t-test for the difference test between the baseline year and 
COVID-19 year before LSSR, during LSSR, and after LSSR, respectively. 
Then, a Pearson correlation was carried out to determine the correlation 
between SUHII change (temporal change between COVID-19 year and 
baseline year) and air pollution (NO2, CO, and O3). Point samples were 
created using the 100 m × 100 m fishnet tool from ArcGIS (grid-based 
sampling) in order to retrieve pixel values from the downscaled LST, 
SUHII, NO2, CO, and O3 raster data. The methodology flow for this study 
can be seen in Fig. 2. 

3. Results 

3.1. Variable importance for selected predictor variables 

Table 3 shows the variable importance of the predictors calculated 

Fig. 2. Research workflow for mapping LST, SUHII, and air pollution starting from taking spatial data, spatial downscaling LST, calculating SUHII, re-gridding air 
pollution images, and detecting anomalies between COVID-19 year (2020) and baseline year (2019). 

Table 3 
Random Forest variable importance scores averaged across all period (2019 and 
2020) in Malang City and Surabaya City.  

Malang Surabaya 

Elevation 0.653 B3 0.456 
B7 0.614 B2 0.436 
B8 0.581 NDBI 0.430 
B2 0.576 B12 0.403 

B8A 0.556 NDVI 0.402 
B5 0.533 BSI 0.393 

NDVI 0.483 NDWI 0.355 
B3 0.479 B5 0.342 
B12 0.452 B6 0.338 

NDWI 0.439 B4 0.334 
B4 0.423 B8A 0.310 

NDBI 0.421 B11 0.293 
B6 0.413 Elevation 0.282 
B11 0.400 B8 0.273 
BSI 0.399 B7 0.221  
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by the RFR model in the two study areas. The importance score repre-
sents the mean squared error (MSE). A high MSE value indicates the 
predictor variable is more important for the input data in the model. 
This importance score provides a relative rank on the contribution of the 
predictor variable. In fact, the ranking of variable contributions looks 
different in the two study areas (Table 3). Overall, the importance scores 
of various variables were relatively balanced in each of the two cities. 
The distribution of LST in Malang City is more controlled by topography 
and vegetation factors, such as red edge 3, NIR, red edge 4, red edge 1, 
and NDVI bands. These findings lead to varied vegetation and 
morphology, such as the presence of hills in the southeast and urban 
areas with slightly undulating surface relief. For the study area of Sur-
abaya City, the complex urban landscape characteristics and relatively 
sloping morphology cause the elevation factor to be less important than 
Malang City. In addition, the blue, green, SWIR2, and all spectral indices 
play an important role in LST downscaling in Surabaya City. This may be 
due to the complex characteristics of the urban landscape, such as the 
presence of salt and fish ponds, urban geometry, agricultural wetlands, 
mangroves, and marine areas. The complexity of land cover types can 
trigger mixed pixels problems, and sloping morphology can reduce the 
importance score for the elevation factor (Wu and Li, 2019). 

3.2. Downscaled land surface temperature result by random Forest 
regression model 

The Land Surface Temperature (LST) downscaling process is bene-
ficial for tropical climates because it is prone to cloud contamination. 
Downscaled LST was validated based on the root-mean-square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R2). In Table 4, the average RMSE value in Surabaya is around ~1 ◦C, 
and Malang is lower, i.e., ~0.6 ◦C. Meanwhile, the MAE in both cities 
was lower than ~1 ◦C. Likewise, the proportion of variations in down-
scaled LST results is categorized as very good in both cities. Overall, the 
accuracy of the downscaled LST model in Surabaya is lower than that of 
Malang. The Random forest Regression model can also perform spatial 
downscaling with high accuracy. 

Spatial variations probably cause a different result of accuracy be-
tween Surabaya and Malang. Land cover in Surabaya is more complex 
than in Malang, i.e., the type of impervious surface and vegetation is 
more varied, and the presence of fish ponds and salt ponds causes mixed 
pixels to appear. Other factors such as surface fluxes, emissivity, 
anisotropic, and non-linear issues can affect the model prediction (Yang 
et al., 2019). Apart from several issues of the spatial model, this study 
yielded satisfactory and robust results for microclimate studies. 

3.3. Land surface temperature and surface urban heat Island intensity 
analysis 

Comparatively, there was a decrease in Land Surface Temperature 
(LST) for COVID-19 against the reference year in both cities, especially 
during LSSR phase and after the LSSR (see Table 5). A decreased LST 
slightly when the LSSR was implemented by around 0.2 ◦C; however, 
some areas are showing a decline. The exception is that before the LSSR 

in Malang, it turned out that the LST increased by about 0.9 ◦C, as shown 
in Fig. 3. Meanwhile, the lowest LST decline was in 2020 compared to 
2019, especially after the LSSR in the entire Malang City area. 

Land cover in the southeast of Malang City is dryland agriculture, 
mixed gardens, paddy fields, and sub-urban areas (Fig. 1). In addition, 
LST classes with symbols in red are dominated by residential areas and 
slightly bare soil. Settlements in the western region and several other 
areas have increased LST during LSSR (i.e., 0–2 ◦C). Meanwhile, after 
the LSSR, the entire region experienced a substantial decline. The LST 
profile shows that Malang City forms a dome which indicates the pres-
ence of waste heat accumulated in the urban area (Fig. 4a). The buffer 
zone that approaches the city center is described as a valley profile that 
reflects the presence of urban green space in all directions (i.e., 
northwest-southeast, south-north, southwest-northeast, and west-east). 
Generally speaking, there are no apparent LST profile anomalies be-
tween the periods. Meanwhile, LST anomaly in Malang City in each 
period was statistically significant. 

The Surabaya City area from before to after LSSR seems to experience 
a decrease in LST successively compared to the reference year (see 
Table 5). When LSSR experienced a decrease in LST by about 0.7 ◦C, 
higher than Malang City, the northwestern tip of the region is charac-
terized by land use for salt ponds and industrial estates. Meanwhile, the 
east-southeast area is a mixture of fish ponds with mangroves, so it has a 
lower temperature than the impervious surface. In addition, aquaculture 
depends on the cultivation period, which allows for changes in the 
reflectance band so that the LST value tends to fluctuate (Ardiyansyah 
et al., 2021). 

Spatially, the gradual decline in LST is widespread in Surabaya from 
before LSSR to after LSSR (Fig. 5). High-density housing, industrial es-
tates, commercial areas, and ports experienced an even decrease in LST 
during LSSR and after LSSR. Meanwhile, the city of Surabaya forms a flat 
LST profile so that it does not form a central heat island but an even 
distribution of urban heat (Fig. 4b). Specifically, it reflects the domi-
nance of built-up land, especially in the west, southwest, and south di-
rections. Meanwhile, the highly volatile LST profile indicates the 
existence of mixed land uses between impervious surfaces, green spaces, 
and water bodies (i.e., in north, east, southeast, and northwest). In 
addition, we found that the LST anomaly in Surabaya City for all periods 
was statistically significant. 

Overall, SUHII in the two cities did not appear in extreme gaps to the 
reference year (Figs. 6 and 7), except in the reference period before LSSR 
in Surabaya City, two spots appeared to the south of the city center with 
negative SUHI (i.e., ~2 ◦C). This finding may be due to the contami-
nation factor of thin clouds that accumulated in the MODIS image 
mosaic during that period, resulting in low settlement temperatures. 
Furthermore, in 2020 there was a fluctuating change in SUHII in both 
cities, although not significant. Spatially and comparatively, the distri-
bution of SUHII in the two cities varies. SUHII Malang City during LSSR 
period and after LSSR was slightly higher and spread westward 
compared to the reference year. Likewise, in Surabaya City, some lo-
cations are slightly higher than the baseline year. However, overall, it 
did not show a significant change in SUHII in both cities. 

Table 4 
Evaluation results for downscaled LST in both cities based on RMSE, MSE, and 
R2, respectively.   

Surabaya Malang 

RMSE MAE R2 RMSE MAE R2 

2019 
Before LSSR 1.33 0.99 0.72 0.54 0.43 0.94 
During LSSR 1.04 0.78 0.83 0.61 0.48 0.92 
After LSSR 0.9 0.68 0.74 0.62 0.47 0.93 

2020 
Before LSSR 1.24 0.88 0.77 0.64 0.49 0.92 
During LSSR 1.11 0.84 0.82 0.72 0.52 0.89 
After LSSR 0.93 0.68 0.82 0.58 0.47 0.93  

Table 5 
LST anomaly between COVID-19 year and baseline year, calculated based on the 
average pixel value in Malang City and Surabaya City, respectively. Overall, LST 
anomalies in both cities were statistically significant (P < 0.05).  

Period Malang Surabaya 

2019 2020 diff (◦C) 2019 2020 diff (◦C) 

Before LSSR 31.3 32.2 0.9 33.7 33.1 − 0.6 
During LSSR 31.4 31.2 − 0.2 34.1 33.4 − 0.7 
After LSSR 31.2 29.9 − 1.3 33.9 32.7 − 1.2  
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3.4. Satellite-based spatiotemporal nitrogen dioxide, carbon monoxide, 
and ozone patterns 

Air pollution data are presented and discussed before, during, and 
after the partial lockdown or LSSR and compared with the baseline year. 
The TROPOMI S5–P satellite data is initially presented in low- 
resolution pixels. However, after re-gridding the raster using the 
spline interpolation technique, the results showed spatial variability in 
the concentration of pollutant gases (Figs. 8 and 9). The spline inter-
polation technique generally works well on air quality variable data 
with sparse data density (Londoño-Ciro and Cañón-Barriga, 2015). In 
this study, the density of input points as far as ~1-km spread out 
regularly over the two cities. When interpolated, a soft surface can 
predict the absence of gas pollutant value. 

As shown in Tables 6 and 7, before LSSR phase, NO2 in Malang City 
increased by around 11.4%, and Surabaya City reduced by − 0.07% 
compared with the reference year. This study detected a substantial 
reduction in NO2 in LSSR phase of around − 37.82% in Malang City and 
− 28.42% in Surabaya City. Partial lockdown regulations (i.e., LSSR for 
this study) and strict lockdowns have a real impact on reducing tropo-
spheric NO2 gas visually through a remote sensing approach. Then, after 
LSSR phase showed <10% decrease in both cities, respectively. How-
ever, NO2 increased almost twice from LSSR phase compared to the 
baseline year. Meanwhile, the NO2 anomaly in both cities was statisti-
cally significant for the entire period. 

The decrease in the total column density of NO2 in the two cities 

could be caused by decreased vehicle emissions associated with 
restricting the number of vehicles allowed to move. According to Google 
Mobility data, it also shows a substantial decline during LSSR phase in 
the retail and recreation sector and transit stations, around ~30% and 
55% of the baseline, respectively (Google, 2020). Industrial operations 
are still being carried out to maintain economic stability by imple-
menting shift work rules and strict health protocols. This is indicated by 
a rather high concentration of NO2, especially in the eastern part of 
Surabaya. This issue is also associated with mobility reports in the 
workplace sector which have decreased by ~30% from the baseline but 
are highly volatile from time to time. Then, the spread of NO2 occurred 
during LSSR phase with a higher intensity than in the phase after LSSR. 
This happens because of easing of restrictions and population mobility, 
but health protocols are still being implemented. 

Carbon monoxide (CO) is an atmospheric trace gas that comes from 
burning fossil fuels, burning biomass, atmospheric oxidation of 
methane, and other hydrocarbons (Zhao et al., 2012). The spatio- 
temporal CO map taken from TROPOMI is presented in Fig. 9 it shows 
that the CO column density changes differed from that of tropospheric 
NO2 in the two cities. This happened before the LSSR phase did not 
experience substantial changes in both cities compared to the reference 
year. Even in LSSR phase and after, there was an increase in CO in both 
cities, but not >10% (Tables 6 and 7). This may be influenced by the 
atmospheric lifetime factor, which is longer than NO2, so the emission 
changes are not so significant at the local scale (Elshorbany et al., 2021). 
Also, it is less sensitive to short-term anthropogenic emission changes. 

Fig. 3. a) LST map in Malang City before LSSR, during LSSR, and after LSSR; b) LST changes between the baseline year (first column) and COVID-19 year (second 
column). The LST classification is represented by color gradations from dark blue, yellow to dark red (representing minimum to a maximum temperature, 
respectively). A gradual and widespread decline in LST (third column) was detected (from before LSSR to after LSSR) in all cities represented by light blue. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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However, the overall change in CO column density was statistically 
significant, but the value is small. The spatio-temporal diffusion of the 
CO column density in both cities looks uneven. CO gas spreads randomly 
over time, unlike NO2, which spatially has a clear agglomeration pattern 
in both cities. 

Overall, ozone gas (O3) decreased slightly in both cities compared to 
the baseline year. The distribution pattern of O3 gas shows spatial var-
iations that tend to be homogeneous in both cities (Fig. 10), i.e., before, 

during, and after LSSR. Furthermore, during LSSR phase, it was reduced 
by ~4% in both cities (Tables 6 and 7). However, the O3 anomaly was 
statistically significant in both cities. This indicates that natural pro-
cesses cause the ozone anomaly in the study area without the inter-
vention of anthropogenic emissions. In addition, the slight decrease in 
O3 gas during the LSSR phase may be due to meteorological conditions. 

Fig. 4. LST profile-based in a) Malang City and b) Surabaya City. The LST profile is plotted based on the average pixel value of the buffer and euclidean direction 
overlaid zones with the LST map. 
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3.5. Relationship between SUHII change, air temperature, and wind speed 
with the air pollution in both cities 

The correlation analysis of SUHII change (ΔSUHII) versus air 
pollution (NO2, CO, and O3) in Surabaya City and Malang City is shown 

in Table 8. Statistically, the correlation between ΔSUHII and air pollu-
tion in both cities was significant (P < 0.05). It is clear that there is a 
positive correlation between ΔSUHII with NO2 and CO in both cities 
when LSSR was implemented. Malang City has a slightly higher ΔSUHII- 
NO2 correlation (r = 0.33) than Surabaya City (r = 0.14) during LSSR 

Fig. 5. (a) LST map in Surabaya City before LSSR, during LSSR, and after LSSR; (b) changes in LST between the baseline year (first column) and the COVID-19 year 
(second column). The LST classification is represented by color gradations from dark blue, yellow to dark red (representing minimum to a maximum temperature, 
respectively). A gradual and widespread decrease in LST (third column) was detected (from before LSSR to after LSSR) in entire cities represented in blue. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. SUHII map in Malang City in the period before LSSR, during LSSR, and after LSSR in the baseline year in 2019 (first row), and COVID-19 year in, 2020 (second 
row). Red color indicates high intensity; blue color indicates low intensity. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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phase. A positive correlation was also seen in both cities during the 
easing of restrictions. On the other hand, the phase before LSSR showed 
a negative correlation in Malang City (r = − 0.16) and Surabaya City (r 
= − 0.13). 

Meanwhile, the correlation of ΔSUHII-CO in Surabaya City (r = 0.29) 
was slightly higher than Malang City (r = 0.19) during LSSR. However, 
the correlation in both cities is very low after LSSR, which is almost zero. 
In addition, the negative correlation of this pollutant gas in the second 
before LSSR. For O3 gas, all periods in both cities have a negative cor-
relation with ΔSUHII, except for Surabaya, which has a positive corre-
lation but is very low in the period before LSSR. At the time of LSSR, the 
City of Surabaya showed the largest negative correlation between 
ΔSUHII-O3, among others. However, there is an inconsistency in the 
correlation of ΔSUHII with pollutant gases between periods in both 
cities, such as NO2 and CO which are negatively correlated in before 
LSSR, but during LSSR is positively correlated. From this, indicates that 

NO2 are directly related to the amount of pollutants released from 
anthropogenic activities, especially vehicle and industrial emissions. 
The intensity of solar radiation touches the earth’s surface more so that 
SUHII increases (Kalisa et al., 2018) because the amount of NO2 con-
centration is less. However, it is necessary to study further this rela-
tionship with the intensity of solar radiation. In addition, CO gas showed 
a positive correlation with ΔSUHII but experienced a slight increase, as 
discussed in section 3.4. Likewise, with O3 gas, where there is no 
extreme anomaly during LSSR, especially for negative correlation in 
Surabaya City (r = − 0.28). However, the correlation of ΔSUHII with the 
three pollutant gases is low. 

Concerning the anomaly pattern of air pollution, ERA5-Land imagery 
reanalysis of monthly averages (i.e., before LSSR, during LSSR, and after 
LSSR in baseline year and COVID-19 year) is presented to determine the 
effect of air temperature and wind speed with anomalies pollutant gases 
in both cities. However, this is indicated as it is limited to the spatial 

Fig. 7. SUHII map in Surabaya City in the period before LSSR, during LSSR, and after LSSR in the baseline year in 2019 (first row), and COVID-19 year in 2020 
(second row). Red color indicates high intensity; blue color indicates low intensity. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. NO2 map in (a) Malang City and (b) Surabaya City in the period before LSSR, during LSSR, and after LSSR with comparing the baseline year of 2019 and 
COVID-19 year of 2020. Both cities show a pattern of changes in the distribution of nitrogen emission gases dioxide compared to the baseline year. The concentration 
of nitrogen dioxide gas in the satellite-based atmosphere is measured in units of mols per squared meter. Dark blue color indicates the lowest emission, followed by 
blue, green, yellow, orange to red color gradations indicating the presence of higher emissions. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 9. Same as Fig. 8, but for carbon monoxide. The map color symbol for carbon monoxide is the same as for nitrogen dioxide and uses mols per squared meters as 
the unit of quantity. Both cities show spatially varying changes in carbon monoxide. 

Table 6 
Mean difference in NO2, CO, and O3 between the COVID-19 year and baseline year is calculated based on the average pixel value in Malang City. Overall, the air 
pollution anomaly in Malang City was statistically significant (P < 0.05).  

Period NO2 (mol/m2) CO (mol/m2) O3 (mol/m2) 

2019 2020 diff (%) 2019 2020 diff (%) 2019 2020 diff (%) 

Before LSSR 1.73E-05 1.92E-05 11.40% 0.0265 0.0262 − 1.01% 0.11547 0.11281 − 2.30% 
During LSSR 2.38E-05 1.48E-05 − 37.82% 0.0275 0.0291 5.73% 0.11545 0.11049 − 4.29% 
After LSSR 2.85E-05 2.69E-05 − 5.79% 0.0268 0.0279 4.10% 0.11355 0.11043 − 2.75%  

Table 7 
Mean difference in NO2, CO, and O3 between the COVID-19 year and baseline year is calculated based on the average pixel value in Surabaya City. Overall, the air 
pollution anomaly in Surabaya City was statistically significant (P < 0.05).  

Period NO2 (mol/m2) CO (mol/m2) O3 (mol/m2) 

2019 2020 diff (%) 2019 2020 diff (%) 2019 2020 diff (%) 

Before LSSR 3.84E-05 3.84E-05 − 0.07% 0.0280 0.0269 − 3.99% 0.11676 0.11386 − 2.49% 
During LSSR 3.94E-05 2.82E-05 − 28.42% 0.0284 0.0299 5.42% 0.11674 0.11146 − 4.52% 
After LSSR 3.39E-05 3.27E-05 − 3.47% 0.0259 0.0281 8.31% 0.11456 0.11153 − 2.64%  

Fig. 10. Same as Fig. 8, but for ozone. The color symbol for the ozone map is the same as for nitrogen dioxide and carbon monoxide and uses mols per squared meter 
as the unit of quantity. On the map, changes in ozone gas tend to be spatially homogeneous in both cities. 
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resolution spanning a regional scale (~11-km). As shown in Fig. 11, the 
spatial variation is limited, so statistical analysis of the relationship 
cannot be carried out. Specifically, a simple numerical analysis is carried 
out, which is indicated by area-of-interest (black boxes) on the map. 

Tables 9 and 10 show a descriptive analysis of the air temperature 
and wind speed, which calculated the average value and standard de-
viation for each period in the baseline year and COVID-19 year. Overall, 
there was a slight increase in air temperature in both cities (i.e., between 
2019 and 2020). The temperature increases the highest in Malang dur-
ing LSSR (+0.7 ◦C) compared to before LSSR (+0.25 ◦C) and after LSSR 
(+0.54 ◦C). Meanwhile, changes in air temperature tend to be stable in 
each period in Surabaya City (~0.1 ◦C). 

In addition, CO and O3 gases tend to stabilize during a pandemic; 
however, a slight increase/decrease can be attributed to the dispersion 
of pollutants from other cities by the wind. However, as shown in 
Fig. 11, winds moving from the south-west direction allow transport of 
pollutants from other locations. In fact, wind speed varied in both cities 
in each period (Table 10). In Malang City, the difference in wind speed 
in the period before LSSR (− 15%) and after LSSR (stagnant) causes NO2 

pollutant particles to accumulate in the city. Meanwhile, during LSSR 
(− 45%) there was a significant decrease, which made it clear that the 
NO2 reduction was caused by a decrease in human activities at that time. 
In other hand, Surabaya City indicated that the source of NO2 pollutants 

Table 8 
Correlation between SUHII changes and air pollution conditions in the COVID- 
19 year period before LSSR, during LSSR, and after LSSR.  

Period ΔSUHII-NO2 ΔSUHII-CO ΔSUHII-O3 

Malang Surabaya Malang Surabaya Malang Surabaya 

Before 
LSSR 

r =
− 0.16, 

P <
0.05 

r =
− 0.13, P 
< 0.05 

r =
− 0.14, 

P <
0.05 

r =
− 0.05, P 
< 0.05 

r =
− 0.04, 

P <
0.05 

r = 0.07, 
P < 0.05 

During 
LSSR 

r =
0.33, P 
< 0.05 

r = 0.14, 
P < 0.05 

r =
0.19, P 
< 0.05 

r = 0.29, 
P < 0.05 

r =
− 0.07, 

P <
0.05 

r =
− 0.28, P 
< 0.05 

After 
LSSR 

r =
0.20, P 
< 0.05 

r = 0.11, 
P < 0.05 

r =
0.04, P 
< 0.05 

r =
− 0.09, P 
< 0.05 

r =
− 0.15, 

P <
0.05 

r =
− 0.06, P 
< 0.05  

Fig. 11. (a) map of air temperature in units of degrees Celsius and (b) wind speed in units of m/s for the baseline year (first column and third column) and COVID-19 
year (second column and fourth column). First row, before LSSR; second row, during LSSR; third row, after LSSR. The arrow symbol in the wind speed map indicates 
the direction of the wind. The square plot marks the. 

Table 9 
Monthly average ERA5-land air temperature levels (in degrees Celsius) in 
Malang City and Surabaya City for 2019 and 2020 in the period before LSSR, 
during LSSR, and after LSSR. A total of four pixels for Malang City and three for 
Surabaya City were made for the analysis of the mean, standard deviation, and 
differences.  

Period Malang (4 pixels) Surabaya (3 pixels) 

2019 2020 diff 
(◦C) 

2019 2020 diff 
(◦C) 

Before 
LSSR 

24.45 ±
0.31 

24.70 ±
0.46 +0.25 

26.84 ±
0.10 

27.00 ±
0.12 +0.16 

During 
LSSR 

23.90 ±
0.02 

24.60 ±
0.32 

+0.70 27.41 ±
0.005 

27.59 ±
0.01 

+0.18 

After 
LSSR 

22.76 ±
0.01 

23.30 ±
0.20 

+0.54 27.19 ±
0.03 

27.20 ±
0.11 

+0.01  

Table 10 
Monthly average ERA5-land wind speed levels (in m/s) and wind direction in 
Malang City and Surabaya City for 2019 and 2020 before LSSR, during LSSR, and 
after LSSR. A total of four pixels for Malang City and three for Surabaya City 
were made for the analysis of the mean, standard deviation, and difference.  

Period Malang (4 pixels) Surabaya (3 pixels) 

2019 2020 diff 
(%) 

2019 2020 diff 
(%) 

Before 
LSSR 

0.55 ±
0.21 

0.47 ±
0.18 

− 15 
0.65 ±
0.007 

0.70 ±
0.01 

+3 

During 
LSSR 

1.23 ±
0.40 

0.68 ±
0.29 

− 45 0.99 ±
0.09 

1.10 ±
0.11 

+10 

After LSSR 
1.30 ±
0.38 

1.30 ±
0.46 0 

1.29 ±
0.09 

1.10 ±
0.10 − 15  
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came from other cities because during LSSR, the wind speed was slightly 
higher (1.1 m/s) than Malang City (0.68 m/s). Meanwhile, CO and O3 
gases do not seem to have anything to do with wind speed in both cities 
when seen from the comparison between the total concentration and 
wind speed for each period in 2019 and 2020 (Tables 7, 8, and 10). 

4. Discussion 

The LST results reported in this study showed a slight decrease 
during the LSSR phase compared to the baseline year. Generally 
speaking, decreased LST in mountainous (i.e., Malang City) and coastal 
cities (i.e., Surabaya City) due to limiting anthropogenic activities de-
pends on the local climate, population density, industrial operations, 
agricultural, commercial, and transportation activities (Nanda et al., 
2021). In fact, our study showed that the LSSR phase was not very 
effective in reducing LST. This finding is almost similar to the results 
obtained in the study of Shikwambana et al. (2021), but conversely that 
the LST during the lockdown period for the pandemic year (i.e., 2020) 
was slightly higher than the baseline year (i.e., 2019) (Shikwambana 
et al., 2021). However, LST changes can also be influenced by the ra-
diation characteristics and energy absorption of land cover type (Faqe 
Ibrahim, 2017). Comparatively and in accordance with the LST results, 
the SUHI intensity during the LSSR phase was slightly lower than the 
baseline year. We suspect that the cause may be because LSSR does not 
completely stop human activities in the city, and some industries are still 
operating, so the reduction of the greenhouse effect is not so significant. 
Another possibility is more likely to be associated with seasonal effects 
or cooler weather factors rather than LSSR regulatory interventions. 

The results reported in this study indicate a reduction in pollutants, 
particularly NO2, in both cities during the LSSR phase concerning the 
COVID-19 pandemic situation. The reduction in NO2 that occurs is in 
line with several similar studies in other cities or regions that apply 
activity restrictions (Nakada and Urban, 2020; Pei et al., 2020; Singh 
and Chauhan, 2020b). In contrast, CO gas showed a slight increase 
during the LSSR phase, which is in line with the results of studies in 
several areas such as Chicago, Houston, San Francisco, and Los Angeles 
in the United States (Elshorbany et al., 2021) or the northwest and 
southern provinces of China (Fan et al., 2020) with increased CO levels. 
This means reducing vehicle traffic when the LSSR phase in our study 
area is ineffective in reducing CO levels that other pollutant sources may 
cause. O3 gas reduction also occurred in both cities during the LSSR 
phase. Some of the possibilities that cause O3 reduction include cloudy 
weather conditions resulting in inhibition of the oxidation process so 
that O3 formation is reduced, conditions of relative humidity and high 
ultraviolet radiation in tropical climates stimulate secondary particulate 
formations, which can inhibit O3 production, tropical convection can 
also trigger O3 reduction, and the effect of local meteorology also plays 
an important role in reducing O3 when activity is restricted (Bouarar 
et al., 2021; Qiu et al., 2021; Shek et al., 2022). With respect to 
anthropogenic heat and pollutant emissions, it is clear that air pollution, 
especially NO2 and CO, is directly correlated with SUHII in the LSSR 
phase, indicating that these two pollutants support the development of 
SUHI in both cities. On the other hand, high O3 gas in the total column 
was associated with the development of low SUHI. This correlation 
result is in line with the study of the relationship between UHI intensity 
and ambient air pollution in Seoul City, that O3 is negatively correlated 
with UHI intensity, while CO and NO2 are positively correlated (Ngar-
ambe et al., 2021). Satellite-based air temperature and wind speed ob-
servations are offered in this study. The results revealed that the variable 
air temperature increased in both cities during the LSSR phase, while the 
wind speed decreased in Malang City and slightly increased in Surabaya. 
Ghasempour et al. (2021) reported that air temperature strongly cor-
relates negatively with NO2 (Ghasempour et al., 2021). However, our 
findings differ from this study in that air temperature slightly increases 
while NO2 concentration decreases at LSSR phase. Wind variables 
generally indicate the dispersion of pollutant gases at higher wind speed 

conditions. However, the pollutant concentration is generally inversely 
proportional to the wind speed; when the concentration increases, it can 
go downwind even at high wind speeds (Kim et al., 2004). This occurs in 
our study results when reduced wind speed does not necessarily cause 
the dispersion of pollutant gases, e.g., CO gas which increases during the 
LSSR phase. We expect that other meteorological factors, such as pre-
cipitation, soil moisture, relative humidity, absolute humidity, solar 
radiation, etc., may play an important role in changes in CO and O3 gases 
in both cities. 

The results of LST spatial downscaling for the study area of Surabaya 
City and Malang City show evidence that the RFR model works well. 
Similiarly, Li et al. (2019) revealed that downscaled LST using machine 
learning gives satisfactory results in areas of dense vegetation and 
impervious surfaces (Li et al., 2019). Ebrahimy and Azadbakht (2019) 
revealed that the RFR model shows good model stability, high accuracy, 
and efficient computation in LST spatial downscaling processes (Ebra-
himy and Azadbakht, 2019). For non-spatial studies, Nematchoua et al. 
(2022) revealed that several machine learning algorithms, including 
RFR, produced predictive models of daily global solar radiation and air 
temperature in European cities in 2050 and 2100 with good accuracy. 
(Nematchoua et al., 2022). Experiments on several input variables 
offered in this study can encourage a promising LST spatial downscaling 
method for urban climate and epidemiological studies. In addition to 
investigating the effect of LSSR implementation on LST changes studied 
in this study, the spatial downscaling LST model can also be used as input 
data for ecological spatial modeling studies. Amiri et al. (2020) compared 
input data sources for bioclimatic variables (i.e., temperature and pre-
cipitation), which reported that remote sensing data yielded more up-to- 
date information and improved species distribution modeling perfor-
mance than field observation data. (Amiri et al., 2020). In addition, the 
spatial and temporal resolution factors in remote sensing data are valu-
able attributes for the study of ecological systems such as phenological 
changes, climate change, biodiversity, and species distribution modeling. 
(Boyd and Foody, 2011). In this sense, our proposed LST spatial down-
scaling model may be able to overcome the low spatial and temporal 
problems for ecological spatial studies in areas with local scales. 

Then, air pollution mapping in this study can indicate changes in 
atmospheric conditions based on remote sensing due to the LSSR phase. 
The interpolation technique of air pollution image data with coarse 
spatial resolution shows finer spatial patterns. This is one of the benefits 
for areas where only low-density stations are available. Bezyk et al. 
(2021) revealed that the thin spline interpolation technique provides a 
ground-based prediction of air pollution variations in the atmosphere 
with good accuracy; however, there are unmeasured locations (Bezyk 
et al., 2021). This implies that the sample locations resulting from the 
transformation of raster data to spatial points form local surface varia-
tions because their distribution is more uniform than ground-based lo-
cations. However, another case by Kumar et al. (2022) found that spline 
interpolation is not recommended for ground-based air quality mapping 
due to overestimation and underestimation problems resulting in 
negative values (Kumar et al., 2022). In addition, the spatial pattern of 
emissions in urban areas is very likely to be influenced by anthropogenic 
emission factors. 

The spatial pattern of surface temperature can be explained through 
the spectral band, spectral index, and topography variables. However, 
the urban surface temperature is certainly influenced by other factors 
besides those carried out in this study. Therefore, more complex inde-
pendent variables can be added for further research, such as the 
morphology of urban architecture (distribution and building structure) 
and road factors. In addition, feature selection analysis was required to 
reduce data redundancy, affecting the results of spatial downscaling. It 
should be noted that the importance score will change when the number 
of predictor variables is considered. Therefore, further studies are 
needed regarding uncertainty, bias, spatial variability, and reliability in 
spatial interpolation techniques, especially for remote sensing-based air 
pollution data. 
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5. Conclusions 

This study investigates spatiotemporal changes during the COVID-19 
pandemic in land surface temperature, nitrogen dioxide, carbon mon-
oxide, and ozone in Malang City and Surabaya City based on remote 
sensing. A total of three periods were considered from 30th March to 
27th June 2020 (before, during, and after LSSR) and compared with 
reference years (i.e., 2019) for comparative analysis of their changes. 
Spatial downscaling Land Surface Temperature using machine learning 
techniques, i.e., Random Forest Regression, shows satisfactory results 
for urban-scale micro-climate studies. The results show an LST anomaly 
is statistically significant in both cities, but the temperature is slightly 
reduced in both cities. The spatial distribution of LST anomalies in both 
cities before, during, and after LSSR phase is more likely to be evenly 
distributed. Furthermore, SUHII in both cities, particularly in LSSR 
phase, showed a slightly increase in intensity from the baseline year. 

Establishing LSSR regulations in both cities resulted in improved air 
quality, particularly reducing nitrogen dioxide emissions by ~37% in 
Malang City and ~28% in Surabaya City. Emission reductions are 
caused by the effects of shifting work, restrictions on transportation and 
recreational sites, work and study from home, etc. However, restricted 
anthropogenic activities do not decrease carbon monoxide levels or in-
crease ozone. In addition, the partial lockdown or LSSR regulations 
imposed in Malang City and Surabaya City tend to only reduce traffic 
vehicle emissions (i.e., NO2) due to restrictions on mobilization and 
partial closure of public facilities, entertainment venues, work-from- 
home, and businesses; however, it is not effective in controlling the ef-
fect of city heat island, particularly for CO and O3. The relationship 
between SUHII changes and air pollution varied in the two cities, but the 
degree of correlation was low. NO2 is directly related to SUHII changes 
because this pollutant is released mainly from transportation and human 
activities. Meanwhile, there is no definite correlation between SUHII 
changes with CO and O3. 

Likewise, meteorological factors seem to need further study on this 
matter because of limited spatial resolution in the ERA5-land reanalysis 
image and adding other factors, e.g., rainfall, soil moisture, relative 
humidity, absolute humidity, solar radiation, etc. In addition, spatial 
interpolation techniques for remote sensing-based air pollution need to 
be analyzed further, especially in urban areas where observation sta-
tions are rarely located. This research is limited to the use of remotely 
sensed data, so it is necessary to validate the reliability of the data by 
conducting in-situ measurements for future work. 

This study provides insight into the ecological impact of urban areas 
between the partial level limitation of anthropogenic activities caused 
by COVID-19 and changes in surface temperature, the formation of 
SUHI, changes in pollutant gases, and the mechanism of the relationship 
between changes in SUHI and air pollution gases and their meteoro-
logical parameters, i.e., air temperature and wind speed. The spatial 
downscaling LST model and re-gridding satellite-based air pollution 
offered in this study can be applied by decision-makers to develop the 
most efficient strategy to improve local air quality in the long and short 
term in the future. In addition, the current model can be applied to other 
ecological studies as a descriptor of an ecological spatial model with 
improved data quality. 
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