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Abstract

Saccharomyces cerevisiae is known for its outstanding ability to produce ethanol in industry.

Underlying the dynamics of gene expression in S. cerevisiae in response to fermentation

could provide informative results, required for the establishment of any ethanol production

improvement program. Thus, representing a new approach, this study was conducted to

identify the discriminative genes between improved and repressed ethanol production as

well as clarifying the molecular responses to this process through mining the transcriptomic

data. The significant differential expression probe sets were extracted from available micro-

array datasets related to yeast fermentation performance. To identify the most effective

probe sets contributing to discriminate ethanol content, 11 machine learning algorithms

from RapidMiner were employed. Further analysis including pathway enrichment and regu-

latory analysis were performed on discriminative probe sets. Besides, the decision tree

models were constructed, the performance of each model was evaluated and the roots

were identified. Based on the results, 171 probe sets were identified by at least 5 attribute

weighting algorithms (AWAs) and 17 roots were recognized with 100% performance Some

of the top ranked presets were found to be involved in carbohydrate metabolism, oxidative

phosphorylation, and ethanol fermentation. Principal component analysis (PCA) and heat-

map clustering validated the top-ranked selective probe sets. In addition, the top-ranked

genes were validated based on GSE78759 and GSE5185 dataset. From all discriminative

probe sets, OLI1 and CYC3 were identified as the roots with the best performance, demon-

strated by the most weighting algorithms and linked to top two significant enriched pathways

including porphyrin biosynthesis and oxidative phosphorylation. ADH5 and PDA1 were also

recognized as differential top-ranked genes that contribute to ethanol production. According

to the regulatory clustering analysis, Tup1 has a significant effect on the top-ranked target

genes CYC3 and ADH5 genes. This study provides a basic understanding of the S. cerevi-

siae cell molecular mechanism and responses to two different medium conditions (Mg2+

and Cu2+) during the fermentation process.
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Introduction

Saccharomyces cerevisiae is used as one of the main microorganisms for bio-ethanol produc-

tion in research and industry. In addition to high ethanol production potential, stability for

anaerobic fermentation and low pH tolerance, facilitates its use in industry for ethanol produc-

tion [1]. Among industrial S. cerevisiae strains used in fermentation industry, JP1 is one of the

dominants exhibits high fermentation rate due to high temperature tolerance and low pH sta-

bility [2]. Since many of S. cerevisiae genes have been functionally annotated and character-

ized, genetic manipulation of this organism is well developed [3–5]. Several research have been

conducted on the S. cerevisiae metabolic engineering to generate efficient ethanol producing

strains [6, 7]. Suji et al [8], for example used the PHO13 deletion in conjunction with LAD1
and ALX1 heterologous expression to improve S. cerevisiae for arabinose consumption, result-

ing in a 3.5-fold increase in specific ethanol productivity. Although the manipulation of S. cere-
visiae strains for higher ethanol production is highly remarked by researchers, a few studies

have been conducted regarding the molecular modulations during enhanced and repressed

ethanol fermentation. Such research, on the other hand, is critical for improving the efficiency

of industrial applications. De Souza et al. [9] reported the presence of stress-response and

energy-related genes under optimized fermentation condition supplemented by Mg2+ [9].

Exploring for genes that are linked to ethanol tolerance in Saccharomyces. C via transcriptomic

analysis revealed that glucose metabolism and energy related genes are induced by ethanol

stress. Moreover, some processes such as oxidative phosphorylation and cellular respiration

shown to be affected by ethanol stress [10]. Identifying the molecular basis and dynamics of

gene expression profiles related to yeast response in improved bioethanol production condi-

tions is critical for developing new manipulated strains with increased ethanol yield. It also

shed light on the mechanisms that yeast uses to improve production. Metal supplements sig-

nificantly affect the ethanol production associated metabolic pathways in yeast. Among these,

zinc, magnesium, manganese, and copper have been extensively studied and shown to have

regulatory effects on ethanol production [11–13]. Mg2+ ion is involved in phosphorylation,

DNA and protein synthesis, cell membrane rigidity and proliferation, along with the potential

to increase ethanol accumulation through fermentation [9, 14]. Furthermore, Mg2+ may

improve the S. cerevisiae tolerance to high ethanol concentration during glucose and xylose

fermentation [15, 16]. S. cerevisiae medium supplementation with Mg2+resulted in a 29%

increase in ethanol production through regulating cell wall and membrane related genes

expression [16]. Copper ion (Cu2+) is also known as a critical element for yeast biological func-

tions and involves in a variety of metabolic pathways. For instance, cytochrome c oxidase, a

component of oxidative phosphorylation, and superoxide dismutase as an important enzyme

contribute to stress regulation, are dependent on Cu2+ [17]. Copper stress, on the other hand,

caused by an excess of copper, can result in reactive oxygen species (ROS) generation and

DNA damage. At high concentrations, it also has a negative impact on cell membrane stability

and enzyme activity. [18]. A high copper concentration (1.5 mM) inhibited cell growth, glu-

cose and fructose consumption during fermentation by S. cerevisiae [19]. However, few studies

have been conducted to investigate the effect of Cu2+ on the molecular physiology and fermen-

tation ability of S. cerevisiae cell. Despite their lack of research, Mg and Cu have the potential

to modulate the gene expression network involved in the fermentation process.

It would be possible to identify the critical genes and clarify the molecular mechanisms

involved in the ethanol production process using bioinformatics-based analysis of the S. cerevi-
siae expression dataset. Computational approaches for identifying key genes involved in the

fermentation process could elucidate the transcriptomic dynamics of yeast ethanol fermenta-

tion and reveal expression signatures contribute to improved production. RapidMiner is one
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of the most useful and comprehensive mining tools in data science [20]. Different gene selec-

tion algorithms, such as Information Gain, Information Gain Ratio, rule induction, support

vector machine (SVM), and PCA, are widely used in gene expression analysis using RapidMi-

ner. Machine learning algorithms, both supervised and unsupervised models, are widely used

in gene expression data analysis and gene identification [21, 22]. Cheng et al [23] used Rapid-

Miner to preform four machine learning weighting models on gene expression datasets related

to Huntington’s disease, including decision tree, rule induction, random forest, and general-

ized linear algorithms, in order to identify contributing genes to this disorder. Huang et al.

[24] conducted Modelling with network features and machine learning approach to identify

the functional features that affect the S. cerevisiae longevity. Mitochondria and cell cycle were

found to have determinant role in yeast life span. However, to the best of the authors’ knowl-

edge, no machine learning tools via RapidMiner have been utilized to investigate the molecular

basis of metabolic pathways in S. cerevisiae. Valuable publicly available data related to S. cerevi-
siae genome-wide expression experiments could be used for functional genomic analysis

through machine learning. Machine learning algorithms’ discriminative ability aids in reveal-

ing the unravelling biological process from microarray data sets [20]. In light of the availability

of such useful primary data sets and the potential of RapidMiner as an efficient tool for biologi-

cal data analysis, we used available microarray expression dataset related to S. cerevisiae sup-

plemented with Copper and Magnesium metal components under fermentation to investigate

the underlying molecular basis of fermentation used by S. cerevisiae. The aim of this study was

to identify the critical genes discriminate the improved (Mg2+ treatment) and low ethanol pro-

duction (Cu2+ treatment at toxic concentration) and elucidate the transcriptomic response of

S. cerevisiae under these two conditions. S. cerevisiae transcriptome analysis using data mining

and machine learning by both supervised and unsupervised models was used in this study as a

novel approach to identify the underlying gene regulation mechanisms that can be used to

optimize fermentation performance.

Materials and methods

Data collection

For this study available microarray datasets related to yeast fermentation performance under

Mg2+ (500 mg/L) or Cu2+ (1 mg/L) supplementation was used. Microarray data of the indus-

trial yeast S. cerevisiae JP1 strain downloaded from the GEO repository of the NCBI database

(GEO number: GSE75803) was used. To meet the research objective, the probe sets with signif-

icant differential expression (concomitant Adj. p< 0.05 and B� 3) were chosen for this study.

Data cleaning

We used RapidMiner software (RapidMiner Studio 7.6) [25] to enter the 6300-differential

expressed probe sets as numerical features, as well as high and low bioethanol as class features.

For better processing, inefficient or redundant probe sets with less than or equal to a given

standard deviation (SD) threshold (0.1), as well as correlated probe sets (correlation� 0.95),

were carefully removed from the dataset. The resulting list, which only contained efficient

probe sets, was designated as the Final Cleaned (FCdb) database.

Attribute weighting algorithms

Eleven attribute weighting algorithms with cut-off� 0.7 were used in the FCdb to identify the

most effective probe sets contributing to discriminate ethanol content. Weights close to 1 indi-

cate that a specific probe set in ethanol content is more important. The main probe sets were

PLOS ONE Mining transcriptomic data to identify Saccharomyces cerevisiae signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0259476 July 26, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0259476


those determined by the majority of AWAs (intersection of the weighing method). The attri-

bute weighting algorithms used in this investigation, as well as the statistical background

description for each one, are as follows (RapidMiner Studio 7.6):

Weight by information gain and information gain ratio

This algorithm is a well-established superior method for gene selection in microarray data

analysis [26, 27]. In this method, the attributes (probe sets) are weighted according to their

class label (high or low ethanol production).

Weight by rule

Based on a single rule and the relationship between attributes (genes) and considering the

errors, the weight of each attribute is measured through rule algorithm [28] and is used as a

selective method for microarray analysis.

Weight by deviation, weight by correlation and weight by chi squared

statistic

The standard deviation of attributes is used as a weighting parameter in the deviation weight-

ing method. The correlation method, on the other hand, weighs the label attributes based on

the correlation. In addition, for labeling the attributes, we used the Chi Squared Statistic

weighting algorithm, which takes the Chi squared into account.

Weight by Gini index and weight by uncertainty

Due to the label attribute in this model, the weight of attributes is determined by measuring

the Gini coefficient as an inequality index of sample data. According to each attribute, the

lower the Gini index of the attribute, the more equal dispersion among attributes is consid-

ered. The weight for uncertainty model, on the other hand, is determined using the symmetri-

cal uncertainty due to the class attribute.

Weight by relief

This model is one of the most reliable algorithms for weighting genes because it is based on the

determination of values between probe sets of the same and different classes in a short

distance.

Weight by SVM

SVM is one of the most powerful classification models for gene expression analysis [21]. The

SVM method weighs attributes using the coefficients of the normal vector of a linear SVM.

Weight by PCA

This model performs attribute weighting due to the class attribute based on the component

number parameter of PCA and the value of the components.

Decision tree models

Eleven new datasets were generated using the entire probe sets with weight >0.70. They were

annotated based on the models used for attribute weighting (Relief, Information gain, Uncer-

tainty, Information gain ratio, Chi Squared, Rule, Correlation, Deviation, SVM and PCA, Gini

index). Random Tree, Decision Tree, Decision Stump, and Random Forest were the tree
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induction models used for 12 datasets (FCdb and 11 datasets produced by specific weighting

algorithms). Each model had four criteria (Gini Index, Gain Ratio Information Gain, and

Accuracy). We used a ten-fold validation algorithm with appropriate sampling to create trees

with RapidMiner. The performance of the model was evaluated and used to compare various

models based on the accuracy of each model in identifying the target variable (high and low

bioethanol content) and according to the attribute variables (normal expression of the probe

set). Performance is expressed as a measure of model accuracy in this case. We calculated the

accuracy by dividing the number of correct predictions by the total number of samples. The

value of the attribute accuracy that is expected to be the same as the value of the labeled attri-

bute is referred to as the correct prediction. These models were used with a minimum gain of

0.1 to obtain a split and a maximum tree depth of 20. For pruning 0.25 confidence level was

considered with a pessimistic error calculation.

Unsupervised analysis of the top ranked probe sets derived by supervised

AWAs

Unsupervised principal component analysis (PCA) and hierarchical clustering heatmap were

used to evaluate the power of top-ranked probe sets which differentiate the fermentation

under different supplementation treatments. For unsupervised analysis, a web-based tool

Clustvis (https://biit.cs.ut.ee/clustvis/) was used [29]. The PCA analysis was carried out in the

PCA Methods R package using unit variance scaling on rows and Singular Value Decomposi-

tion (SVD) with the imputation method. The clustering heatmap was created with the pheat-

map R package (version 0.7.7). The clustering heatmap was constructed using correlation,

Pearson correlation subtracted from 1, and the average distance of all possible pairs [29].

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis

The pathway enrichment analysis was carried out using YeastEnrichr (https://maayanlab.

cloud/YeastEnrichr/) [30, 31]. The biochemical pathways related to key probe sets were identi-

fied using the KEGG2019 database. Pathways with p-value < 0.1 were considered significant.

Exploring for transcription factors among top-ranked genes and regulator

cluster analysis

We used yeastract database (http://www.yeastract.com/formrankbyhomotf.php) to identify

transcription factors (TFs) among the 171 probe sets identified by at least 5 attribute weighting

algorithms [32]. The TFs and their target genes were identified using this tool based on DNA

binding sites and expression evidence. Furthermore, we used the regulator DB database

(http://wyrickbioinfo2.smb.wsu.edu/cgi-bin/RegulatorDB/cgi/home.pl) to run regulator clus-

ter diagram to determine the regulatory effect of the identified TFs on the target genes [33, 34].

It provides data on mutant regulator expression for selected regulators and target genes.

Independent validation of top-ranked genes using different microarray

expression datasets

For independent validation of the top-ranked genes determined by supervised attribute

weighting models, impartial samples of high or low ethanol production from microarray

experiment with GEO accession of GSE78759 and GSE5185 [35, 36] were selected. The origi-

nal experiments regarding GSE78759 had been designed to investigate the transcriptomic

changes occurred in two ethanol-tolerant strains with maximum ethanol production rate,
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selected through evolutionary engineering, in comparison with their reference as low ethanol

producing strains. The other dataset, GSE5185, was related to improved Ethanol producing

mutant generated by transcription machinery engineering compared with the wild strain as

lower ethanol producing. We used 5 samples including GSM2075761, GSM2075762,

GSM2075763, GSM2075764, GSM2075765 as high ethanol producing strains and 3 samples

including GSM2075758, GSM2075759, and GSM2075760 as low ethanol producing from the

first dataset as well as GSM116819 and GSM116820 as high ethanol producing and

GSM116815, GSM116816, GSM116817 as low ethanol samples from the second datasets. The

171 probe sets which were identified by AWAs were selected among the samples and the unsu-

pervised principal component analysis (PCA) were used to evaluate the power of top-ranked

probe sets to separate the low and high samples. Besides, validation of the top-ranked genes

was implemented using a leave-one-out cross-validation (LOOCV) on expression values of the

top-ranked genes. Attribute (expression values of 171 probe sets) were chosen using the

LOOCV mode in which expression matrix of one sample discarded for the test and the

remaining parts for training. Discrimination was performed based on Logistic function to

model a binary classification of samples according to their gene expression values.

Results

Ranking probe sets by AWAs

After cleaning 6300 probe sets by RapidMiner, we obtained 1813 probe sets. Eleven AWAs

were used to identify informative probe sets. Following AWAs analysis, 171 probe sets were

identified by at least 5 attribute weighting algorithms (S1A File). Furthermore, there were dis-

tinct probe sets classified by at least five algorithms that respond discriminatively to supple-

ment treatment and/or are particularly related to ethanol production during fermentation.

Sheet B of the S1 File contains the probe sets as well as the AWAs used to identify the probe

sets. Some of the informative probe sets were recognized to be involved in carbohydrate

metabolism, TCA cycle, oxidative phosphorylation, and ethanol fermentation while others

were related to stress responses, cell membrane structure, and cell growth which could be indi-

rectly effective in ethanol production. Some of the top informative genes are presented in

Table 1. However, it should be noted that some of discriminative probe sets which respond to

Mg2+ and Cu2+ supplementation may not be required in or influence the ethanol production

process.

Decision tree models

Sixteen different decision tree models were applied on twelve datasets (eleven new datasets

produced by trimming FCdb based on a weight� 0.7 given by each attribute weighting

approaches, as well as FCdb) were used to achieve pattern recognition between important

genes as well as with the genes with the highest distinguishing power. The performance of each

model was evaluated and the lowest and highest performances were 0% and 100%, respectively

(S1C and S1D File). The entire model trees were characterized with root node, branches and

leaf nodes (class label; high or low ethanol). The topmost node in the tree is the root node.

Genes in the root of decision tree have stronger effects on determining the general data pattern

than genes in the tree branches. There were 17 probe sets with 100% performance in the roots

of decision tree models Table 2. The root list contains OLI1, CYS3, HTB2, CGR1, CYC3,

RPS13, OST4 and COX1 genes with known biological process. Albeit probably contributed to

ethanol fermentation, the biological processes of the other genes determined as the roots of

decision trees are not known yet.
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Unsupervised analysis

As a complementary confirmation, the 171 top ranked probe sets were validated using PCA

and hierarchical clustering heatmap, identified with supervised attribute weighting models.

According to the results, the 171 significant probe sets could accurately differentiate between

two different fermentation conditions, thus confirming the significance and accuracy of the

identified probe sets (Fig 1). In particular, the captured variances with the first two

Table 1. Some of the informative probe sets identified by at least four AWAs.

probe sets Standard Gene

Name

AWAs Names AWAs

number

Gene Name

A_06_P4554 MRP8 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, PCA, Relief, Rule, SVM, Uncertainty

10 Uncharacterized, response to stress

A_06_P1016 OLI1 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, PCA, Relief, Rule, SVM, Uncertainty

10 ATP synthase subunit 9, mitochondrial;OLI1;

ortholog

A_06_P1397 ADH5 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, PCA, Rule, SVM, Uncertainty

9 Alcohol dehydrogenase 5;ADH5;ortholog

A_06_P1238 PKC1 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, PCA, Rule, SVM

8 Protein serine/threonine kinase

A_06_P3384 GTR2 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, PCA, Rule, SVM, Uncertainty

9 GTP-binding protein

A_06_P1063 CYC3 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, Relief, Rule, SVM, Uncertainty

9 Cytochrome c heme lyase

A_06_P1003 COX1 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, Rule, SVM, Uncertainty

8 cytochrome c oxidase

A_06_P2810 PDA1 Chi Square Statistic, Correlation, Gini Index, Information Gain,

Information Gain ratio, Rule, SVM

7 Pyruvate dehydrogenase E1 component subunit

alpha, mitochondrial;PDA1;ortholog

A_06_P2931 QCR6 Chi Square Statistic, Correlation, PCA, Rule, SVM 5 Cytochrome b-c1 complex subunit 6;QCR6;

ortholog

A_06_P6820 ALD6 Chi Square Statistic, PCA, Rule, Uncertainty 4 Magnesium-activated aldehyde dehydrogenase,

cytosolic;ALD6;ortholog

https://doi.org/10.1371/journal.pone.0259476.t001

Table 2. Decision tree models roots identified as exhibited 100% performance.

elements GENE_SYMBOL AWS DESCRIPTION

A_06_P1016 OLI1 10 BioProcess = ATP synthesis coupled proton transport

A_06_P2475 CWC21 9 BioProcess = biological_process unknown

A_06_P1002 ORF:Q0017 9 BioProcess = biological_process unknown

A_06_P1034 CYS3 9 BioProcess = sulfur amino acid metabolism�

A_06_P1131 HTB2 8 BioProcess = chromatin assembly/disassembly

A_06_P1068 KRE23 9 BioProcess = biological_process unknown

A_06_P2984 CGR1 9 BioProcess = rRNA processing�

A_06_P1298 ORF:YBR051W 9 BioProcess = biological_process unknown

A_06_P1524 ORF:YBR270C 8 BioProcess = biological_process unknown

A_06_P3287 ORF:YGR067C 9 BioProcess = biological_process unknown

A_06_P1063 CYC3 9 BioProcess = not yet annotated

A_06_P2051 RPS13 9 BioProcess = protein biosynthesis

A_06_P1967 OST4 10 BioProcess = not yet annotated

A_06_P1049 ORF:YAL027W 9 BioProcess = biological_process unknown

A_06_P1003 COX1 8 BioProcess = aerobic respiration

A_06_P2023 ORF:YDR036C 7 BioProcess = biological_process unknown

A_06_P1023 ORF:Q0297 8 BioProcess = biological_process unknown

https://doi.org/10.1371/journal.pone.0259476.t002
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components on all recognized 6031 probe sets and informative 171 probe sets were up to 75%

and 50%, respectively. Furthermore, it could efficiently separate informative 171 probe sets

under Cu2+ or Mg2+ supplementation in the hierarchical clustering heat map, (Fig 1). In total,

64 probe sets were up and down regulated by Mg2+ and Cu2+, while 108 probe sets were up

and down regulated through Cu and Mg supplementation, respectively (Fig 2).

Pathway enrichment analysis of genes

A total number of 21significant terms were recognized and enriched in ranked probe sets

(adjusted p-value <0.1). Some probe sets including PDA1 and CYC3 participated in multiple

pathways. Significant related enriched pathways such as Porphyrin metabolism, Oxidative

phosphorylation, Glycolysis, Amino sugar and nucleotide sugar metabolism, Cell cycle,

MAPK signaling pathway and Citrate cycle (TCA cycle) were identified using the KEGG

Fig 1. Two-dimensional plot related to the first two principal components. GSM1968101, GSM1968110, GSM1968100 and GSM1968108 are samples

related to Mg2+ supplementation. GSM1968106, GSM1968114, GSM1968103 and GSM1968112 are samples related to Cu2+ supplementation.

https://doi.org/10.1371/journal.pone.0259476.g001
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enrichment analysis. The porphyrin metabolism pathway shown to be the most significant

defined by probe sets list. Confirmed by Qi et al. [37], the porphyrin biosynthesis is reported

to be associated with ethanol fermentation in yeast through controlling ROS level under stress

condition. On the other hand, the topmost genes, including COX1 and OLI1, that were ranked

by the highest number of AWAs involved in Oxidative phosphorylation pathway. This suggest

that this pathway is crucially regulated by S. cerevisiae Cu2+ and Mg2+ supplementation experi-

ment. The enriched pathways and the related genes are presented in Table 3.

Identification of transcription factors and their targets

Among the 171 informative probe sets identified by yeastract analysis were seven transcription

factors: YGR067C, HAP4, NRG2, TUP1, TOS8, MSN4, and PDC2. Surprisingly, the targets of

the identified transcription factors were discovered among the 171 genes identified by Rapid-

Miner analysis and ranked by at least 5 algorithms (S1E File). These findings support the

AWAs’ ability to correctly identify top-ranked probe sets. Furthermore, regulator clustering

related to TFs and their targets (both ranked by at least eight algorithms) was performed to

demonstrate the effect of top-ranked TFs on top-ranked target genes based on the transcrip-

tion factors mutants. The results showed that Hap4p, Tup1, and TOS8 mutants resulted in dif-

ferent ratios of up and down-regulation of target genes (Fig 3). Although Hap4 and TOS8
resulted in down or up regulation of target genes, their effect on none of target genes was sig-

nificant. According to the findings, the Tup1 transcription factor has the greatest impact on

the target genes expression. The Tup1 knocked out mutant significantly induce the expression

of CYC3 (YAL039C), while causing highest level of down regulation of YBL111C.

Fig 2. The heatmap related to 171 probe sets which were recognized by at least 5 attribute weighting algorithms (AWAs). Each row corresponds to the

different samples including Mg2+ (high ethanol production) and Cu2+ supplementation (repressed ethanol production). Columns exhibits hierarchically

clustered probe sets. The normalized intensity expressions of probe sets were shown as a color scale. The up and down-expression levels were represented as

red and blue scales, respectively.

https://doi.org/10.1371/journal.pone.0259476.g002
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Validation of top-ranked genes through different S. cerevisiae strains

datasets

The top-ranked genes derived by supervised attribute weighting models showed high repro-

ducibility in an independent microarray experiment related to evolved ethanol-tolerant clones

derived from S. cerevisiae strains CEN.PK with high ethanol production rate, in comparison

with the reference strain. Similar results were obtained from the evaluation of informative

identified genes based on GSE5185 dataset which belongs to higher ethanol producing mutant

strain spt15 in comparison with its reference. Noticeably, the captured variance with the first

two components on 171 probe sets was as high as 78.60% and 70.40% in the GSE5185 and

GSE78759 datasets, reinforcing that the identified top-ranked genes were able to accurately

discriminate between low ethanol samples and high ethanol ones (S1 Fig). Also, according to

LOOCV analysis result, the top-ranked genes were able to identify low and high ethanol sam-

ples with classification accuracy of 100%. The classification performance was further evaluated

based on the following parameters: Precision = 1; Recall = 1; F-Measure = 1; and ROC

Area = 1 (S1G File).

Discussion

In this study, machine learning and decision tree models were used to analyze the transcrip-

tome of S. cerevisiae during the fermentation process in two conditions: repressed ethanol pro-

duction and high ethanol production supplemented with Cu2+ and Mg2+ respectively. Indeed,

for the most accurate prediction methods, we used both supervised and unsupervised models.

In summary, we used 11 supervised models to achieve high accuracy results. In addition, a

PCA analysis as an unsupervised model and a hierarchical clustering heat map were used to

validate the 171 top-ranked probe sets identified by supervised-based models. In parallel, to

Table 3. KEGG enrichment analysis of 171 probe sets. The significant pathways with adjusted p-value< 0.1 are represented.

Term Adjusted p-value Genes

Porphyrin and chlorophyll metabolism 0.000582985 HEM2;HEM12;CYC3;YFH1

Oxidative phosphorylation 0.007415084 OLI1;QCR6;ATP6;COX1;ATP2

Endocytosis 0.007415084 CAP1;APL3;LAS17;ARC15;VPS25

RNA degradation 0.025376563 POP2;RRP42;SSQ1;CCR4

Meiosis 0.049279656 CLN3;HMRA2;MSN4;APC9;TPD3

Autophagy 0.049279656 KCS1;VPS8;MSN4;PEP4

Ubiquitin mediated proteolysis 0.049279656 UBC13;UBC6;APC9

Protein processing in endoplasmic reticulum 0.049279656 OST4;UBC6;PDI1;SSE2

Glycolysis / Gluconeogenesis 0.064176371 PDA1;PGM2;ADH5

Galactose metabolism 0.072088565 GAL7;PGM2

Phosphatidylinositol signaling system 0.072088565 KCS1;PKC1

Amino sugar and nucleotide sugar metabolism 0.075323668 GAL7;PGM2

Spliceosome 0.075323668 PRP43;ECM2;PRP8

MAPK signaling pathway 0.072088565 TUP1;MKC7;MSN4;PKC1

Pentose phosphate pathway 0.075323668 SOL4;PGM2

Alanine, aspartate and glutamate metabolism 0.075323668 GDH3;NIT3

Cell cycle 0.075323668 CLN3;TUP1;APC9;TPD3

Citrate cycle (TCA cycle) 0.075323668 PDA1;LSC2

Ribosome biogenesis in eukaryotes 0.075323668 UTP15;CKB1;RIO1

Glycine, serine and threonine metabolism 0.075323668 SER1;CYS3

https://doi.org/10.1371/journal.pone.0259476.t003
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validate the reliability of identified probe sets in another S. cerevisiae strain, we used to evaluate

the reproducibility of the results by exploring the discriminative potential of them via PCA

and LOOCV analysis based on different gene expression datasets related to another S. cerevi-
siae strain and different experiment. LOOCV and unsupervised analysis of the data using PCA

demonstrated the potential of 171 probe sets to discriminate between the low and high ethanol

samples from independent microarray experiments. The captured variance with the first two

components by PCA analysis on 171 probe sets was high (78.60% and 70.40%). These findings

imply that AWAs applied to FCdb can substantially reduce the dimensionality of the data by

eliminating probe sets that are unlikely to be linked to ethanol production, leading to identifi-

cation of the most reliable probe sets associated with ethanol production.

Furthermore, we used pathway enrichment, transcription factor and regulatory analysis to

validate the machine learning analysis results (Fig 4). According to RapidMiner-assisted analy-

sis, some probe sets were identified as playing a distinct role in ethanol production. Nonethe-

less, it should be noted that the function of some identified probe sets has not yet been

clarified, despite the fact that they may be critical in ethanol production. ADH5 or Alcohol

dehydrogenase, which was weighted by 9 algorithms and classified in Glycolysis / Gluconeo-

genesis by KEGG enrichment analysis, contributes to ethanol production by reducing acetal-

dehyde to ethanol [38]. OLI1 was distinguished by ten algorithms and enriched by Oxidative

phosphorylation term, which encodes F0-ATP synthase subunit c and generates ATP in yeast

mitochondria [39]. Cu2+ in toxic concentration, is known to have a negative effect on mito-

chondrial respiratory components, as it repressed the respiratory chain in PC12 and liver cells

at toxic doses [40, 41]. That is most likely the main reason for the down regulation of OLI1,

which is an important component of the oxidative phosphorylation pathway when exposed to

Fig 3. The regulatory clustering heatmap related to genes targeted by identified transcription factors Hap4p and

Tup1 and TOS8. The cluster is represented as the log mRNA ratio of each target gene in each regulator mutant.

https://doi.org/10.1371/journal.pone.0259476.g003

Fig 4. The schematic illustrates the methodology of the study with summarized results.

https://doi.org/10.1371/journal.pone.0259476.g004
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Cu2+ treatment. RNA-seq analysis revealed that this gene was enriched as a significant gene

between the wild and high glucose tolerant mutant strains of S. cerevisiae [42]. In addition to

this gene, COX1 has an AWA weight of 8 and is involved in the final electron chain reaction in

the respiratory system [43]. It encodes one of the cytochrome c oxidase subunits and, like

OLI1, has been shown to be repressed by Cu2+ treatment. PDAI encodes alpha subunit of pyru-

vate dehydrogenase and converts the pyruvate to acetyl-CoA through oxidative decarboxyl-

ation [44]. This gene was found to be enriched by the Glycolysis/Gluconeogenesis pathway by

seven weighting algorithms used in this study. PDAI directs the pyruvate metabolism to Ace-

tyl- COA in mitochondria to provide the TCA cycle substrate. In other words, directing the

pyruvate to TCA cycle PDAI keeps pyruvate from being consumed in the fermentation process

or ethanol production. PDAI was down regulated in Mg-containing medium, which accounts

for improved ethanol production, and was upregulated in the repressed fermentation condi-

tion, by Cu. QCR6 is a subunit of cytochrome bc1 complex and contributes to oxidative phos-

phorylation. Cytochrome C is known to be activated by Cu metal ion [45]. QCR6 was up

regulated, as expected, by Cu supplementation. Similarly, in Pichia stipites, cytochrome bc1

disruption resulted in increased ethanol production. [46]. Granados-Arvizu et al [47] also con-

cluded that cytochrome bc1 complex repression would be a promising way to enhance ethanol

production in Saccharomyces stipites. ALD6 or Aldehyde dehydrogenases is activated by Mg

and have a distinct role in the formation of acetate from pyruvate in an alternate pyruvate

dehydrogenase bypass pathway [48]. Here, ALD6 expression was found to be increased with

Mg supplementation, which corresponded to the activation of this enzyme by Mg2+. Since it

consumes the acetaldehyde source that ADH enzymes can use to produce ethanol, deleting

ALD6 via clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) genome

editing resulted in increased ethanol production [49].

Based on decision tree analysis, 17 identified roots exhibited 100% performance, some of

which have unknown molecular functions and have yet to be characterized. Surprisingly, OLI1
and CYC3 were identified by the highest attribute weighting algorithms (10 and 9), were

enriched by the second most significant biochemical pathway, and were also identified as deci-

sion tree model roots with 100% performance. COX1 is also shown as a complete root, but it is

identified using 8 weighting algorithms. As previously stated, OLI1 is an F0-ATP synthase sub-

unit c that contributes to the electron transport chain. CYC3 is also known as Cytochrome c

heme lyase and has a strong sensitivity to ethanol. Indeed, the null mutants for this gene

showed ethanol sensitivity. Both of these genes are involved in ATP generation and are up reg-

ulated in Mg supplemented medium according to the results. Nonetheless, it has been estab-

lished that Mg2+ has an effect on energy metabolism and ATP production in the cell [50].

The Kegg enrichment analysis demonstrated that the topmost significant pathways, por-

phyrin biosynthesis and oxidative phosphorylation, were enriched in CYC3, OLI1 and COX1.

Interestingly, these genes were also identified based on AWAs and decision tree models analy-

sis. Besides, Cell cycle and division, as well as Ribosome biogenesis, are identified as significant

terms in the KEGG pathway enrichment. They may have an impact on ethanol production

even though they do not directly contribute to the fermentation bioprocess. For example, in

addition to its role in yeast cell growth and proliferation, which affects ethanol production,

ribosome biogenesis is predicted to be associated with fermentation, and some related genes,

such as SFP1 are thought to be involved in glycolysis control as well [38, 51]. Nonetheless, sig-

nificant phosphatidylinositol signaling and mitogen-activated protein kinase (MAPK) signal-

ing pathways identified in this study by enrichment analysis were reported to be responsible

for cell proliferation/growth regulation and critical for stress responses [52, 53]. PKC1 which

was attributed by 8 algorithms and remarkably enriched in phosphatidylinositol signaling sys-

tem is a serine/threonine kinase which is suggested to have role in response to copper toxicity
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since it was upregulated in Cu2+ supplementation or reduced ethanol production according to

heatmap clustering. Confirming this finding, Zhou et al. [52] reported that 5-hydroxymethyl-

2-furaldehyde, which is toxic to industrial fermentative S. cerevisiae strain, increases the

expression of PKC1 gene. Furthermore, according to AWAs analysis, some genes are involved

in stress responses, cell growth and proliferation, protein synthesis, fatty acids and lipid metab-

olism, all of which may contribute to ethanol production efficiency. MRP8 was assigned by ten

algorithms as a response to cell wall stress, and its expression has been reported to be induced

under stress conditions [54]. Its function, however, is unknown. Here, Cu2+ supplementation

also induces the expression of this gene in response to the stress condition caused by copper.

GTR2, a GTPase subunit, was weighted using nine algorithms. It is suggested in this study that

it contributes to tolerance response to Cu supplementation because it was up regulated by cop-

per. As an implication for this result, the null mutant related to GTR gene showed decreased

resistance to Zn metal at inhibitory amount [55].

According to the crucial role of TFs in gene expression regulation and to confirm the results

obtained from attribute weighting algorithms analysis, the TFs and their targets were explored

among 171 probe sets. According to the regulatory clustering analysis, Tup1 has a significant

effect on the top-ranked target genes. Tup1 is a transcriptional repressor in S. cerevisiae has the

ability to repress target genes via various molecular mechanisms, and it contributes to carbon

catabolite repression of transcription by glucose [56, 57]. Regarding the results of this study on

regulatory clustering analysis, the Tup1 mutant caused decreased expression in some of the

target genes and up regulation in others. In details, according to the regulatory analysis the

Tup1 deletion most significantly resulted in the downregulation of YBL111C whose biological

function is not known. Although the Tup1 deletion affect the ADH5, the expression change

was not significant. On the other hand, the TUP1 knock out resulted in significant upregula-

tion of YAL039C (CYC3). Indeed, the CYC3 gene, which was confirmed by the greatest num-

ber of AWAs and a decision tree model, was also shown to be a top target of the transcription

factor involved in ethanol production responses in this study. HAP4 is a transcription factor

involved in the regulation of the respiratory genes’ expression and ethanol tolerance. The role

of TUP1 and HAP4 in glucose fermentation have been studied and recently confirmed in ther-

mos-tolerant yeast, Ogataea polymorpha [57]. Moreover, the overexpression of HAP4 gene

caused enhanced glucose consumption and ethanol production in S. cerevisiae [58, 59]. In this

study, the HAP4 gene was also identified as top-ranked gene attributed by nine AWAs.

Although the results confirm its involvement in the identified probe sets regulation, it does not

demonstrate significant up or down-regulation effect on the target genes. Altogether, OLI1,

CYC3, COX1 and ADH5 were ranked as the most critical genes in the differentiation of two

improved and repressed ethanol production conditions because they were the most frequently

identified genes across analyses. These important findings shed light on the complex pathways

and regulatory responses that genes use to contribute to ethanol production. However, addi-

tional experimental analysis could fully clarify the results. Overall, the findings of this study

could be used to further investigate the possibility of improving ethanol through overexpres-

sion or knock out strategies. Further experimental investigations, including overexpression

and knockout studies as well as gene expression analysis by qRT-PCR are required to confirm

the identified genes.

Conclusion

This investigation provides a significant understanding of the S. cerevisiae cell molecular

response under low and high ethanol production. Preforming eleven machine learning algo-

rithms via RapidMiner on 6300 probe sets related to S. cerevisiae transcriptomic data under
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low and high ethanol production, 171 discriminative probe sets were identified. Besides, PCA

and hierarchical clustering confirm the accuracy of the supervised discriminating methods.

Through different computational analyses including attribute weighting algorithms, decision

tree models, unsupervised models, pathway enrichment, and regulatory analysis, prominent

genes such as OLI1, CYC3, COX1, and ADH5 were recognized to be involved in ethanol pro-

duction level. The results of this study also provide insight into the potential of genes that

could be utilized in ethanol production enhancement programs. However, further experimen-

tal evaluations are crucial to confirm the findings.
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4. Proux-Wéra E, Armisén D, Byrne KP, Wolfe KH. A pipeline for automated annotation of yeast genome

sequences by a conserved-synteny approach. BMC bioinform. 2012; 13, 237. https://doi.org/10.1186/

1471-2105-13-237 PMID: 22984983

5. Gohil N, Panchasara H, Patel S, Ramı́rez-Garcı́a R, Singh V. Book review: recent advances in yeast

metabolic engineering. Front. Bioeng. Biotechnol. 2017; 5, 71. https://doi.org/10.3389/fbioe.2017.

00071.

6. Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE. Systematic optimization of gene expres-

sion of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium

in a recombinant Saccharomyces cerevisiae. AMB Express. 2018; 8, 139. https://doi.org/10.1186/

s13568-018-0670-8 PMID: 30151682

7. Liu K, Yuan X, Liang L, Fang J, Chen Y, He W, et al. Using CRISPR/Cas9 for multiplex genome engi-

neering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae. Biochem. Eng. J.

2019; 145: 120–126a. https://doi.org/10.1016/j.bej.2019.02.017.

8. Ye S, Jeong D, Shon JC, Liu KH, Kim KH, Shin M, et al. Deletion of PHO13 improves aerobic l-arabi-

nose fermentation in engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2019; 46:

1725–1731. https://doi.org/10.1007/s10295-019-02233-y PMID: 31501960

9. de Souza RB, Silva RK, Ferreira DS, Junior SDSLP, de Barros Pita W, de Morais Junior MA. Magne-

sium ions in yeast: setting free the metabolism from glucose catabolite repression. Metallomics. 2016;

8: 1193–1203. https://doi.org/10.1039/c6mt00157b PMID: 27714092

10. Lewis J.A, Elkon I.M, McGee M.A, Higbee A.J, Gasch A.P. Exploiting natural variation in Saccharomy-

ces cerevisiae to identify genes for increased ethanol resistance. Genetics. 2010; 186: 1197–1205.

https://doi.org/10.1534/genetics.110.121871 PMID: 20855568

11. Pejin JD, Mojović LV, Pejin DJ, Kocić-Tanackov SD, SavićDS, Nikolić SB, et al. Bioethanol production

from triticale by simultaneous saccharification and fermentation with magnesium or calcium ions addi-

tion. Fuel. 2015; 142: 58–64. https://doi.org/10.1016/j.fuel.2014.10.077.

12. Taloria D, Samanta S, Das S, Pututunda C. Increase in bioethanol production by random UV mutagene-

sis of S. cerevisiae and by addition of zinc ions in the alcohol production media. APCBEE Procedia.

2012; 2: 43–49. https://doi.org/10.1016/j.apcbee.2012.06.009.

13. Ko JK, Um Y, Lee SM. Effect of manganese ions on ethanol fermentation by xylose isomerase express-

ing Saccharomyces cerevisiae under acetic acid stress. Bioresour. Technol. 2016; 222: 422–430.

https://doi.org/10.1016/j.biortech.2016.09.130 PMID: 27744166

14. Wang FQ, Gao C.J, Yang CY, Xu P. Optimization of an ethanol production medium in very high gravity

fermentation. Biotechnol. Lett. 2007; 29: 233–236. https://doi.org/10.1007/s10529-006-9220-6 PMID:

17091376

15. Zhao XQ, Bai Fw. Zinc and yeast stress tolerance: Micronutrient plays a big role. J. Biotechnol. 2012;

158: 176–183. https://doi.org/10.1016/j.jbiotec.2011.06.038 PMID: 21763361

16. Ku I, Ku S, Sakamoto T, Hasunuma T, Zhao X, Kondo A. Zinc, magnesium, and calcium ion supplemen-

tation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

Biotechnol. J. 2014; 12: 1519–1525. https://doi.org/10.1002/biot.201300553.

17. Shi H, Jiang Y, Yang Y, Peng Y, Li C. Copper metabolism in Saccharomyces cerevisiae: An update.

Biometals, 2020; pp.1–12. https://doi.org/10.1007/s10534-020-00232-6 PMID: 31970541

18. Farrés M, Piña B, Tauler R. LC-MS based metabolomics and chemometrics study of the toxic effects of

copper on Saccharomyces cerevisiae. Metallomics. 2016; 8: 790–798. https://doi.org/10.1039/

c6mt00021e PMID: 27302082

19. Lihua W, Wang R, Zhan J, Huang W. High levels of copper retard the growth of Saccharomyces cerevi-

siae by altering cellular morphology and reducing its potential for ethanolic fermentation. Int. J. Food

Sci. Technol. 2020; 2720–2731. https://doi.org/10.1111/ijfs.14903.

20. Teixeira DAR. A Computational Platform for Gene Expression Analysis. M.Sc. Thesis] Informatics and

Computing Engineering (MIEC), FEUP; 2014. https://hdl.handle.net/10216/75202.

21. Abusamra H. A comparative study of feature selection and classification methods for gene expression

data of glioma. Procedia Comput. Sci. 2013; 23 5–14. https://doi.org/10.1016/j.procs.2013.10.003.

22. Zinati Z, Alemzadeh A, KayvanJoo AH. Computational approaches for classification and prediction of

P-type ATPase substrate specificity in Arabidopsis. Physiol. Mol. Biol. Plants. 2016; 22: 163–174.

https://doi.org/10.1007/s12298-016-0351-5 PMID: 27186030

23. Jack C, Liu H, Lin W, Tsai F. Identification of contributing genes of Huntington’s disease by machine

learning. BMC Medical Genom. 2020; 13: 1–11. https://doi.org/10.1186/s12920-020-00822-w.

PLOS ONE Mining transcriptomic data to identify Saccharomyces cerevisiae signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0259476 July 26, 2022 16 / 18

https://doi.org/10.1007/978-1-61779-173-4%5F2
https://doi.org/10.1007/978-1-61779-173-4%5F2
http://www.ncbi.nlm.nih.gov/pubmed/21863479
https://doi.org/10.1186/1471-2105-13-237
https://doi.org/10.1186/1471-2105-13-237
http://www.ncbi.nlm.nih.gov/pubmed/22984983
https://doi.org/10.3389/fbioe.2017.00071
https://doi.org/10.3389/fbioe.2017.00071
https://doi.org/10.1186/s13568-018-0670-8
https://doi.org/10.1186/s13568-018-0670-8
http://www.ncbi.nlm.nih.gov/pubmed/30151682
https://doi.org/10.1016/j.bej.2019.02.017
https://doi.org/10.1007/s10295-019-02233-y
http://www.ncbi.nlm.nih.gov/pubmed/31501960
https://doi.org/10.1039/c6mt00157b
http://www.ncbi.nlm.nih.gov/pubmed/27714092
https://doi.org/10.1534/genetics.110.121871
http://www.ncbi.nlm.nih.gov/pubmed/20855568
https://doi.org/10.1016/j.fuel.2014.10.077
https://doi.org/10.1016/j.apcbee.2012.06.009
https://doi.org/10.1016/j.biortech.2016.09.130
http://www.ncbi.nlm.nih.gov/pubmed/27744166
https://doi.org/10.1007/s10529-006-9220-6
http://www.ncbi.nlm.nih.gov/pubmed/17091376
https://doi.org/10.1016/j.jbiotec.2011.06.038
http://www.ncbi.nlm.nih.gov/pubmed/21763361
https://doi.org/10.1002/biot.201300553
https://doi.org/10.1007/s10534-020-00232-6
http://www.ncbi.nlm.nih.gov/pubmed/31970541
https://doi.org/10.1039/c6mt00021e
https://doi.org/10.1039/c6mt00021e
http://www.ncbi.nlm.nih.gov/pubmed/27302082
https://doi.org/10.1111/ijfs.14903
https://hdl.handle.net/10216/75202
https://doi.org/10.1016/j.procs.2013.10.003
https://doi.org/10.1007/s12298-016-0351-5
http://www.ncbi.nlm.nih.gov/pubmed/27186030
https://doi.org/10.1186/s12920-020-00822-w
https://doi.org/10.1371/journal.pone.0259476


24. Huang T, Zhang J, Xu Z.P, Hu L.L, Chen L, Shao J.L, et al. Deciphering the effects of gene deletion on

yeast longevity using network and machine learning approaches. Biochimie. 2012; 94:1017–1025.

https://doi.org/10.1016/j.biochi.2011.12.024 PMID: 22239951

25. RapidMiner Documentation. https://docs.rapidminer.com/. Accessed 10 Sep 2017.

26. Cho S, Won H. Machine learning in DNA microarray analysis for cancer classification, In Proceedings of

the First Asia-Pacific Bioinformatics Conference on Bioinformatics. 2003. 189–198.

27. Xing EP, Jordan MI, Karp RM. Feature selection for high-dimensional genomic microarray data. In: 18th

Int’l Conference Machine Learning. 2001. 601–608.

28. Alagukumar S, Lawrance R. A selective analysis of microarray data using association rule mining. Pro-

cedia Comput. Sci, 2015; 47: 3–12. https://doi.org/10.1016/j.procs.2015.03.177.

29. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Com-

ponent Analysis and heatmap. Nucleic Acids Res. 2015; 43: W566–70. https://doi.org/10.1093/nar/

gkv468 PMID: 25969447

30. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14:128. https://doi.org/10.1186/

1471-2105-14-128 PMID: 23586463

31. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehen-

sive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2019; 44: w90–w97.

https://doi.org/10.1093/nar/gkw377.

32. Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, et al. YEASTRACT+: a portal for

cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res. 2020; 48:

D642–D649. https://doi.org/10.1093/nar/gkz859 PMID: 31586406

33. Hu Z, Killion PJ, Iyer VR. Genetic reconstruction of a functional transcriptional regulatory network. Nat.

Genet. 2007; 39: 683–687. https://doi.org/10.1038/ng2012 PMID: 17417638

34. Reimand J, Vaquerizas JM, Todd A.E, Vilo J, Luscombe N.M. Comprehensive reanalysis of transcrip-

tion factor knockout expression data in Saccharomyces cerevisiae reveals many new targets. Nucleic

Acids Res. 2010; 38: 4768–4777. https://doi.org/10.1093/nar/gkq232 PMID: 20385592

35. Turanlı-Yıldız B, Benbadis L, Alkım C, Sezgin T, Akşit A, Gökçe A, et al. In vivo evolutionary engineering
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