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Abstract

Background: In cancer research, high-throughput screening technologies produce large amounts of multiomics data from different
populations and cell types. However, analysis of such data encounters difficulties due to disease heterogeneity, further exacerbated by
human biological complexity and genomic variability. The specific profile of cancer as a disease (or, more realistically, a set of diseases)
urges the development of approaches that maximize the effect while minimizing the dosage of drugs. Now is the time to redefine the
approach to drug discovery, bringing an artificial intelligence (AI)–powered informational view that integrates the relevant scientific
fields and explores new territories.

Results: Here, we show SYNPRED, an interdisciplinary approach that leverages specifically designed ensembles of AI algorithms, as
well as links omics and biophysical traits to predict anticancer drug synergy. It uses 5 reference models (Bliss, Highest Single Agent,
Loewe, Zero Interaction Potency, and Combination Sensitivity Score), which, coupled with AI algorithms, allowed us to attain the ones
with the best predictive performance and pinpoint the most appropriate reference model for synergy prediction, often overlooked in
similar studies. By using an independent test set, SYNPRED exhibits state-of-the-art performance metrics either in the classification
(accuracy, 0.85; precision, 0.91; recall, 0.90; area under the receiver operating characteristic, 0.80; and F1-score, 0.91) or in the regression
models, mainly when using the Combination Sensitivity Score synergy reference model (root mean square error, 11.07; mean squared
error, 122.61; Pearson, 0.86; mean absolute error, 7.43; Spearman, 0.87). Moreover, data interpretability was achieved by deploying the
most current and robust feature importance approaches. A simple web-based application was constructed, allowing easy access by
nonexpert researchers.

Conclusions: The performance of SYNPRED rivals that of the existing methods that tackle the same problem, yielding unbiased results
trained with one of the most comprehensive datasets available (NCI ALMANAC). The leveraging of different reference models allowed
deeper insights into which of them can be more appropriately used for synergy prediction. The Combination Sensitivity Score clearly
stood out with improved performance among the full scope of surveyed approaches and synergy reference models. Furthermore,
SYNPRED takes a particular focus on data interpretability, which has been in the spotlight lately when using the most advanced AI
techniques.
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Background
Cancer, a heterogeneous group of diseases, is one of the leading
causes of mortality and the most significant barrier to increasing
life expectancy worldwide. The International Agency for Research
on Cancer estimates that, by 2040, approximately 30.2 million new
cancer cases and 16.3 million deaths will be reported, mainly due
to the population’s growth and aging [1]. One of the significant
contributors to this disease’s global burden is the development of
therapy resistance and, consequently, tumor relapse. Drug resis-
tance in cancer is a multifactorial problem driven by the tumor
microenvironment and genetic and nongenetic/epigenetic mech-
anisms that, along with cell plasticity, contribute to tumor hetero-
geneity [2]. In clinical settings, this problem is minimized with a
combination of drugs administered together or in sequence (i.e.,
polytherapy). Targeting multiple components of different or inter-

connected cancer pathways is an efficient strategy to block vital
biological processes [3, 4].

Drug combinations with a synergistic effect (i.e., when the to-
tal therapeutic effect of both drugs is greater than the expected
additive monotherapy effect) [5] were successfully developed and
applied in the treatment of different types of tumors, such as hu-
man epidermal growth factor receptor 2–positive breast cancer
[6], chronic myeloid leukemia [7], prostate cancer [8], or BRAF-
mutated tumors [9]. Nevertheless, this simultaneous administra-
tion can also result in a reduced therapeutic effect and possi-
ble toxicity (designated antagonism) or in the same beneficial ef-
fect when compared with the expected additive monotherapy ef-
fect (additivity) [5]. The experimental identification of success-
ful synergistically effective combinations is a well-known time-
consuming and expensive task. Therefore, there is still a signifi-
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cant need for efficient and user-friendly computational methods,
available in easy to use interfaces, to complement and speed up
the traditional approaches by predicting the best synergistic drug
combinations [10, 11].

In the past years, the development and improvement of high-
throughput technologies and computational tools boosted the
use of large volumes of multiomics data (e.g., genomic, tran-
scriptomic, proteomic) essential to dissect and uncover the com-
plex molecular signatures of cancer. Machine learning (ML) al-
gorithms have attracted particular attention for their ability to
learn new associations and extract valuable insights from this
type of data. A few ML models based on extreme gradient boost-
ing, random forest, elastic nets, support vector machine, and
naive Bayes were already developed to predict the best combi-
nation of anticancer drugs by the integration of omics data with
chemoinformatic properties of drugs or network information of
their targets [12–15]. Likewise, deep learning (DL) implemented
via deep neural networks (DNNs) was particularly useful in deal-
ing with the high multidimensionality of omics data in super-
vised and unsupervised contexts. DL classification and regression
models such as AuDNNsynergy [16], DeepDDS [17], DeepSynergy
[18], DeepSignalingSynergy [19], Matchmakers [20], TranSynergy
[21], or the work by Xia and colleagues [22] were recently devel-
oped for drug combination prediction. Nearly all the surveyed
works developed drug synergy prediction models based upon a
single reference model, which is in most cases the Loewe refer-
ence model [14, 16–18, 20, 21]. Currently, there is a wide scope of
well-studied available reference models, including the Bliss inde-
pendence [23], highest single agent (HSA) [24], Loewe additivity
[25, 26], and zero interaction potency (ZIP) [27]. Furthermore, re-
cently Malyutina et al. [15] developed the Combination Sensitiv-
ity Score (CSS), which measures drug combination synergy using
their IC50. As such, this led us to the question of whether the de-
velopment of a novel prediction approach should be based solely
upon a single reference model. Besides, most of the available web
interfaces such as DECREASE [28] or DrugComb [29] require for
synergy prediction the upload of a full or partial mandatory dose–
response matrix (experimentally determined), which hinders its
systematic use by the scientific community and handicaps its
usefulness.

To overcome the current problems found in the field, we devel-
oped SYNPRED (SYNergy PREDiction), a collection of in silico en-
semble classification and regression models that considers sev-
eral synergy references models: Bliss, Loewe, HSA, ZIP, and CSS.
It was developed by integrating multiomics features of cell lines
and phenotypic and biophysical data, particularly physicochem-
ical and structural features of drugs. SYNPRED displays a good
predictive performance and inherently addresses the issue at a
broader and more profound angle than the existing approaches,
which generally focus on either classification or a single regres-
sion task and typically use a single synergy reference model. We
made available the stand-alone deployment at https://github.c
om/MoreiraLAB/synpred, which allows the user the opportunity
to undergo bulk prediction with SYNPRED. Additionally, for the
first time, a user-friendly web-based application was assembled
and made freely available online at http://www.moreiralab.com
/resources/synpred/ to predict drug combinations, requiring only
the upload of the 2 drugs’ simplified molecular-input line-entry
system (SMILEs) to be tested. This interactive platform will al-
low users with different backgrounds, from scientists to clini-
cians, to test, reproduce, and validate our models and data. The
workflow used for the development of SYNPRED is depicted in
Fig. 1.

Data and Methods
Experimental drug combination phenotypic data
Drug combination phenotypic data were acquired via bulk-
download from the largest-to-date dataset from National Can-
cer Institute—A Large Matrix of Anti-Neoplastic Agent Combina-
tions (NCI ALMANAC) through https://wiki.nci.nih.gov/display/N
CIDTPdata/NCI-ALMANAC [30]. To this date, the dataset includes
phenotypic data of tested cancer cell lines (growth percentage)
of 105 unique drugs approved by the US Food and Drug Admin-
istration (FDA). These drugs were tested in combination against
61 cell lines from 9 cancer types currently included in the NCI
[31, 32], comprising a total of 311,466 drug pair/cell line combi-
nations. Drug sensitivity assays included in NCI ALMANAC were
performed at the NCI’s Frederick National Laboratory for Cancer
Research, the Stanford Research Institute, and the University of
Pittsburgh. Briefly, for each assay, cells were cultivated for 48 hours
in a 3 × 3 or a 5 × 3 concentration matrix (different concentra-
tion values for each drug in combination) and the endpoint de-
termined by Sulforhodamine B or CellTiter-Glo [30]. From these
records, the authors retrieved the cell growth percentage at each
drug concentration point, which corresponds to the percentage
of growth of the cell lines in the presence of each combination,
yielding a final viability assessment.

Combination scores and class definition
The phenotypic data from high-throughput drug combination
screens were retrieved from DrugComb [29]. DrugComb extends
its synergy metrics calculations from “SynergyFinder” [33], which
leverages the percentage of cell growth included in the dataset to
assess the degree of combination for each pair of drug concen-
trations by using several synergy reference models. As such, only
the most well-studied synergy reference models described in the
literature were included as they were the only ones that met the
criteria of characterizing the effects of a drug pair on a cell line
with a final single synergy score. This approach narrowed down
our options to the 4 most well-known synergy reference models:
Bliss independence (Equation 1) [23], Loewe additivity (Equation 2)
[25, 26], HSA (Equation 3) [24], and ZIP (Equation 4) [27]. In addi-
tion to the mentioned synergy reference models, we also used the
CSS metric [15], a higher sensitivity score [29].

yBliss = y1 + y2 − y1y2 (1)

Bliss independence model: yBliss is the Bliss response, y1 is the
drug 1 response, and y2 is the drug 2 response.

yLoewe = Emin + Emax
( x1+x2

m

)λ
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m

)λ
(2)

Loewe additivity model: yLoewe is the Loewe response, Emin is the
minimum drug response, Emax is the maximum drug response,
m is the dose that produces a midpoint effect between Emin and
Emax, λ is the shape parameter indicating the slope of the curve,
x1 is the drug 1 dose, and x2 is the drug 2 dose.

yHSA = max (y1, y2) (3)

HSA model: yHSA is the HSA response, y1 is the drug 1 response,
and y2 is the drug 2 response.
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Figure 1: SYNPRED workflow summary. Green: Dataset construction. The National Cancer Institute—A Large Matrix of Anti-Neoplastic Agent
Combinations database (phenotypic data) and the Cancer Cell Line Encyclopedia (CCLE) (multiomics data) were used for this purpose. Four reference
models (Bliss, HSA, Loewe, ZIP) in addition to the CSS were used to quantify the combination degree and retrieve a full agreement between all metrics.
Orange: Feature extraction and data preprocessing. Included normalization and dimensionality reduction using autoencoder or principal component
analysis (PCA). Blue: Grid search and prediction model development using a training set. Red: Model evaluation using different classification and
regression metrics in an independent test set and 3 different scenarios: (i) leave cell out dataset, (ii) leave drugs out dataset, and (iii) leave drug
combinations out dataset.

ZIP model: yZIP is the ZIP response, x1 is the drug 1 dose, x2 is
the drug 2 dose, m1 is the dose that produces a midpoint effect
for drug 1, m2 is the dose that produces a midpoint effect for drug
2, λ1 is the shape parameter indicating the slope of the curve for
drug 1, and λ2 is the shape parameter indicating the slope of the
curve for drug 2.

Having computed Bliss, HSA, Loewe, ZIP, and CSS, a binary clas-
sifier was first developed to identify the type of combinatory ef-

fect present in each drug pair–cell line sample, where the val-
ues above the threshold (0, as defined for each metric by Syner-
gyFinder [33]) (https://synergyfinder.fimm.fi/synergy/synfin_doc
s/) were defined as synergistic, and the remaining ones were clas-
sified as nonsynergistic. The dataset used for classification train-
ing considered full-agreement combination assessment (i.e., we
only kept the instances on which combination classification was
the same across the 4 previous reference predictors). For the

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI
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dataset used, this process yielded 29,779 synergistic samples and
9,029 nonsynergistic samples. For the regression model deploy-
ment, we used the values attained directly from DrugComb to
each synergy reference model (Bliss, HSA, Loewe, ZIP) as well as
CSS. Most synergy reference model values were in similar scales
(Loewe = [−116.63, 86.69], ZIP = [−36.08, 66.66], HSA = [−81.75,
64.29], Bliss = [−77.07, 78.65]) (Fig. 2, Figs. W1–W6 of the SYNPRED
webserver). CSS stood in the interval [−54.05, 99.84], albeit with
larger interquartile distances than the synergy reference models.

Drug molecular descriptors
Each drug included in NCI ALMANAC was analyzed to extract
its physicochemical and structural features. A SMILE representa-
tion of the drugs was acquired from PubChem [34]. SMILEs were
then used to mine molecular descriptors using the Python pack-
age “Mordred” (Version 1.1.2) [35]. In total, an array of 1,613 nu-
meric features of 43 different categories was retrieved, making a
2-dimensional molecular description of the drugs. Feature arrays
comprising nonnumerical attributes or displaying zero variance
were deleted. This preprocessing left 586 features describing each
drug included in the NCI ALMANAC, distributed across 28 cate-
gories (Table 1). The resulting features were subjected to normal-
ization by removing the mean and scaling to unit variance with
scikit-learn’s StandardScaler [36].

Omics data of cancer cell lines
Omics data (expression, copy number variation, methylation,
global chromatin profiling, metabolomics, microRNA, proteomic
profiling) describing the cancer cell lines were acquired via
bulk download from the Cancer Cell Line Encyclopedia (CCLE)
(https://sites.broadinstitute.org/ccle/) [37]. The number of cell
lines included in the CCLE varies depending on the type of
omics data available at the time. Correspondence of cell line
IDs between the NCI ALMANAC and CCLE was performed ac-
cording to data available at the Swiss Institute of Bioinformatics
Cellosaurus website [38]. According to the affected tissue, anno-
tations acquired through Cellossaurus split the CCLE cell lines
into 21 different cancer types. In agreement with the original
publications [37, 39], expression data were obtained through
RNA sequencing and processed to obtain level expression in
transcripts per million by the expectation-maximization algo-
rithm (file: CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz).
Copy number variation (CNV) data were acquired from the
Affymetrix SNP6.0 Arrays (file: CCLE_copynumber_byGene_2013–
12-03.txt.gz). Copy numbers were normalized by the most similar
HapMap normal samples [40]. Segmentation of normalized log2

(CN/2) ratios was achieved using the circular binary segmen-
tation algorithm [37, 41]. Methylation data were derived by
quantifying CpG islands using Reduced Representation Bisulfite
Sequencing (file: CCLE_RRBS_tss_CpG_clusters_20181022.txt.gz).
Global chromatin profiling was attained using multiple reac-
tion monitoring for 42 combinations of histone marks (file:
CCLE_GlobalChromatinProfiling_20181130.csv). Metabolomics
data were acquired in parallel with global chromatin profiling
by reporting the abundance measures of 225 metabolites (file:
CCLE_metabolomics_20190502.csv). MicroRNA associated with
cancer dependencies was correlated, regarding 734 microRNAs,
with the Achilles gene dependency dataset. Protein profiling was
measured with Reverse Phase Protein Arrays for 213 antibodies
(file: CCLE_RPPA_20181003.csv) [39].

Dimensionality reduction of omics data
Data were normalized by removing the mean and scaling to unit
variance with scikit-learn’s StandardScaler [36]. Due to the omics
data’s high complexity, we performed dimensionality reduction
to minimize the noise introduced in the dataset by highlighting
the essential features. The datasets already described were used
to build and train a multilayer perceptron (MLP) autoencoder, an
unsupervised artificial neural network (ANN) with a typical “hour-
glass” architecture, which is often used to perform dimensional-
ity reduction in vast and high-dimensional datasets such as the
ones observed with omics data [42–44]. This type of MLPs usu-
ally consists of 3 parts: an encoder that abstracts the input into
hidden variables (i.e., a latent-space representation), a bottleneck
layer that holds the smallest hidden layer (HL) (for purposes of
dimensionality reduction, this is the layer that defines the size of
the reduced dataset), and a decoder that reconstructs the origi-
nal input data from the hidden data [45, 46]. Seven autoencoders,
one for each of the CCLE feature blocks, were developed by using
Keras with a TensorFlow for graphics processing unit (GPU) (Ver-
sion 2.3.1) backend [47]. Each of the autoencoders comprised 7 lay-
ers, of which 5 were HLs. The input and output layers follow the
number of available features in all cell lines, as displayed in Ta-
ble 2. The number of nodes within the bottleneck layer of each of
the 7 autoencoders (used for extraction of the encoded features)
corresponds to the autoencoder’s final number of features. The
2 HLs in each of the encoder and decoder sections vary in size
according to the number of samples and features available (Sup-
plementary Table S1). In this stage, all models used Adam [48] as
an optimizer function with a learning rate of 0.001. Rectified lin-
ear unit (ReLU) activation function was used in all layers. Mean
square error (MSE) was used as a loss function. The models were
trained for 1,000, 250, or 100 epochs, depending on the dataset size
(Supplementary Table S2). After training, each autoencoder’s bot-
tleneck layer was used to perform dimensionality reduction of the
omics data according to Table 2.

Principal component analysis (PCA), a commonly used method
for dimensionality reduction [49], was also applied in the same
datasets as the autoencoder, for which 25 principal components
(PCs) were defined. It means that by using PCA, each dataset was
transformed to yield only 25 features, totaling 175 features to de-
scribe each unique cell line. As shown in Table 2, each feature
block from CCLE had its variance explained in a range from 0.89
to 0.99. Since the 7 blocks were used simultaneously for each sam-
ple, each cell line is thoroughly described by the components ex-
tracted with the PCA. Missing values (in both autoencoder and
PCA) were processed by either dropping the sample entirely or re-
placing the missing values with zero.

Model evaluation and performance metrics
After data acquisition and preprocessing, we gathered all
datasets, and to evaluate the results in the most unbiased man-
ner possible, we randomly isolated 3 datasets considering differ-
ent scenarios:

i) Leave cell out dataset: 3 randomly chosen cell lines belong-
ing to different tissue types (regression dataset: 13,810 com-
binations; classification dataset: 1,396 synergistic and 429
nonsynergistic samples after processing the 13,810 combi-
nations for full agreement) (for the tissue type classification,
see Fig. W1 of the SYNPRED webserver).

ii) Leave drugs out dataset: 5 drugs with the majority belonging
to different hierarchical clusters (regression dataset: 25,993
combinations; classification dataset: 2,934 synergistic and

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI
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Figure 2: Box plot representing the distribution of synergy scores (y-axis) with respect to the 5 reference models: Bliss, HSA, Loewe, ZIP, and CSS
(x-axis). The black boxes represent the difference between the upper 75% and the lower 25% quartiles (interquartile range); the horizontal orange line
is the median; the whiskers are the lower and upper values that are not outliers or extremes (not represented as some of these values are off range).

Table 1: Number of features according to the molecular descrip-
tor category of Mordred. Features are categorized as Energetic (E),
Pharmacological (P), Structural (S), or Miscellaneous (M—in case
of evaluating characteristics of multiple fields).

Number of features per descriptor category
E Acidity/Basicity 2 S Information Content 36
P ADME 3 S Molecular

Complexity
1

S Aromatics 2 P Molecular Operating
Environment

51

S Atom Count 16 S Molecule Graph 5
S Atom-Bond

Connectivity
2 S Path Count 21

M Autocorrelation 180 E Polarizability 2
S Bond Count 9 S Ring Count 66
E Atomic Orbitals 10 S Rotatable Bonds 1
S Chirality 38 S Topological Charges 21
S Constitutional 14 S Topological Index 7
E Energy State 68 S Topological Polar

Surface Area
2

S Fragment
Complexity

1 S Walk Counts 21

S Framework 1 S Weight 2
S Hydrogen Bonds 2 M Wildman–Crippen 2

622 nonsynergistic samples after processing the 25,993 com-
binations for full agreement) (for drug hierarchical cluster-
ing, see Fig. W8 of the SYNPRED webserver).

iii)Leave drug combinations out dataset: 5 drug combinations
(regression dataset: 360 combinations; classification dataset:
74 synergistic and 6 nonsynergistic samples after processing
the 360 combinations for full agreement).

After extracting the datasets for validation, we split the remain-
ing data into training and test sets on an 80/20 ratio (Supple-
mentary Table S3). As such, the training dataset was composed of

Table 2: Number of features pertaining to the omics data and the
corresponding amount for both the autoencoder and the principal
component analysis (PCA) processing

Omics data

Number
of

available
cell lines

Number
of

available
features

Number
of

features
after au-

toencoder

Number
of

features
after PCA

Explained
variance

(PCA)

Expression 1,019 57,820 1,156 25 0.89
Copy number
variation

1,043 23,316 466 0.91

Methylation 843 56,146 1,122 0.92
Global chromatin
profiling

897 42 21 0.99

Metabolomics 928 225 112 0.99
MicroRNA 954 734 73 0.95
Proteomics 899 214 107 0.93

195,996 combinations to be used for regression tasks that, upon
full agreement processing, yielded 20,291 synergistic and 6,419
nonsynergistic samples for classification tasks. The test set was
composed of 48,999 combinations to be used for regression tasks,
which, upon full agreement processing, yielded 5,084 synergis-
tic and 1,553 nonsynergistic samples for classification tasks. The
described data splitting was performed before any model train-
ing, thus ensuring all the prediction models’ performance evalua-
tion is deployed on the same data. The binary classification mod-
els were evaluated through accuracy (acc), precision (prec), recall
(rec), area under the receiver operating characteristic (AUROC),
and F1-score as previously described [50]. The regression models
were evaluated through the root mean square error (RMSE), mean
squared error (MSE), mean absolute error (MAE) [51], Pearson and
Spearman correlation coefficients [52].
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Development of ML models
Neural networks with Keras
The classification and regression neural networks were fully de-
veloped using Keras with a TensorFlow (Version 2.3.1) backend
[47]. Weights were updated using the Adam optimizer [48] and a
learning rate of 0.0001 along 125 epochs with binary cross-entropy
(classification) and MSE (regression) as the loss functions. All the
HLs were connected through ReLU activation, while the output
layer was subject to sigmoid (classification) or linear activation
(regression). As an initial approach, we performed a grid search for
parameter optimization using 5% of the training set, fully detailed
in the “Parameter optimization” section. The best-performing pa-
rameters were further selected, and used to train the models with
the complete train dataset.

ML algorithms with scikit-learn
The datasets presented in this work were also trained with the
most commonly used algorithms for synergy prediction tasks,
namely, random forest (RF) [53], extreme randomized trees (ETC)
[50, 54], support vector machines (SVMs) [55], stochastic gradient
descent (SGD) [56], k-nearest neighbors (kNNs) [57], and extreme
gradient boosting (XGBoost) [58]. The RF, ETC, SVM, SGD, and kNN
models were built using the Python package “SciKit Learn” (Ver-
sion 0.22.1) [36]. The XGBoost model was built using its dedicated
package for Python (available at the Python Package Index as “xg-
boost”) [58]. These 6 algorithms were also subject to grid search for
parameter optimization using 5% of the training set as described
in the “Parameter optimization” section, with the best ones used
to train the models with the full dataset.

Parameter optimization
To properly perform parameter optimization in all the algorithms
described, a grid search was performed using in-house scripts
for Keras DL models and scikit-learn’s GridSearchCV with 3-fold
cross-validation (for ML algorithms with scikit-learn). We used 5%
of the training set [59], a value in agreement with subset usage for
parameter optimization [60], since using the full training dataset
would exponentially increase an already long task. For each of
the Keras classification and regression DL models, we performed
grid search with 192 runs with parameters covering the 4 avail-
able dimensionality reduction datasets (PCA, PCA_drop, autoen-
coder, autoencoder_drop), 12 different network architectures, and
4 different dropout rates (0.00, 0.25, 0.50, 0.75) (Supplementary Ta-
ble S4). In the case of each of the 6 classification and regression
ML models trained with scikit-learn, we used 820 runs, including
different parameters and dataset combinations (Supplementary
Table S5). Finally, for the 6 possible targets (full agreement, Bliss,
HSA, Loewe, ZIP, and CSS), we trained each of the 6 ML models with
the best corresponding performing parameters. We then assessed
the best-performing architectures and dropout rates for the DL-
based models. For each of the possible evaluation metrics, we then
trained the best-performing parameters, which can lead to a dif-
ferent number of DL-based models depending on the synergy ref-
erence model used due to parameter overlap.

Ensemble algorithms
After selecting the previous best-performing models, we replaced
the outliers with the average of the remaining prediction values.
For some tasks, a few of the individual predictors had notably bad
performance (mostly SGD and kNN). As such, we considered out-
liers the synergy prediction values above or below 10 times the
average of the remaining prediction values; this was necessary to

allow the ensemble neural networks to converge. These predic-
tion values were used to constitute a new feature representation
of the samples that could undergo ensemble model training. The
ensemble models were first subjected to a new grid search for pa-
rameter optimization (Supplementary Table S6), taking the target
probability of the selected algorithms as features, ultimately de-
veloping a neural network that worked as an ensemble method.
This neural network had a learning rate of 0.0001, trained for
3 epochs, and used the Adam optimizer [48] and binary cross-
entropy and MSE for classification and regression, respectively, as
the loss functions. All the HLs were connected through ReLU ac-
tivation, while the output layer was subject to sigmoid or linear
activation for classification and regression, respectively. The best-
performing ensemble models were trained with the prediction-
based feature space.

Feature contribution
To understand what were the top contributors for accurate pre-
dictions, we assessed their predictive power. For that, we needed
first to break down the process of assessing feature contribution
into 2 stages due to the dimensionality reduction of cell lines. First,
since the best-performing dimensionality reduction approach was
the PCA, we considered the explained variance by each of the fea-
tures concerning the respective PC. This information was then ex-
tracted as an attribute from the PCA object using scikit-learn [36].
Second, we used the eli5 package [61], with Python deployment, to
assess the final feature weight by deploying permutation impor-
tance [53], a method that allows iterative exclusion of each of the
features, to assess its contribution to the predictive model. The
permutation importance was deployed on the test set because it
would not be possible to assess the feature contribution under un-
biased conditions if the training set had been used. However, it is
worth noting that this evaluation occurs after all model training;
hence, it does not influence the test results.

Benchmark
Benchmarking synergy prediction protocols is a very complicated
process. As reviewed by Zagidullin et al. [29], the datasets avail-
able completely differ in the amount of information used, with
DrugComb [29] assembling the most important ones (ALMANAC
[30], ONEIL [62], FORCINA [63], CLOUD [64]). As shown by Kumar
and Dogra [65], most authors used NCI ALMANAC data to train
and the Loewe additivity synergy reference model [14, 16–18, 20,
21]. Furthermore, comparison to the available methodologies im-
plies that authors adapt the published proposed DL architectures
as these are not easily applied or not available in GitHub or similar
platforms (e.g., pruning the data due to unavailability of a certain
data modality, or changing the loss function to turn a model into
a regressor).

As such, we followed a multistep approach to benchmark our
pipeline:

i) Comparison of DL architectures and simpler ML algorithms
(RF, ETC, SVM, SGD, kNN, and XGBoost models) with ensem-
ble approaches in 4 different test scenarios.

ii) DeepSynergy [18] architecture implementation and compar-
ison using our independent test set and validation sets as
this is one of the most common approaches. As described in
the original study, we retrained a model using 2 hidden lay-
ers, the first with 8,192 and the second with 4,096 neurons.
Furthermore, 2 dropout layers were added, the first with a
0.2 rate and the second with a 0.5 rate. The activation func-
tion used between the hidden layers was a hyperbolic tan-
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gent, and on the output layer, linear activation was used. This
DeepSynergy implementation was trained over 250 epochs
with a learning rate of 0.00001 and an Adam optimizer.

iii)Comparison with published methods for synergy calcula-
tions using both regression (12 models) and classification (13
models) approaches as reviewed by Kumar and Dogra [65].

iv)Comparison of our regression approaches to algorithms for
which the training dataset was clearly available to make
sure the comparison would be as fair as possible. As such,
we compared to the Matchmakers’ algorithm [20] using
the adapted DrugCombo (retrieved from Matchmakers’ [20]
GitHub) and NCI ALMANAC complete datasets, which, in
turn, enables us also to compare with DeepSynergy [18] and
TreeCombo [12] as these were also evaluated by the authors
[20]. Upon the data considered, we performed our own fea-
ture extraction, as described in the SynPred pipeline. Thus,
the comparison is now possible between the full methods,
of which the feature extraction is a part, enabling us to com-
pare with the values reported by the authors.

Web-based application interface implementation
The SYNPRED prediction models were implemented in a web-
based application at http://www.moreiralab.com/resources/syn
pred/. The website’s plots and front-end were constructed with
plotly [66] and Flask [67], both freely available Python packages,
on a framework that uses an in-house adaptation of Javascript,
CSS, and HTML scripts. All the back-end hosting was mediated
with Flask [67].

Results and Discussion
Measuring feature importance for model
development
To understand the importance of each group of included features
for the final model performance and to attain a more interpretable
model, we analyzed each of the individual models with permuta-
tion importance. We perceived that more complex models, partic-
ularly DL-based models with different architectures, tend to make
more extensive use of the omics-based features to over 70% of the
total feature contribution (Figs. W9–W12 of the SYNPRED web-
server). Contrarily, simpler models, such as kNN and SGD, made
almost exclusive use of the drug features (above 90%) (Figs. W16
and W18 of the SYNPRED webserver). Other non-DL-based mod-
els made variable (between 20% and 80%) usage of the omics fea-
tures (Figs. W13–W15 and W17 of the SYNPRED webserver). This
observation highlights the importance of DL models to take full
advantage of omics data for capturing the complexity of each can-
cer profile, thus improving drug pair–cell line combinations pre-
dictions. The advantages of using these algorithms when dealing
with multidimensional omics data, particularly the great flexibil-
ity of DL architectures, were also previously emphasized [68].

We then looked for a possible biological relevance of the top 5
genes in each group of the most critical multiomics features to
understand if genes contributing more to the prediction models
were also implicated in tumorigenesis. Of the 15 ranked genes
from expression, methylation, and CNV variations, all of them
are used as prognostic cancer markers or have a role in tumor
progression and treatment (Table 3). These data suggest that our
models, especially DNNs, are likely to capture the most relevant
information for each group of multiomics features for synergis-
tic drug combinations. The remaining ranked genes organized by
each ML model’s best-contributing features are presented in in-

teractive Sankey diagrams on the website landing page (Figs. W9–
W18).

Tuning and choosing the best ML parameters
An appropriate choice of the best model parameters should al-
ways be performed, as ML performance and training time are
deeply affected by them. With that in mind, we used a grid
search approach to test a comprehensive array of parameters
and dataset combinations, including parameters for several ML
methods, a comprehensive set of DL configurations, and prepro-
cessing setups, as described above. Regarding the preprocessing
datasets, autoencoder datasets performed worse in the training
sets and slightly worse for the test set. These results led us to
discard them as there was no benefit to the increased training
time caused by the significantly higher dimensionality. We pro-
ceed with the dataset in which PCA was used for dimensional-
ity reduction and replacing the missing values with 0, as these
approaches performed better for most grid search runs [80, 81]
(Supplementary Table S3).

SYNPRED models for drug combination
prediction
After selecting the best parameters for both DL with Keras and ML
with scikit-learn, we trained models with the full training set ac-
cording to the parameters in the best grid search performing met-
rics. The best individual models were used to attain each sample
prediction to make the final ensemble for the 5-synergy reference
model plus the full agreement. The final models were then evalu-
ated in the test set and 3 different scenarios: leave cell out, leave
drugs out, and leave drug combinations out, by attaining differ-
ent classification (Supplementary Table S7) or regression (Supple-
mentary Tables S8–S12) evaluation metrics.

Classification model performance. Prior to ensemble development,
the best independent performing model was XGBoost with the fol-
lowing parameters: alpha = 0.25, max_depth = 6, n_estimators =
100. After ensemble, our final full-agreement SYNPRED comprised
4 DL-based and 6 ML-based models, attained with a DL architec-
ture with 3 hidden layers of size 100 and a dropout rate of 0.60.
When applied in an independent test set, our ensemble model
displayed better performance (accuracy = 0.85, precision = 0.91,
recall = 0.90, AUROC = 0.80, and F1-score = 0.90) than any other
classic ML or DL models, including reference ones such as SVM,
RF, or XGBoost frequently used for synergy prediction classifica-
tion tasks (Table 4, Supplementary Table S7) [13, 14, 82]. In the
3 independent scenarios, the full-agreement ensemble SYNPRED
achieved higher precision values by returning the most relevant
results than any other of the individual models. However, we saw
a significant drop in the leave cells, drugs, and drug combinations
out datasets.

Regression model performance. Concerning the 5 regression tasks
(Table 5), CSS (Supplementary Table S12) stands out—in either the
metrics or the datasets considered—while the remaining 4 (ZIP,
HSA, Bliss, and Loewe) (Supplementary Tables S8–S11) followed
closely behind. Although in agreement with the presented data,
this is unexpected considering the literature on the subject, which
mainly uses Loewe. Indeed, historically, Loewe has been systemat-
ically chosen as the target regression reference model [14, 16–18,
20, 21]. For most cases in which this happens, there is no compari-
son with the remaining reference models. The few available com-
parative studies are mainly done outside the synergy prediction
spectrum and somewhat under the scope of analyzing provided
drug combination dose–response matrix data [33, 83]. By deploy-

http://www.moreiralab.com/resources/synpred/
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Table 3: Permutation importance of the top 5 proteins associated with expression, methylation, and CNV features as well as their
associated biological relevance

Type of
feature Protein name Protein description Biological relevancea

Expression TMSB4X Thymosin beta-4 X-linked Prognostic marker in renal cancer (unfavorable)
MTCO2 Mitochondrially encoded cytochrome

c oxidase II
Prognostic marker in liver cancer (favorable)
and pancreatic cancer (favorable)

MT-RNR2 Mitochondrially encoded 16S rRNA Associated with survival outcomes in patients
with cancer [69]

MT-CO3 Mitochondrially encoded cytochrome
c oxidase III

Prognostic marker in pancreatic cancer
(favorable) and liver cancer (favorable)

COX6C Cytochrome c oxidase subunit 6C Associated with breast cancer, thyroid tumors,
uterine cancer, prostate cancer, and esophageal
cancer [70], although not reported as
prognostic

Methylation C11ORF52 Chromosome 11 open reading frame
52

Associated with lung cancer [71], although not
reported as prognostic

NPY1R Neuropeptide Y receptor Y1 Prognostic marker in breast cancer (favorable)
TMBIM6 Transmembrane BAX inhibitor motif

containing 6
Prognostic marker in renal cancer (favorable),
head and neck cancer (unfavorable), and breast
cancer (unfavorable)

C2CD4D C2 calcium-dependent domain
containing 4D

C2CD4D-AS1 overexpression contributes to the
malignant phenotype of lung adenocarcinoma
cells [72], although not reported as prognostic

EDNRB Endothelin receptor type B Prognostic marker in renal cancer (favorable)
CNV UTY Ubiquitously transcribed

tetratricopeptide repeat containing,
Y-linked

Associated with cutaneous melanoma, bladder
urothelial carcinoma, B-cell lymphoma, small
cell lung cancer, oligodendroglioma,
chondroblastic osteosarcoma, and cutaneous
melanoma [73, 74], although not reported as
prognostic

MACROD2 Mono-ADP ribosylhydrolase 2 Associated with growth of intestinal tumors
[75], although not reported as prognostic

WWOX WW domain containing
oxidoreductase

Prognostic marker in renal cancer (favorable)
and breast cancer (unfavorable)

DAZ2 Deleted in azoospermia 2 Associated with oligozoospermia [76], which is,
in turn, highly associated with testicular cancer
[77], although not reported as prognostic

KANK1 KN motif and ankyrin repeat domains
1

Upregulating Kank1 gene inhibits human
gastric and lung cancer progress [78, 79],
although not reported as prognostic

aThe protein description and biological importance were retrieved from the Human Proteins Atlas (https://www.proteinatlas.org/) and the Human Gene Database
(https://www.genecards.org/). When this information was not listed in these databases, we presented the study that supports the biological relevance. Favorable
and unfavorable are related to gene/protein contribution for cancer progression.

Table 4: Best results obtained for the classification ensemble
model

Subset used for
evaluationa Accuracy Precision Recall AUROC F1 score

Test 0.85 0.91 0.90 0.80 0.90
Leave cells out 0.37 0.89 0.13 0.55 0.22
Leave drugs out 0.33 0.86 0.13 0.53 0.22
Leave drug
combinations out

0.24 1.00 0.21 0.61 0.35

aThe final model had a dropout rate of [0.4] and an architecture of [10, 10, 10].

ing an unbiased data-driven selection of the model, SYNPRED em-
pirically assesses how realistically viable is the representation of
5 of the most common synergy reference models against a real bi-
ological dataset. Zagidullin et al. [29] have already pointed to the
value of such agglomerative approaches.

Table 5: Best results obtained for the regression ensemble models,
considering the test dataset

Synergy
reference
model RMSE MSE Pearson MAE Spearman

CSS 11.07 122.61 0.86 7.43 0.87
Loewe 10.58 111.92 0.71 6.49 0.68
Bliss 4.35 18.92 0.71 3.07 0.59
HSA 4.09 16.70 0.73 2.86 0.64
ZIP 3.86 14.87 0.70 2.74 0.66

The results of our best final ensemble regression model (CSS)
outperformed all the individual predictors when evaluated in the
test dataset and leave drug combinations out scenario, one of
the most challenging ones (Table 5). Regarding correlation met-
rics and comparing to the literature standards [ 84], CSS achieved
strong Pearson values (0.86 on the test and 0.74 on the leave cells

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI
https://www.genecards.org/
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out dataset). Concerning scale-depending performance metrics,
the CSS had 11.07 and 13.63 RMSE on the test and leave cells out
datasets, respectively. Considering that CSS values range within
[−54.05, 99.84], our predictor was able to determine CSS synergy
values with low error (Fig. 3). A similar pattern was exhibited by
the Loewe ensemble predictor (Fig. 4).

Benchmark
We benchmarked our pipeline following a multistep approach as
described in the Methods section:

i) Comparison of the best-performing individual DL and ML al-
gorithms with the ensemble approaches for each prediction
task—Supplementary Tables S7 to S12

ii) DeepSynergy [18] architecture implementation and compar-
ison using our independent test set and validation sets—
Supplementary Table S13

iii)Comparison with published methods for synergy calcula-
tions as reviewed by Kumar and Dogra [65]—Supplementary
Table S14

iv)Comparison of our regression approaches to Matchmak-
ers’ algorithm [20], DeepSynergy [18], and TreeCombo [12]—
Supplementary Tables S15 and S16

Regarding (i), ensemble/aggregation of algorithms consistently
outperforms or stands very close to the best individual pre-
dictors. XGBoost and extreme randomized trees were typically
the second-best predictors. These results showcase how SynPred
leverages previous information on algorithms such as TreeCombo
[12] (which uses an individual XGBoost algorithm) or DeepSyn-
ergy [18], which is, in essence, the literature parent of several of
the neural networks with conic architecture we used. In fact, in
(ii) (Supplementary Table S13), it can be seen that the DeepSyn-
ergy [18] implementation on SynPred’s pipeline behaves similarly
to other DNN approaches in SynPred. These are good performers
but unable to beat the ensemble algorithms.

When comparing the reported performance for algorithms in
their own settings (iii), as reviewed by Kumar and Dogra [65], once
again we need to take into account a very broad array of circum-
stances, such as algorithms, datasets (filtered or postprocessed),
and synergy reference models (Supplementary Table S14). The
high possible combination of factors that leads to the final meth-
ods’ performance is huge, and therefore this comparison has to
be conducted with a limited few.

For instance, SynPred’s highest performer predictor is the CSS
predictor. However, it is impossible to justly compare our results to
predictors that only focus on the Loewe synergy reference model.
However, when considering the most recurring synergy reference
model (Loewe), although SynPred shows lower Pearson and Spear-
man correlations, it also presents much lower errors (RMSE and
MSE) compared to the best remaining algorithms. All these re-
sults highlight the need to consider different synergy reference
models, which although not used before, were already suggested
to be a valuable approach [29].

Finally (iv), we conducted closer comparisons (although still
not optimal) with performances presented in Supplementary Ta-
ble S15 and Supplementary Table S16. Regarding Supplementary
Table S15, SynPred was run against Matchmakers’ [20] processing
of DrugComb [29]. Upon doing this, both CSS and Loewe predictors
from SynPred stood very close to the performance of Matchmak-
ers [20], which is remarkable since this was the dataset used by the
authors [20] to train the model. When inspecting Supplementary
Table S16, in which the predictors were deployed upon NCI AL-

MANAC [85] (the dataset used in this study), SynPred stands out
in all the synergy reference models with Pearson and Spearman
correlation performance increments between 30.51% and 42.37%,
as well as between 36.36% and 56.36%, respectively. Although MSE
metrics are particularly hard to compare between datasets and
methods, significant improvements were also observed.

Web-based application description
The classification and regression models for predicting the type
of combinatory effect in drug pair–cell line samples are available
as a web-based application at http://www.moreiralab.com/resou
rces/synpred/. All the 11 described single models are deployed
on user submission, as well as the ensemble approach. The user
needs to submit 2 drugs as input in the ∗.smile format and se-
lects from a drop-down menu, the primary body site correspond-
ing to the tested cancer cell lines. The drugs are then subject to
feature extraction by Mordred and a standard preprocessing (fea-
ture elimination and normalization) as thoroughly described in
the Methods section. The output, displayed in a downloadable
heatmap, is the drug combination prediction effect for each of the
individual cell lines calculated with the ensemble classification
and regression models and using 5 synergy reference models (ZIP,
HSA, Bliss, Loewe, CSS) plus the full-agreement metric. Further-
more, the final tally of synergistic queries predicted by all models
based on the prediction values is also displayed in the last column
(“Synergy Votes”). This additional option facilitates the visualiza-
tion of the type of combinatory effect between the 2 drugs and
aims at strengthening the value of the prediction due to the lack
of consensus between the different synergy reference models. The
results are returned to the provided e-mail and displayed on the
submission webpage (as shown in Fig. 5). Additionally, users can
assess, explore, and visualize through different plots as well as ex-
port a summary of the synergy scores (calculated using ZIP, Bliss,
HSA, Loewe, and CSS synergy reference models) by cell line used
to develop the original dataset of SYNPRED. To our knowledge, this
is the first webserver that can predict new drug synergy combina-
tions without the need of uploading a partial or full dose–response
matrix. This feature is an advantage compared with other models
implemented in webservers that need these types of data for drug
combination response prediction [ 28, 29].

Conclusions
Synergistic anticancer drug combinations are a powerful tool to
help tackle cancer drug resistance since they can simultaneously
target multiple key molecules or pathways. The rational design
of combination therapies is warranted to improve the efficacy, al-
though this is a well-known time-consuming and expensive task.
In recent years, ML algorithms’ applicability for drug repurposing
or novel drug design has been essential to demonstrate the im-
portance of in silico methodologies to help overcome this problem.
Some classification [13, 14, 17] and regression [16, 18–22] models
using ML and omics data for predicting drug synergy combina-
tions were already developed. However, the fittingness of the pre-
viously developed algorithms is sometimes hindered by using a
single reference model (e.g., Bliss, Loewe, HSA, ZIP, or CSS) or by
the difficulty in applying these models to new unseen data, since
these are not straightforward to implement and require advanced
bioinformatics skills. Our study leads to an innovative approach
by highlighting the importance of choosing an appropriate syn-
ergy reference model, and explores how this choice influences
the final predictor performance. Given the different sensitivity ob-

http://www.moreiralab.com/resources/synpred/
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Figure 3: Circular bar plot representing the model’s evaluation metrics for the CSS synergy reference model. (A) Model performance Pearson values
evaluated in the test dataset. (B) Model performance RMSE values evaluated in the test dataset. (C) Model performance Spearman values evaluated in
the test dataset. (D) Model performance MAE values evaluated in test dataset.

served between these reference models in evaluating the degree of
combination, a more comprehensive and rigorous approach that
leverages all metrics to predict drug synergy is an asset.

This study introduced a new synergy prediction model, SYN-
PRED, that combines comprehensive multiomics data of cancer
cell lines with physicochemical and structural features of drugs.
This work is one of the first that takes 5 different synergy ref-
erence models (Bliss, HSA, Loewe, ZIP, and CSS) and uses one of
the most comprehensive and balanced databases regarding the
synergistic–nonsynergistic distribution, the NCI ALMANAC. Our
top-ranked classification and regression models, an ensemble de-
veloped with the best machine learning models, achieved state-
of-the-art performance to predict synergistic drug combinations
in an independent dataset. The best-performing prediction model
in SYNPRED is, undoubtedly, CSS (RMSE, 11.07; MSE, 122.61; Pear-
son, 0.86; MAE, 7.43; Spearman, 0.87). However, we advise the
users to considers the aggregate of results, albeit with a higher
focus on CSS. We included a “Voting classifier” output that tal-
lies the results of the 6 predictors to aid the user’s interpreta-
tion of the results. If more than 5 predictors yield a positive re-
sult, the submission sample is likely to be synergistic, while if
it is only 1 or lower, it is likely to be nonsynergistic. Besides, we
provide the complete workflow for a standalone deployment in
our GitHub coupled with a freely available and easy-to-use web-
server (http://www.moreiralab.com/resources/synpred/) that re-
quires only 2 drugs’ SMILEs as inputs, thus alleviating the need

for uploading a conventional and laborious dose–response ma-
trix. SYNPRED can be a valuable tool to the scientific and med-
ical community for drug repurposing or in silico discovery of new
anticancer drug combinations.

Additionally, given the importance of multiomics data in cell
line classification and therapy response, we combined all the
available multiomics features in the CCLE database to explore
their contribution to model development. The knowledge mined
from this analysis demonstrates the capacity of different ML mod-
els to deal with multiomics data, with DL algorithms being much
more able to learn and leverage this complex type of features.
We found that the most ranked proteins in each of the most
contributing multiomics features are important cancer biomark-
ers or have a role in tumorigenesis, demonstrating DNN models’
capacity to capture their significance and use this information
for the final model development. In the future, we expect to in-
clude protein–protein interactions data and network analysis to
improve the model performance, aiming to identify drug combi-
nations with potential new targets across different cell lines.

Availability of Supporting Source Code and
Requirements
Project name: SYNPRED

Project homepage: https://github.com/MoreiraLAB/synpred
Operating system(s): Linux, Mac OS X, Windows

http://www.moreiralab.com/resources/synpred/
https://github.com/MoreiraLAB/synpred
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Figure 4: Circular bar plot representing the model’s evaluation metrics for the Loewe synergy reference model. (A) Model performance Pearson values
evaluated in the test dataset. (B) Model performance RMSE values evaluated in the test dataset. (C) Model performance Pearson values evaluated in
the leave cells out dataset. (D) Model performance RMSE values evaluated in the leave cells out dataset.

Figure 5: Example of the SYNPRED output prediction. Green colored cells represent a synergistic prediction, while red colored cells represent the
nonsynergistic ones.

Programming language: Python and R
Other requirements: Python 3.8.2 or higher, R 3.6.3 or higher
License: GPL-3.0
Biotools: Synpred
RRID: SCR_022693

Data Availability
SYNPRED is a free, open-source, web-based application avail-
able at http://www.moreiralab.com/resources/synpred/ without
any login or registration requirements. The source code of the
web-based application implementation is deposited in the GitHub

https://scicrunch.org/resolver/RRID:
http://www.moreiralab.com/resources/synpred/
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repository (https://github.com/MoreiraLAB/synpred) to allow the
stand-alone use of the application and further integration and
comparison with other models. The code is fully developed in
Python and R languages; hence, it can be deployed fully without
charge. The multiomics data included in this study are available
at the corresponding references mentioned in the main text. Sup-
porting data and an archival copy of the code are also available
via the GigaScience database GigaDB [89].

Additional Files
Supplementary Table S1. Conditions for dimensionality reduc-
tion with autoencoders. Hidden and bottleneck layers definition
according to the number of features.
Supplementary Table S2. Conditions for dimensionality reduc-
tion with autoencoders. Number of epochs of the autoencoder
training according to either the number of samples or number of
features.
Supplementary Table S3. Final datasets to be subjected to train-
ing.
Supplementary Table S4. Grid search combination parameters
using 5% on the training set with deep learning algorithms.
Supplementary Table S5. Grid search combination parameters
using 5% on the training set with non–deep learning algorithms.
Supplementary Table S6. Grid search combination parameters of
the ensemble neural network.
Supplementary Table S7. Final metrics of the classification mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using full-agreement synergy values.
Supplementary Table S8. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the Bliss synergy reference model.
Supplementary Table S9. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the HSA synergy reference model.
Supplementary Table S10. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the Loewe synergy reference model.
Supplementary Table S11. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the ZIP synergy reference model.
Supplementary Table S12. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the CSS synergy reference model.
Supplementary Table S13. DeepSynergy [86] reimplementation
on the dataset that yielded the best results for SynPred (with PCA
preprocessing and missing values replacement with 0), against the
synergy reference model the original work targeted—Loewe.
Supplementary Table S14. Comparison of final metrics of the
classification and regression models of SynPred to the methods
reviewed by Kumar and Dogra [65].
Supplementary Table S15. Comparison of the performance of
SynPred and other recent algorithms, according to their re-
spective reporting metrics upon deployment in DrugCombo
[87].
Supplementary Table S16. Comparison of the performance of
SynPred and other recent algorithms, according to their re-

spective reporting metrics upon deployment in NCI ALMANAC
[88].
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