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Modelling the impact of effective 
private provider engagement on 
tuberculosis control in urban India
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Bhavin Vadera3, Niraj Kulshrestha3, Devesh Gupta3, Kiran Rade4, Sreenivas Achuthan Nair5 & 
Puneet Dewan6

In India, the country with the world’s largest burden of tuberculosis (TB), most patients first seek 
care in the private healthcare sector, which is fragmented and unregulated. Ongoing initiatives are 
demonstrating effective approaches for engaging with this sector, and form a central part of India’s 
recent National Strategic Plan: here we aimed to address their potential impact on TB transmission 
in urban settings, when taken to scale. We developed a mathematical model of TB transmission 
dynamics, calibrated to urban populations in Mumbai and Patna, two major cities in India where pilot 
interventions are currently ongoing. We found that, when taken to sufficient scale to capture 75% of 
patient-provider interactions, the intervention could reduce incidence by upto 21.3% (95% Bayesian 
credible interval (CrI) 13.0–32.5%) and 15.8% (95% CrI 7.8–28.2%) in Mumbai and Patna respectively, 
between 2018 and 2025. There is a stronger impact on TB mortality, with a reduction of up to 38.1% 
(95% CrI 20.0–55.1%) in the example of Mumbai. The incidence impact of this intervention alone may be 
limited by the amount of transmission that has already occurred by the time a patient first presents for 
care: model estimates suggest an initial patient delay of 4–5 months before first seeking care, followed 
by a diagnostic delay of 1–2 months before ultimately initiating TB treatment. Our results suggest that 
the transmission impact of such interventions could be maximised by additional measures to encourage 
early uptake of TB services.

India has the world’s largest burden of tuberculosis (TB)1. Over the past two decades India’s Revised National 
Tuberculosis Control Programme (RNTCP) has made notable progress in reducing TB deaths, through the pro-
vision of basic TB services via the public sector2–5. Nonetheless, major challenges remain: healthcare in India is 
dominated by the private sector, where the majority of patients first seek care6–9. Private healthcare providers 
often use inaccurate diagnostic tests for TB, or omit testing altogether, leading to diagnostic delays while patients 
cycle between different providers7,10,11. Even once patients are diagnosed, a general lack of treatment adherence 
monitoring and support is unfavourable for long-term treatment outcomes12. Moreover, although tuberculo-
sis was made a notifiable disease in 201213, there remain major challenges in encouraging private providers to 
comply with these obligations14,15. For these reasons, in India’s recently-announced plan to eliminate TB, private 
sector engagement forms a key strategic priority16.

In a demonstration of private sector engagement in India, the ‘Public Private Support Agency’ (PPSA) model 
used a combination of patient subsidies and provider incentives to encourage higher standards of diagnosis and 
treatment amongst private providers17. Originally implemented in two Indian cities, Mumbai and Patna (respec-
tively by the NGOs PATH and World Health Partners), these measures have yielded rapid increase in TB noti-
fication from the private sector3. However, their potential epidemiological impact remains unclear; measuring 
such impact empirically presents prohibitive challenges in the intervention coverage, population size and study 
duration that would be needed.
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Here we take an alternative approach, using a dynamical model of TB transmission, developed to capture 
the complexity of careseeking in urban settings in India. The model is calibrated to detailed patient careseeking 
surveys in Mumbai and Patna, as well as data on TB epidemiology in these settings. While Patna is typical of an 
urban setting in India, Mumbai is exceptional in its high burden of MDR-TB18,19. We ask: What impact could such 
engagement have on TB transmission, in particular on TB incidence? What are the key drivers of this impact?

In what follows we present an overview of the model framework, with further details in the supporting infor-
mation. We describe the pathway surveys, and the approach for incorporating this evidence in the model frame-
work. We then present results for the potential epidemiological impact of private sector engagement in Mumbai 
and in Patna, followed by an examination of the drivers of this impact: in particular, we investigate specific types 
of patient and provider behaviour that matter most for TB transmission. Finally we discuss implications for con-
trolling TB transmission in India, and important questions arising for future work.

Methods
Model overview.  We developed a deterministic, compartmental model, whose overall structure is illustrated 
schematically in Fig. 1. The model divides the population into different states, reflecting their disease and care-
seeking states, with a set of coupled, differential equations capturing transmission dynamics, and the transitions 
between states (see appendix). We first give an overview of the essential dynamical processes captured by the 
model, before describing the evidence sources used to quantify these dynamics.

We assumed that each active case of TB causes, on average, β infections per year. We further assumed that, 
upon development of active disease, there is a ‘patient delay’ before first seeking care. In the model equations (see 
supporting information), this delay is governed by the per-capita careseeking rate d. As described below, β and 
d are calibrated for consistency with the TB epidemiology in urban slums. Once patients enter the careseeking 
pathway (denoted by the circle in Fig. 1A), they visit a series of providers: the resulting ‘diagnostic delay’ is the 
interval from first careseeking to initiation of anti-TB treatment. This delay is governed by the timeliness with 
which these providers can offer an accurate TB diagnosis, and retain a patient for long enough to initiate appro-
priate treatment.

Upon initiating treatment, patients exit the diagnostic pathway illustrated in Fig. 1A, where the next hurdle is 
to complete high-quality (DOTS standard) treatment. Most patients in the private sector lack adherence support, 
and thus do not complete the 6-month, first-line regimen12,20: we assume that those defaulting from treatment, 
although immediately lacking infectiousness and being relieved of symptoms, face an increased risk of relapse in 
the long term, compared to patients successfully completing the 6-month regimen, with a parameter conserva-
tively sourced from clinical trials of shorter durations of rifampicin treatment.

Figure 1.  Schematic illustration of the transmission model. (A) The figure shows two important parameters 
in the model, the annual infections per active TB case (β) and the mean, per-capita rate of careseeking once a 
patient develops active TB (d), which are calibrated to yield the correct ARTI and prevalence (see Table S2). 
The ‘bubble’ in orange denotes the sequence of providers that a patient visits before receiving a TB diagnosis. 
Here, we distinguish the associated ‘diagnostic delay’ with the initial ‘patient delay’. This model also includes the 
acquisition and transmission of multi-drug-resistant (MDR) TB, not shown here for clarity. (B) Detail of the 
diagnostic process depicted in the ‘bubble’ in panel (A), showing the case of a formally qualified (FQ) provider 
(this structure applies also to other provider types). Here and elsewhere, ‘Dx’ denotes ‘diagnosis’. Solid lines 
represent hazard rates in the model, while dashed lines represent proportions. Note the ‘competing hazards’ of 
diagnosis vs patient dropout. Terms in boxes represent compartments in the model, while terms in italics show 
intermediate stages, associated with the quality of TB care (accuracy of diagnosis, and treatment initiation).
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In this framework, a PPSA has two functions: (i) to subsidise high-quality diagnosis for patients in the private 
sector, increasing the probability of an accurate TB diagnosis, and thus reducing the overall diagnostic delay 
(depending on coverage, or the proportion of providers engaged), and (ii) providing adherence support to maxi-
mize treatment completion. In both cases, we assumed that private providers engaged by a PPSA are able to match 
the quality of TB care in the public sector, on these dimensions.

For simplicity we ignored HIV/TB coinfection, which is estimated to account for only 5% and 1% of notified 
TB cases in Maharashtra and Bihar, respectively3. However, we incorporated the acquisition and transmission of 
multi-drug-resistant (MDR) TB. In particular, we assumed that each infectious case of MDR-TB, not undergoing 
appropriate second-line treatment, causes βMDR infections per year, to be calibrated to the estimated burden of 
drug resistance (see below). We assumed that there is essentially no management of MDR-TB in the private sec-
tor, and populated parameters for second-line treatment outcomes in the public sector to match those reported 
by RNTCP3.

Epidemiological inputs.  WHO estimates for incidence and prevalence, although often used to inform 
transmission models21–23, pose two important limitations for the present work. First, national incidence estimates 
for India are informed by expert opinion on the proportion of cases that are notified to RNTCP24, which itself is 
subject to change1. Second, WHO national estimates do not address subnational heterogeneity, and thus would 
not accurately reflect the epidemiological conditions in urban settings considered in our study.

Instead, to relate the model as closely as possible to the primary data available, we used the Annual Risk of 
TB Infection (ARTI, a measure of the intensity of transmission in a given setting), and the prevalence of TB, as 
estimated by subnational prevalence surveys in India. Unfortunately, neither Mumbai nor Patna has yet had a 
prevalence or infection survey (to inform prevalence or ARTI estimates, respectively). Nonetheless, infection 
surveys in Chennai and Delhi25 suggest that ARTI in urban settings is in the range of 2–3%. We adopted this 
range in modelling Mumbai and Patna populations as well. For prevalence, we borrowed from a recent prevalence 
survey in Chennai, which estimated urban prevalence at 388 cases per 100,000 population26. To accommodate the 
uncertainty in applying these estimates to settings outside Chennai, As both prevalence and ARTI estimates are 
being borrowed from other settings, we incorporated broad uncertainty in applying these estimates in the present 
study. For example, for prevalence estimates we adopted uncertainty intervals 25% wider than those published for 
Chennai (see Table S2, supporting information).

For the burden of drug resistance, we assumed that Patna is typical of the national average, with 3–5% of 
incident TB cases being MDR-TB. For Mumbai, we used program-reported data on routine surveillance for 
drug-resistant TB to populate a more extreme scenario for drug resistance, assuming that 8–16% of incident cases 
have MDR-TB. These inputs are summarized in Table S2, supporting information.

Patient pathways.  We adopted four different categories of provider: (i) those in the public sector (DOTS 
facilities); (ii) private chemists; (iii) private, ‘fully qualified’ (FQ) providers with qualifications in allopathic medi-
cine; (iv) and private, ‘less-than-fully-qualified’ (LTFQ) providers with other medical qualifications, or none at all.

We used data from community-based patient pathway surveys, recently conducted in Mumbai (76 TB patients 
and 196 patient-provider interactions) and Patna (64 TB patients and 121 patient-provider interactions), and 
described in detail elsewhere11,27. In brief, individuals in the community, who had been on TB treatment within 
the preceding 6 months, were administered an in-depth interview, to identify the sequence and types of pro-
viders that each patient visited before their TB diagnosis. Although subject to the usual limitations of patient 
recall28, this community-based survey has nonetheless cast unprecedented light on the careseeking patterns in 
these urban slum settings11.

A patient’s contact with a given provider may last several days, sometimes weeks: this process ends either 
when the provider eventually suspects and confirms TB, or when the patient drops out to visit an alternative 
provider. Here, we model this combination of behaviours using independent, competing exponential hazards, 
taking both to be specific to the type of provider involved (public, FQ, LTFQ or chemist). Figure 1B shows the 
overall framework: for Mumbai and Patna separately, we used the pathway survey data to estimate the hazard 
rates rDiagnosis, rDropout in Fig. 1B, as well as the probabilities of accurate diagnosis per provider visit. We also used 
this data to estimate the role of different provider types in the careseeking pathway, in particular: the proportions 
of patients visiting each type of provider on the first careseeking attempt, and the corresponding proportions on 
subsequent visits, conditional on the type of provider last seen. We used the Expectation-Maximisation algorithm 
as a systematic approach for estimating rates and uncertainty (see Supporting Information for further details).

For parameters related to the treatment cascade (the proportion of TB diagnoses initiating and completing 
treatment), we draw from a recent systematic review for the public sector29. In the absence of systematic evidence 
for private providers, we incorporate plausible uncertainty distributions for these parameters (Table S2, support-
ing information).

Simulating impact.  In both Mumbai and Patna, evidence suggests a marked heterogeneity amongst provid-
ers, with certain specialist providers handling a substantially higher TB caseload than others. While this suggests 
important opportunities for efficiency, by ‘targeting’ such providers, in the present work, for simplicity we chose 
instead to measure PPSA ‘coverage’ from a patient perspective: that is, the proportion of patient-provider interac-
tions that involve a PPSA-engaged provider. Thus, for example, we present a 75% ‘coverage’ in the understanding 
that – in practice – this could be brought about by recruiting fewer than 75% of providers, in a targeted way.

For a given PPSA coverage, we simulated cumulative TB incidence and mortality between 2018 and 2025. 
We then estimated the TB cases and deaths averted, relative to a ‘no-PPSA’ baseline, with the standard of TB care 
in public and private sectors projected forward without change. We simulated two types of PPSA: an ‘accurate 
diagnostic’ scenario in which engaged providers have diagnostic accuracy equal to those of the public sector, and 
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a ‘timely diagnostic’ scenario which, as well as accurate diagnosis, additionally encouraged private providers to 
conduct a diagnostic test as early as possible (whether for TB or not). Note that, in both cases, treatment outcomes 
were also assumed to be improved to the level of the public sector.

Uncertainty.  We used a Bayesian melding procedure30 to capture uncertainty in the epidemiological and 
pathway inputs described above, as well as in other input parameters in the model (see uncertainty ranges in 
Tables S2 and S3, supporting information). In brief, this procedure yields 100,000 parameter sets that, in ensem-
ble, capture simultaneously the uncertainty in the parameter inputs, and in the data. Projecting the epidemio-
logical impact of a PPSA from each of these parameter sets, under given scenarios for PPSA coverage, we then 
calculated the central estimate and uncertainty in impact by calculating the 2.5th, 50th and 97.5th percentiles in 
the outcomes of interest (lives saved, percent cases averted). We refer to these uncertainty intervals as ‘credible 
intervals’ (CrI) to distinguish them from the ‘confidence intervals’ arising from frequentist statistical approaches. 
Further details are provided in the supporting information.

The model includes several different parameters (including epidemiological inputs). To identify those param-
eters that are most important for model findings, we performed a multivariate sensitivity analysis on the output of 
the Bayesian analysis described above. In particular, we examined which model inputs accounted for the greatest 
amount of uncertainty in model outputs: that is, the inputs that are most influential in the precision of the model 
output. To do this we selected, as a model output, the percent cases averted by a PPSA intervention at 75% cover-
age under the ‘timely diagnostic’ scenario described above, in both cities. We computed the partial rank correla-
tion coefficient (PRCC) between this output and each of the model parameters: in brief, the PRCC quantifies the 
correlation between a given model input and the model output, when variance in all other parameters has been 
accounted for. Those model inputs expressing the greatest PRCC are those to which the model is most sensitive.

As well as this parameter uncertainty, we additionally tested the model sensitivity to two forms of structural 
uncertainty: (i) First, in the simulations described above we assumed that each TB case undergoes a constant 
infectiousness β through time. In practice, over time β may increase (for example if bacillary load rises with 
symptom severity), or decrease (for example if TB patients exhaust their closest contacts as opportunities for 
infection), with implications for the transmission that a PPSA could impact31. To capture these scenarios in a 
simple way, we assumed that infectivity during the patient delay in Fig. 1A is k times that during the diagnostic 
delay. We tested sensitivity of model findings to k. (ii) Second, the PPSA we have modelled is a combination of 
interventions, each involving different indicators for the quality of TB care in the private sector. To examine the 
most important, we simulated a ‘partial’ PPSA that could implement improvements in all but one of the indicators 
for quality of care. We recorded the resulting drop in impact (percent cases averted), relative to a ‘full’ PPSA, and 
repeated this analysis for each of the indicators involved.

Results
Figure 2 shows the model fits for prevalence, ARTI and percent MDR-TB, in both cities. The sampled param-
eters show agreement with the estimates in ARTI and prevalence data, while also accommodating the range of 
uncertainty in these inputs. Estimated parameter values are shown in Tables S3 and S4, supporting information. 
Mumbai and Patna show contrasting careseeking patterns, as illustrated by Fig. S1 in the appendix (see also 
Table S3). For example, chemists play a stronger role in first careseeking in Patna than in Mumbai, while for 

Figure 2.  Illustration of the model fits to key epidemiological indicators (Prevalence, ARTI and proportion of 
TB cases being multi-drug resistant). Shown are the epidemic trajectories corresponding to each of the sample 
parameter sets (in grey); the simulated 95% credible intervals over time (blue dashed lines); and the calibration 
targets (points and vertical ranges, plotted in 2015).
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formally qualified providers the converse is the case. These differences underline the potential heterogeneity in 
healthcare settings across India.

Figure 3 illustrates the potential epidemiological impact of a PPSA in Mumbai, assuming an intervention that 
scales up over 5 years from 2018 to cover 75% of patient visits to a provider. Such an intervention is focused on 
improving diagnostic accuracy and treatment outcomes in the private sector, without addressing the promptness 
with which a provider offers a diagnosis. A PPSA of this scale would reduce cumulative TB incidence by 8.5% 
(95% CrI 4.2–15.6%) over the next ten years. There is a stronger impact on MDR-TB, with a reduction of 21.2% 
(95% CrI 13.0–32.5%) in cumulative incidence. Further, a PPSA of this scale could have a substantial effect on TB 
mortality, reducing TB deaths by 21.7% (95% CrI 10.6–35.0%).

If providers are additionally encouraged to order a diagnostic test as early as possible (i.e. a ‘timely diagnosis’ 
scenario to pre-empt patient dropout), PPSA impact increases substantially, to an incidence reduction of 21.4% 
(95% CrI 11.1–32.7%) and a mortality reduction of 38.1% (95% CrI 20.0–55.1%). Figure S2 (supporting infor-
mation) shows similar, corresponding results for Patna. Figure S3 (supporting information) illustrates how these 
types of impact could vary with PPSA coverage.

To examine factors that may be limiting the impact shown in Fig. 3, we examined the model estimates for the 
patient and diagnostic delays illustrated in Fig. 1. As illustrated in Fig. 4, while the simulated diagnostic delay is 
consistent with the 1 month estimated in previous analysis8,11, results suggest that the initial patient delay could 
be still longer, at 4.4 months and 5.2 months in Mumbai and Patna, respectively, although with broad uncertainty 
around these estimates. Figure S4 in the appendix shows the potential epidemiological impact of a PPSA that is 
enhanced by measures to shorten the patient delay; below we discuss possible examples of such measures.

Figure 3.  Illustration of the TB dynamics under scale-up of a PPSA, in the example of Mumbai. These results 
capture the scenario of a PPSA being scaled up (over three years from 2018) to cover 75% of patient-provider 
interactions. Lines show central estimates, and shaded regions show 95% credible intervals.

Figure 4.  Components of the mean infectious period, i.e. the duration from the start of active disease to 
treatment initiation, death or self cure. Simulated in the absence of any PPSA intervention. The light grey 
region shows the simulated patient delay, while the dark grey region shows the delay in diagnosis (i.e. from 
first provider visit). Error bars in blue and red show the uncertainty in these estimates, respectively. The patient 
delay estimate is driven by prevalence and ARTI, while the diagnostic delay estimate is driven by the process 
illustrated in Fig. 1B. A PPSA addressing only patient behaviour would impact only the dark grey regions.
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Figure 5 shows the results of parameter sensitivity analysis, in which we quantified the influence of each model 
input against ‘simulated impact’, the latter measured as the percent cases averted by a PPSA at 75% coverage in 
both Mumbai and Patna (corresponding to the green shaded region in Fig. 3). Figure 5 illustrates the importance 
of epidemiological inputs, for this output. In both cities, the assumed prevalence and ARTI are the model inputs 
accounting for the greatest amount of output uncertainty. Where the true value of prevalence in either city lies 
towards the lower end of the assumed range, the percent cases averted approaches the upper end of the uncer-
tainty illustrated in Fig. 3, and vice versa for ARTI. In both settings the levels initial loss to followup in the public 
sector (i.e. those diagnosed who do not initiate treatment) is also a leading factor; remaining parameters, to which 
the model is less sensitive, depend on the local conditions in both of these settings.

In addition to addressing parameter uncertainty we finally conducted sensitivity analysis to some underlying 
assumptions. First, as described above, we allowed for differential infectiousness in the two stages of delay shown 
in Fig. 4. Figure 6A shows results for the percent cases averted, as a function of the longitudinal variation in infec-
tiousness. As expected, scenarios with increasing infectivity over a patient’s clinical course (decreasing k in the 
figure) yield greater predicted impact of a PPSA.

Second, we examined the sensitivity of projected impact to the assumption that all PPSA activities are per-
formed effectively. We aimed to identify which activities accounted for most of the impact shown in Fig. 3. 
Results, shown in Fig. 6B,C, suggest that in Mumbai, the quality of diagnosis and treatment amongst LTFQ pro-
viders is key. In Patna, by contrast, the quality of care amongst FQ providers is most important. Echoing the con-
trasting pathways illustrated in Fig. S1, these results highlight how intervention priorities in different cities may 
need to be tailored to the local conditions.

Discussion
Engaging with India’s vast, fragmented private healthcare sector is a key step in enhancing TB control in India. 
Our work adds to other modelling studies capturing the role of the private sector in TB care in India, including 
a multi-model comparison examining packages of interventions in the context of the End TB goals23, and the 
potential impact of implementing molecular diagnostics in the private sector21. A strength of the current work is 
that it is informed by unique, detailed patient pathway data from Mumbai and Patna. This data enables us to ana-
lyse the relative importance of the different delays illustrated in Fig. 1, to a greater extent than in previous work.

Our findings illustrate that a PPSA taken to scale in urban settings, such as Mumbai and Patna, could 
have a meaningful impact on TB burden (Figs 3 and S3). Improved diagnosis and treatment adherence could 
strongly reduce TB mortality. Moreover, the use of rapid molecular tests in the private sector could have strong 

Figure 5.  Multivariate sensitivity analysis of model inputs (parameters and data). Bars show the partial rank 
correlation coefficient (PRCC) between each model input and a selected output: ‘simulated impact’, or the 
percent cases averted by a PPSA acting at 75% coverage, with accurate and early diagnosis. Figures show that in 
both Mumbai and Patna, the two model inputs to which simulated impact is most sensitive are the prevalence 
and ARTI. Prevalence has a negative partial rank correlation with impact: that is, lower values of prevalence are 
associated with higher levels of impact, and vice versa for ARTI. Note that the combined effect of uncertainty in 
all of these parameters corresponds to the full uncertainty range illustrated in Fig. 3A, green shaded region. This 
range indicates the maximum extent to which model outputs could diverge from central estimates, subject to 
the assumed uncertainty ranges in model inputs.
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implications for MDR-TB: by facilitating the early recognition of drug sensitivity status, such measures could turn 
a growing drug resistance epidemic into a diminishing one (Fig. 3B, blue vs green curves).

Nonetheless, in terms of overall TB burden, our results suggest that engaging the private sector alone will not 
be enough to meet the country’s aspirations for TB elimination. Rather, such measures lay the foundations for 
TB control by maximising the quality and coordination of basic TB services, across India’s vast and fragmented 
healthcare system16. To explain limitations on PPSA transmission impact, our work highlights the complexity of 
the delay from symptoms to treatment initiation, showing how it arises from a combination of factors. For exam-
ple, while the importance of diagnosis accuracy is well-recognised8,11,32, pre-empting patient dropout, through 
offering a rapid diagnosis, can be as impactful for the diagnostic delay (Figs 3 and 6B,C). Second, our results 
suggest that the ‘patient delay’ in Fig. 1A may play a larger role than previously recognized (Fig. 4).

We note that this latter result is not directly measured, but inferred through reconciling ARTI and prevalence 
in the model. Previous studies have approached patient and diagnostic delays through retrospective patient inter-
views in various settings in India: a recent meta-analysis of these studies8 found a median patient delay of around 
18 days. To our knowledge there is no other independent, direct evidence for the ‘true’ patient delay. Nonetheless, 
there are some notable comparisons in a recent TB prevalence survey in Gujarat state. Of the bacteriologically 
positive TB cases, only 28% had sought care for their symptoms, including 11% that were on TB treatment33. 
Although cross-sectional, these survey findings appear consistent with the picture of substantial transmission 
occurring independently of the ‘diagnostic delay’.

There are several possible reasons for these discrepancies between model and prevalence survey findings on 
the one hand, and patient interviews on the other. For example, in urban areas with poor air quality, prolonged 
cough is a common symptom: TB patients may tend to visit a provider when their symptoms become more 
advanced (e.g. fever), ultimately reporting only the duration of these more developed symptoms. Alternatively, 
the patient delay may truly be as short as 18 days, but only amongst those patients who seek care: there may 
remain a patient population who never contact the healthcare system, for example due to the opportunity costs of 
doing so. These factors may differ by region in India, as well as by gender and urban/rural setting. As illustrated 
by Fig. S4, mitigating these factors could maximize the impact of a PPSA.

Approaches towards mitigating these factors could involve active case-finding (ACF)34. India’s recent National 
Strategic Plan underlines the potential importance of ACF in risk groups such as urban slums16, while recent work 

Figure 6.  Sensitivity analysis for key assumptions in the model. (A) Effect of assumptions for how TB 
infectivity varies during the clinical course. Shown is the impact of a PPSA at 75% coverage in Mumbai (percent 
cases averted over ten years). The x-axis shows a range of scenarios for the infectivity during the patient delay, 
relative to that during the diagnostic delay. (B,C) Identifying key elements of private provider behaviour. The 
figures show the drop in overall impact that results, when a PPSA that fails to improve the provider behaviour 
shown (while addressing all remaining provider behaviours). For clarity, plots show only the four most 
important factors in each setting. Bar colours denote different provider types, as shown in the right-hand 
legend. Panel (B) shows results for Mumbai, while panel (C) shows results for Patna.
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in Viet Nam has also demonstrated the potential value of screening close contacts of diagnosed TB cases, together 
with longitudinal followup of these contacts35. However, it is also possible for the patient delay to be impacted by 
measures to improve the demand for TB services; for example, social protection mechanisms36 could have the 
secondary effects of encouraging TB symptomatics to come forward for care37. Such effects are currently hypo-
thetical, and present an important evidence gap for future studies to address.

As with any modelling approach, our model has several limitations to note. First, it takes a simplified view of 
the host population, essentially averaging over variations by gender and age. In future, better data on careseeking 
and the quality of care with respect to these factors would support a more refined approach incorporating these 
factors. Second, our work concentrates on two major cities in India, informed by the available, community-based 
studies on careseeking pathways. Further work, deploying such surveys more broadly, should explore to what 
extent these findings may be generalized to other cities India; one potentially important factor is the greater HIV 
burden in states like Andhra Pradesh3. Moreover, this work does not address potential impact in rural settings. 
Indeed, recent work has highlighted the phenomenon of TB prevalence being higher in rural areas than urban38, 
suggesting even longer delays before initiation of appropriate TB treatment: there is therefore a pressing need 
for a better understanding of healthcare utilisation in these settings. Third, we have made several simplifying 
assumptions on provider behaviour, namely that ‘engaged’ providers would show the same standard of care as in 
the public sector. As noted above, it is promising that the PPSA pilots have shown a dramatic increase in the num-
ber of TB cases being notified1,3: ongoing data collection during the pilots will cast light on the extent to which 
the quality of TB care has been improved. Lastly, these results are quite sensitive to underlying assumptions about 
prevalence and ARTI, as well as to transmission over the course of illness. If more transmission is occurring at 
later stages of illness, then private provider engagement could more effectively interrupt transmission and avert 
twice as many cases as our baseline uninformed assumption of uniform infectivity. Objective data on the ‘trans-
mission curve’ would be useful to clarify the appropriate baseline for these and most TB models.

In summary, private sector engagement is a key foundation for managing TB in India. In addition to its direct 
benefit to TB patients, an engaged private sector will also enable the maximum deployment of future interven-
tions against TB in India. While building such favourable conditions for TB control, there is an urgent need to 
identify where TB transmission is occurring: only by addressing this transmission will it truly be possible to 
accelerate declines in India’s vast TB epidemic.
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