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Abstract
Haploidentical hematopoietic stem cell transplantation has made tremendous progress over the
past 20 years and has become a feasible option for leukemia patients without a HLA identical sibling
donor. The early complications of severe graft-versus-host disease (GVHD), graft failure and
delayed engraftment, as well as disease recurrence have limited the use of this approach. Newer
strategies have been applied and overcome some of the problems, including the use of T-cell
depleted graft, "mega" dose of stem cells, intensive post-transplant immunosuppression and
manipulation of the graft. These have decreased the transplant related mortality and GVHD
associated with haploidentical transplantation, however, the major problems of disease relapse and
infection, which related to late immune reconstitution, limit the development of haploidentical
HSCT. Future challenges remain in improving post-transplant immune reconstitution and finding
the best approach to reduce the incidence and severity of GVHD, while preserving graft-versus-
leukemia effect to prevent the recurrence of underlying malignancy.

Background
Hematopoietic stem cell transplantation is a good, and
sometimes only treatment option for the cure of leuke-
mia, especially for patients with high risk factors of relapse
and with relapsed leukemia[1]. However, only 30% of
patients can find an ideal donor, an HLA-identical sibling.
The only option is transplantation from an alternative
donor. Although the chances of finding an suitable unre-
lated donor have been significantly increased due to the
expansion of the worldwide unrelated donor program,
the application of unrelated donor transplantation
remains limited by some major obstacles, including 1) the
probability of finding a matched unrelated donor(MUD)
ranges from less than 10% in ethnic minorities to
60%~70% in Caucasians[2], 2) the complicated process
of searching, HLA-typing, and harvesting an unrelated
donor takes an average of about 4 months from initiation

of a search to the donation of stem cells. Some patients
might relapse or even die during this waiting period[3], 3)
moreover, allogeneic transplantation using a matched
unrelated donor is still associated with a high transplant-
related mortality and high long-term morbidity[4,5].
Unrelated donor umbilical cord blood (UCB) offers the
advantages of easy procurement and immediate availabil-
ity, the absence of risk of donor, and potential reduced
risk of GVHD[6]. However, engraftment remains a signif-
icant problem, especially for adult patients receiving UCB
with low number of hematopoietic stem cells and two-
antigen mismatch.

The use of mismatched family donors offers several
advantages, 1) immediate and easy donor availability, vir-
tually almost all patients have at least one HLA-mis-
matched relative donor, who is immediately available to
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serve as a donor; 2) The ability to select the best of many
potential donors on the basis of HLA mismatch, age, nat-
ural killer (NK) cell alloreactivity[7-9]; 3) Easy access to
repeat donation of donor cells again, when donor-derived
cellular therapy is needed for the treatment and/or proph-
ylaxis of relapse, or for second transplantation when graft
failure or poor engraftment occurred; 4) A potentially
stronger graft-versus-leukemia (GVL) effect.

Haploidentical SCT, an historical perspective 
and recent advances
Haploidentical/HLA-mismatched stem cell transplanta-
tion has been carried out for more than 20 years. Early
practice by Fred Hutchinson Cancer Research Center[10]
demonstrated the promise and limitation of haploidenti-
cal HSCT for leukemia. The overall survival for patients
with acute leukemia in remission was not significantly dif-
ferent following HLA-matched and one antigen mis-
matched donor HSCT, while the outcome of patients
received HLA 2 or 3-loci mismatched transplant were
poor. Compared to HLA-identical sibling donor trans-
plantation, haploidentical transplantation had a signifi-
cantly higher incidence of severe GVHD, delayed
engraftment and graft failure, which carried a high mortal-
ity rate. Their results suggested that transplants involving
patients who received 2- or 3-antigen mismatched related
donors should be avoided routinely in leukemia, and that
haploidentical HSCT using conventional myeloablative
conditioning regimen and pharmacological
(cyclosporine-based) GVHD prophylaxis was problem-
atic.

Since then, many researchers focused on the techniques of
ex vivo T-cell depletion (TCD) of graft. The best survival
rates were about 55% for AML and 28%for ALL in adult
patients; poor post-transplant immune reconstitution and
infection-related mortality remains the major obstacle.
Some other centers, such as our center in Beijing, China,
focused on manipulating the graft and post-transplant
immune suppression. Recently, we reported on 171
patients who underwent transplantation from haploiden-
tical family donors and the disease-free survival (DFS) at
2-year was 68% for standard-risk leukemia and 42% in
high-risk patients[11]. Significantly better result was
achieved by these protocols than that achieved by TCD.
The results of the prominent trials in this regard are shown
in Table 1, and are divided according to whether in-vitro
TCD was used. The different characters of the two catego-
ries are discussed in depth below.

T cell depleted graft
Partial T-cell depletion
Hanslee-Downey and colleagues[12] explored a novel
sequential immunomodulation in haploidentical trans-
plantation, combining ex vivo TCD with the T10B9 mon-

oclonal antibody (mAb) and in vivo T cell lysis with
immunotoxin H65-RTA, which was replaced by antithy-
mocyte globulin (ATG) in their large study. Seventy two
patients received haploidentical transplant following TBI-
based conditioning. Post-transplant GVHD prophylaxis
comprised cyclosporine (CSP), steroids and ATG. The
88% engraftment rate, 16% incidence of grade II~IV acute
GVHD and 35% incidence of chronic GVHD were accept-
able, and Two-year DFS for high-risk and low-risk patients
were 23% and 53%, respectively. In their later report[13],
201 patients with acute leukemia received grafts from
haploidentical donors with partial in vivo T-cell depletion
by T10B9 mAb (n = 143, 1993–1994) or by OKT3 (n = 58,
1995–1999).

The median number of T cell in graft was 5 × 104/kg,
which was 1 to 1.5 log lower than unmanipulated graft.
Engraftment was successful established in 98% of
patients. 13% incidence of grade II~IV acute GVHD and
15% incidence of chronic GVHD were encouraging.
Unfortunately, the 5-year overall survival (OS) was only
19%, and 5-year cumulative incidences of relapse and
transplant-related mortality (TRM) were 31% and 51%,
respectively. Their series studies highlighted the efficacy of
partial TCD in preventing GVHD in mismatched trans-
plantation and the potential of post-grafting immu-
nomodulation in lowering the risk of graft failure.

Extensive TCD with "Megadose" stem cells
Given the key role of the cell dose in graft which was asso-
ciated with transplant-related mortality and disease-free
survival[4,14], Another attempt to overcome the major
obstacles of mismatched HSCT in leukemia was to
increase stem cell numbers in graft. With the pioneering
work of Reisner[15], Aversa and his group produced a
series of clinical trials, administered "megadose" of donor
hematopoietic stem cells by combining G-CSF mobilized
peripheral blood with bone marrow stem cells, both
depleted of T cells, following TBI-based conditioning reg-
imens[16-18]. In their early report, the median numbers
of CD34+ and CD3+ cells were 10.8 × 106/kg and 0.22 ×
106/kg, respectively. Although engraftment was prompt
with low occurrence of GVHD, subsequent follow-up
revealed problems of both late rejection and/or graft fail-
ure, which led to high TRM[16].

The availability of techniques for positive selection of
CD34 cells by using the CliniMACS system has provided
enriched CD34+ stem cells with a powerful and reproduc-
ible TCD (median 4.5 logs) in grafts. The median cell
numbers in Aversa's report were 12.8 × 106/kg for CD34+
and 0.01 × 106/kg for CD3+ cells, respectively[18]. CD34
positive selection also provided a median 3.2-log B-cell
depletion, which helped prevent EBV-related lymphopro-
liferative disorders in patients who received an extensive
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Table 1: T cell-depleted and unmanipulated haploidentical stem cell transplantation

Centers 
(year)

Disease No. of pts Conditioning GVHD 
prophylaxis

Cell dose 
106/kg

TCD 
methods

Graft 
failure

Acute 
GVHD

C
G

CD34 CD3

T-cell depleted
Perugia, Italy
1994[16]

AML/ALL/
CML

36 TBI/TT/CY/
ATG

Extensive 
TCD

10.8 0.22 Lectin-
based+E-
rosette

1/17 1/16 0

USC, USA
1997[12]

AML/ALL 72 TBI/VP16/
Ara-C/CY/
ATG

Partial 
TCD
CSP, MP, 
ATG

1.36 0.075 Ex vivo 
TCD with 
T10B9

2% 16% 3

Perugia, Italy
1998[17]

AML
ALL

44 TBI/TT/F/
ATG

Extensive 
TCD

10.5 0.02 Ex vivo 
CD34 
selection

5% 0 0

Boston, 
USA
1999[40]

AML/ALL/
NHL/
others

12 TBI/Ara-c/
CY

CTLA4-Ig, 
CSP+MTX

2.2 28 CTLA4-Ig, 1/11 3/11 1

Multicenter, 
Japan
2000[61]

Leukemia/
others

135 TBI-based CSP/Tac/
MTX/
Steroids

3.2
5.5
4.9

0.06(M)
0.09(P)
0.01
(M+P)

Ex vivo 
CD34+ 
selection

13% II~IV
21%

3

Tuebingen, 
Germany
2004[22]

AML/ALL/
others

63 TBI or Bu-
based with F/
TT/ATG/Cy

Extensive 
TCD

19.5 0.011 Ex vivo 
CD34/
CD133 
selection

17% II 7% 1

USC, USA
2004[13]

AML/ALL 201 TBI/VP16/
Ara-C/Cy/
ATG

Partial 
TCD
CSP, MP, 
ATG

1.9 0.05 Ex vivo 
TCD with 
T10B9/
OKT3

2% 13% 1

Multicenter, 
Canada,
2004[62]

AML 11 Mel/TT/F/
ATG

TCD 13.7 0.005 Ex vivo 
CD34 
selection

0% 0% N

Perugia, Italy
2005[18,21]

AML/ALL/
CML

175 TBI/TT/F/
ATG

Extensive 
TCD

12.8 0.01 Ex vivo 
CD34 
selection

6% II~IV 8% 4
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Tuebingen, 
Germany
2007[25]

HM/AA 38 F/TT/Mel/
OKT3

TCD 16 0.049 CD3/
CD19 
negative 
selection

17% II~IV 27%

Multicenter, 
Germany
2008[24]

HM 29 F/TT/Mel/
OKT3

TCD 7.6 0.044 CD3/
CD19 
negative 
selection

0% II~IV 48% 3

Non-T-cell depleted

Jone-
Hopkins 
University
2004[37]

Leukemia/
MDS

56 F/CY/TBI
(2 Gy)

Tac/MMF/
CY

NA NA Not done 17% 66% N

Beijing, 
China
2006[11]

ALL/AML/
CML/MDS

171 Bu/Ara-C/
CY/Me-
CCNU/ATG

CSP/MMF/
MTX short

1.8 220 Not done 0 55% 4

Japan, 
2006[39]

Leukemia/
lymphoma

26 F/Bu/ATG Tac/MP 6.55 254 In vitro 
TCD with 
ATG

4% 19% 2

Duke 
University, 
USA
2007[38]

Leukemia/
MDS/MPD

49 F/CY/
Alemtuzuma
b

MMF ± 
CSP
Partial 
TCD

13.5 460 In vivo ± 
ex vivo 
TCD/
Alemtuzum
ab

14% 16% 1

*AML = acute myeloid leukemia; ALL = acute lymphoid leukemia; Ara-C = cytarabine; ATG = anti-thymocyte globulin; BU = busulfan; CML = 
remission; CSP = cyclosporine A; CY = cyclophosphamide; DFS = disease free survival; F = fludarabine; GVHD = graft versus host disease; HM
= myelodysplastic syndrome; Mel = melphalan; MMF = mycophenolate mofetil; MP = methylprednisolone; MTX = methotrexate; NA = not avail
survival; pts = patients; rel = relapse; SR = standard risk; Tac = tacrolimus; TBI = total body irradiation; TCD = T-cell depletion; TRM = transp

Table 1: T cell-depleted and unmanipulated haploidentical stem cell transplantation (Continued)
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T-cell depleted HSCT after a conditioning regimen with
ATG[19,20]. They got a favorable outcome in this large
series of high-risk acute leukemia (n = 175, data updated
in 2008[21]), with a 95% engraftment rate and 8% inci-
dence of acute GVHD. However, DFS was only 25% for
ALL in CR and better for AML patients (40% and 50% for
≥ CR2 and CR1, respectively) which related to disease sta-
tus at transplantation. High non-relapse mortality (NRM)
of about 40%, the majority of which was due to infection,
remained the usual obstacle harming post-transplant sur-
vival.

CD133 is mainly co-expressed with CD34+ and also
found in CD34- precursors, which have higher clonogenic
potential. Lang et al, from Tuebingen, Germany, reported
their data during a 9-year period of 63 pediatric patients
receiving CD34+ or CD133+ selected stem cells from mis-
matched family donors, following a TBI- or Busulfan-
based conditioning regimen[22]. Patients received a
median of 19.5 × 106/kg purified cells and 0.011 × 106/kg
CD3+ T lymphocytes, without regular post-transplant
pharmacological immunosuppressive agent. 83%
achieved stable primary engraftment. Grade II acute
GVHD (aGVHD) occurred in only 7% of patients and no
severe aGVHD were seen. The 48% of long-term survival
for patients with ALL in remission was promising. How-
ever, the outcome was poor for AML/CML (3-year DFS
18%).

Although "Megadose" stem cells have been proved to
facilitate stable engraftment despite such an extensive T-
cell-depleted stem cell graft by several groups for haploi-
dentical HSCT[21,22], the rate of rejection increased and
kinetics of engraftment and immune reconstitution were
delayed at doses below 10 × 106/kg, particularly when less
than 8 × 106/kg CD34 cells[23]. To harvest higher number
of CD34 cells may place considerable demand on not
only donors but also the cell pheresis service, especially
for adult patients with high body weight. This kind of
approach is still complicated by a high TRM due to the
delayed immune reconstitution and the intensive condi-
tioning regimen used. In fact, the difficulty in attaining
rapid immune reconstitution is still an unresolved prob-
lem for haploidentical transplant.

Negative selection of CD34 cells
The Tuebingen's group developed a novel strategy aiming
at improving engraftment in haploidentical transplant,
even with lower numbers of CD34+ cells. CD3/CD19
depleted grafts were made by CD3- and CD19-coated
microbeads on a CliniMACS system[24,25]. T- and B-cell
depletion was profound up to 4.4 logs. Reduced intensity
conditioning was used, including fludarabine (150~200
mg/m2), thiotepa (10 mg/kg), melphalan (120 mg/m2),
and OKT-3 (5 mg/day, -5 to +14). Rapid engraftment was

seen at a median of 12 days (range 10–21) for granulo-
cytes and 11 days (range 7–38) for platelets, and full
donor chimerism after 2 to 4 weeks in all 29 patients.
Although patients received a much lower dose of CD34+
cells (median 7.6 × 106/kg) compared to CD34 positive
selection, the grafts contain high numbers of CD34 nega-
tive cells, such as NK cells, monocytes and antigen-pre-
senting cells that have engraftment facilitating properties.
There is, however, a higher incidence and degree of
GVHD, 48% of grade II~IV acute GVHD, after CD3/CD19
depleted transplant than that of CD34 positive selection
(lower than 10%). This may due to the difference in CD3+
cell dose in grafts by using the CD34 positive or negative
selection techniques. TRM was 28% and OS was 34%,
with only 9 patients in completed remission with a fol-
low-up of 241 days.

Selective TCD
As shown above, extensive T-cell depletion successfully
prevented severe acute GVHD, but resulted in immunode-
ficiency which related to disease recurrence and an
increased risk of infections. Simple T cell infusion may not
be a good idea to overcome these barriers, one of the most
promising approaches is to selectively remove GVHD-
causing alloreactive T cells, while keeping cells mediating
the graft versus leukemia (GVL) effect and antimicrobial
immune responses in grafts[26]. Some pioneering clinical
trials have demonstrated its availability and feasibil-
ity[27,28]. Amrolia's group used an anti-CD25 immuno-
toxin to deplete alloreactive lymphocytes in 16
haploidentical transplantation patients. Higher-dose
group showed significantly improved T cell recovery and
earlier recovery of CMV- and EBV-specific responses com-
pared to lower dose group, particularly at 3–5 month post
transplant[28]. Other studies of allodepletion have been
reported to reduce GVHD by using anti-CD95[29], pho-
todepletion[30] in murine models and humans[31].
However, there are several concerns and limitations
should be kept in mind. First, selective depletion tech-
niques are complex and expensive in time and materials,
which need to be improved and simplified before routine
use in clinical transplant centers. Second, despite the low
number, the complete elimination of alloreactive T-cell
subsets could be difficult, and the best technique and the
optimal T cell number remain to be determined. Third,
the patients who underwent a selective allodepleted trans-
plant may be at risk of GVHD.

Other reports of TCD
There are some other reports of TCD that could be found
in Table 1.

Non in vitro TCD transplantation
Recently, we reported on an intensive in vitro immuno-
suppressive protocol without in vitro TCD for haploiden-
Page 5 of 9
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tical transplantations, in Beijing, China[1,11,32]. Patients
were conditioned with modified Busulfan plus cyclophos-
phamide regimen and received combined granulocyte-
colony stimulating factor primed bone barrow (G-BM)
and peripheral blood stem cells (PBSC) graft from haploi-
dentical family donors. CSP, mycophenolate mofetil
(MMF), and methotrexate (MTX) were given as GVHD
prophylaxis. All 171 patients, including 86 in high-risk
group attained sustained full donor chimerism. Although
the T cell dose in graft was more than 100 × 106/kg, the
incidence of grade III~IV aGVHD and extensive chronic
GVHD were acceptable, 23% and 47% respectively. The 2-
year probability of relapse was 12% for standard-risk dis-
ease and 39% for high-risk disease. 65% of patients were
alive without leukemia recurrence during a median fol-
low-up of 682 days, and 2-year leukemia free survival was
satisfactory for the standard-risk and high-risk group
(68% vs 42%, p = 0.0009), which was comparable with
that of HLA-matched sibling donor transplantation11. The
good results could be related to several factors. First, large
numbers of T cells infused were partially contributed to
the efficient engraftment when the number of CD34+cells
(1.8 × 106/kg) was not high. Second, the intensive,
sequential immunosuppression, including ATG, was
related to the high engraftment and low incidence of
GVHD, Third, the hyporesponsiveness of T cells and the
immunomodulatory effect of T-polarized cells (Th2) from
the G-CSF primed bone marrow graft and PBSC, respec-
tively[33-35].

Researchers at Johns Hopkins University have focused
their efforts on using post-transplant administration of
high-dose cyclophosphamide (50 mg/kg) as a way to
decrease the rates of both graft rejection and acute GVHD
following non-TCD haploidentical transplantation. In
their phase I clinical study, 8 of 13 patients achieved sus-
tained donor engraftment, 6 developed acute GVHD, and
6 were alive at a median follow-up of 191 days, including
5 in completed remission. Of note, anti-tumor responses
were also seen following graft rejection in two of their
patients with myelodysplastic syndrome[36]. In 2004,
Fuchs et al, presented an updated series involving 56
patients with a variety of advanced hematological malig-
nancies treated with fludarabine, cyclophosphamide and
TBI as conditioning. Beside of 1 or 2 doses of cyclophos-
phamide, tacrolimus and MMF were added as GVHD
prophylaxis. Graft rejection only occurred in 9 patients,
grade II~IV GVHD occurred in 43% of patients receiving 2
doses of cyclophosphamide, and 78% in patients who
received 1 dose. At a median follow-up of 172 days, 21
patients (37.5%) were alive and disease free[37].

Rizzieri et al[38], from Duke University, reported their
experience of haploidentical transplantation without ex
vivo TCD, in which alemtuzumab was used for in vivo T-

cell depletion of both host and donor, in order to allow
reliable engraftment and decreased GVHD. A large series
of adult patients (n = 49) with hematologic malignancies
or marrow failure were enrolled. The conditioning regi-
men consisted of fludarabine and cyclophosphamide,
post transplant GVHD prophylaxis included of alemtuzu-
mab with MMF ± CSP. Their group reported successful
engraftment in 94% of patients, low TRM rates of 10.2%
and severe GVHD of 8%. Encouraging evidence of quanti-
tative lymphocyte recovery through expansion of trans-
planted T cells was noted by 3 to 6 months. With most
patients in advanced disease at transplantation, 75% of
patients attained a complete remission. One-year survival
rate of 31% was encouraging, with a median 4.5 years fol-
low-up. Of note, in Rizzieri' report, median dosage of
CD34 is 13.5 × 106/kg,

A Japanese study included 26 patients who underwent
conditioning with fludarabine, busulfan and ATG fol-
lowed by a non-TCD haploidentical PBSC transplanta-
tion. Tacrolimus and corticosteroids
(methylprednisolone 1 mg/kg/day) were used post-trans-
plant as GVHD prophylaxis. All patients but one achieved
full donor chimerism. Ten patients developed GVHD,
only five with grade II. And 3-year disease-free survival
was 61%[39].

Ex vivo Induction of alloantigen-specific tolerance
Based on in vitro studies[40], Guinan et al evaluated an
approach of alloantigen-specific tolerance. Donor mar-
row was harvested and cocultured with irradiated host
mononuclear cells in the presence of CTLA-4-Ig. Twelve
patients with advanced hematological malignancies
received haplotype bone marrow containing a median of
28 × 106/kg of CD3+ T cells that had been treated in this
way after conditioning with TBI plus cytarabine needs to
be filled in. Full donor chimerism was obtained in 8 of 10
patients in whom median time to engraftment was 20
days. Only 3 patients developed gastrointestinal GVHD,
and no deaths were attributed to GVHD. At the time of
reporting, 5 of 12 patients were alive and in remission for
4.5 to 29 months.

How to improve the results of haploidentical 
transplant
Donor lymphocyte infusion
Disease recurrence is still a major complication of haploi-
dentical transplant, sometimes over 50% in high-risk
patients. Beside of the high proportion of patients in
advanced disease in most series, the high relapse rate is
associated with delayed immune reconstitution and lack
of graft versus leukemia (GVL) effect. The best manage-
ment of leukemia relapses after haploidentical HSCT is
uncertain. Donor lymphocyte infusion (DLI) has been
shown to exert a GVL effect and has been successfully used
Page 6 of 9
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for treatment of leukemia relapse in patients who have
undergone HLA-matched, related or unrelated HSCT[41-
44]. There is still less experience in the use of unmanipu-
lated DLI in haploidentical transplant[13,45,46].
Recently, we found that G-CF-primed PBSC instead of
unprimed lymphocyte exhibited a comparable or even
stronger GVL effect and comparable or reduced incidence
of GVHD, and rarely results in pancytopenia[41] When
combined with the use of short-term immunosuppressive
therapy, such as short-term CSA, or methotrexate for
GVHD prophylaxis, the incidence of fatal GVHD compli-
cated with DLI decreased further[42], Based on this out-
come, the strategy against leukemia recurrence was
converted from therapeutic DLI to prophylaxis DLI for
those with advanced hematological malignancies. Twenty
nine patients with advanced leukemia received prophylac-
tic DLI at a median 75 (33–120) days after mismatched
HSCT. Six patients developed grade 3–4 acute GVHD, and
11 were alive without leukemia relapse for median 932
(250–1567) days[47].

Besides our attempt in using G-CSF mobilized DLI and
immunosuppressive therapy, other researchers have
developed partially T-cell depleted DLI[48], and purified
donor NK cell infusion[49,50]to improve the outcome in
high-risk patients who underwent haploidentical HSCT.
The primary results are promising.

The diverse results of DLI, including of efficacy, adverse
events and survival, is more a reflection of the heterogene-
ity of patients being treated. And due to the high incidence
and severity of GVHD, the safest approach of DLI after
haploidentical HSCT, including cell dose, time of infu-
sion, whether using immune suppression, is to be deter-
mined. Of note, DLI has a better outcome when exerted in
early stage of relapse [51].

NK cell/KIR ligand mismatching
Lysis of leukemia cells by natural killer (NK) cells is medi-
ated in part by mismatching of the killer immunoglobu-
lin-like receptor (KIR) ligand between the NK cell and its
target. Many clinical reports have shown the importance
of NK cell alloreactivity between donors and recipients in
predicting the prognosis of HSCT[8,9,52]. Some data sup-
port a beneficial effect of KIR mismatching. Ruggeri et al
found lower relapse risks for patients with AML who
underwent TCD haploidentical HSCT, 75% versus 0% for
KIR ligand-matched versus mismatched transplant[8].
Leung et al[53] reported similar result of reduced relapse
rate in ALL patients. We analyzed the HLA and KIR geno-
type of 64 donor-recipient pairs, who underwent trans-
plantation, and found that the cumulative incidence of
DFS, OS and TRM were best predicted by the number of
KIR ligands carried by patients. The KIR ligand-ligand mis-
match model was a good predictor of acute GVHD[9].

However, several others suggested a negative effect on
clinical outcome[54,55]. The conflicting results might be
related with the different protocols of transplant centers
and the different definition of NK alloreactivity. Further-
more, the dose of T cell in allograft could be another rea-
son. Cooley et al's report demonstrates that large number
of T cells inhibit NK cell function and KIR expression after
unrelated HSCT[56]. These data point out the need of fur-
ther study under different transplant procedures and con-
ditions.

Regulatory T cells enhancing immune reconstitution
How to improve immune reconstitution remains a sub-
stantial challenge in haploidentical transplant. Recently,
CD4+CD25+ regulatory T cells were shown to play a
major role in tolerance induction to allogeneic responses
and used as cellular therapy in order to enhance engraft-
ment and reduce GVHD while preserving GVL effects. Pre-
liminary experience using expanded Tregs in humans is
promising, although clinically meaningful expansion of
this small subset of effector cell and its beneficial use oth-
erwise acute GVHD have yet to be determined[57,58].
New approaches of cell therapy, including NK/Tregs[59]
and MSC[60] infusion, have recently been used in human
clinical trial. Although the exact mechanism of immu-
nomodulatory effect of these cells is not clear, encourag-
ing results suggest that acute GVHD may be reduced while
retaining GVL effect.

How to choose from alternative donors?
For patients requiring an allograft but without a HLA-
identical sibling donor, the best choice of alternative stem
cells remains difficult and controversial. Because of lack-
ing randomized comparisons, when selecting the best
alternative donor and type of regimen, many aspects
should be considered, including age, disease status, per-
formance status, HLA typing, financial status, urgency of
the transplant and availability of donor. Of cause, the
experience of transplant center is also an important
aspect. Matched-unrelated donor (MUD) has been
accepted worldwide and increased rapidly during the past
two decades. If there is a readily available unrelated donor
matched at 10 out of 10 of A, B, C, DRB1 and DQ alleles,
this option should be the first choice. However, high TRM
and severe GVHD which lead to morbidity and mortality
remains the problem. The long time interval required to
identify and acquire donor stem cells is another disadvan-
tage, especially for patient who is in urgent of transplanta-
tion. Unrelated cord blood has the advantage of easy
procedure and immediate availability. Current data show
that a cord blood with a sufficient cell number and more
than 4 out of 6 of A, B and DRB1 loci is also a good alter-
native source for stem cells. However, the low cell dose of
cord blood results in poor engraftment in adult patients
with a high body weight, though the use of double unit
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cord blood transplantation and, possibly, ex vivo cord
blood expansion, could overcome this difficulty in some
patients. Haploidentical transplantation is a relatively
new style offering high cell dose, almost unlimited donor
availability without time-restriction for transplant, and
the potential for graft engineering.

Based on the previous studies, if an allo-graft is crucial for
disease treatment, partially matched family donor could
be an option for patients without perfectly matched unre-
lated donors. Sometimes, haploidentical HSCT is even a
better choice in experienced transplant center and under
the specialized circumstances: 1) urgency for early trans-
plant, such as acute leukemia, but without available HLA-
matched donor, 2) post-transplant DLI is highly recom-
mended due to high-risk of leukemia relapse, 3) ethnic
minority, in whom the chances of finding an available
matched unrelated donor are very low, 4) Patients with a
relatively large body weight for whom no cord blood unit
with a suitable match and cell dose could be found.

What is the future direction?
Haploidentical HSCT provides an opportunity for
patients to benefit from HSCT when a HLA matched
donor is not available. The final goal of haploidentical
transplant is to successfully overcome the HLA barrier and
capture an optimal GVL effect without GVHD. There are
several novel approaches which may be promising in the
future 1) selective but effective allodepletion which facili-
tate successful donor engraftment, improvement of post-
transplant immune reconstitution while reducing the
incidence of GVHD; 2) improvement of DLI, in order to
acquire GVL effect without or limiting GVHD; 3)adoptive
cellular immunotherapy, such as Tregs, NK/Tregs, MSCs
and donor-derived NK, as well as the third-party cells
infusion; 4) pathogen- or leukemia-specific donor-
derived T cell infusion could be an additional approach to
prevent opportunistic infection and reduce leukemia
relapse rate after haploidentical transplant.
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