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TFP5/TP5 peptide provides neuroprotection in the 
MPTP model of Parkinson’s disease

Introduction
Cyclin dependent kinase-5 (Cdk5), a family member of 
the cyclin dependent kinases, plays a pivotal role in the 
nervous system development and function. Cdk5 was 
first purified as one (TPKII) of two tau protein kinases, 
namely TPKI and TPKII, from a bovine brain microtu-
bule fraction (Ishiguro et al., 1992), as neuronal cdc2-like 
kinase from bovine brain extracts (Lew et al., 1992), and 
as a Lys-Ser-Pro (KSP) sequence phosphorylating kinase 
from rat spinal cord (Shetty et al., 1993). We had also 
identified kinase and phosphatase players regulating neu-
rofilament and tau phosphorylation in mammalian and 
squid neurons (Floyd et al., 1991; Veeranna et al., 1998; 
Veeranna et al., 2000; Grant and Pant, 2004), identified 
Cdk5 as a principal kinase phosphorylating KSP sites in 
neurofilament subunit (NFH) tail domains (Sharma et 
al., 1998), and in a collaborative study of a Cdk5 knock-
out, demonstrated its key role in neuronal development, 
function and survival (Ohshima et al., 1996). Initially, 
its activity was found to be restricted to neurons in the 
central nervous system due to the expression of neuronal 
specific activators p35 and p39. However, in the last de-
cade p35 distribution and Cdk5 activity have been found 
in a growing number of tissues such as the testis, pan-
creas, cornea and most recently in glial cells of the brain 
(Kesavapany et al., 2007).

The tight regulation of Cdk5 activity is achieved 
through the specific cellular localization of its major ac-
tivator p35. With an N-terminal myristoylation sequence 
of the activator, which anchor the membranes, Cdk5 ac-
tivity is therefore restricted and localized to this region of 
the cell. When a neurotoxic insult involving amyloid-β 
peptides, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine 
(MPTP), reactive oxygen species (ROS) or glutamate is 
initiated, there is an increase in intracellular calcium, 
which then activates the calcium-dependent protease 
calpain. Calpain cleaves p35 into a p10 product that is 
still anchored to the membrane and a p25 moiety that 
is a potent hyperactivator of Cdk5. p25 is now free to 
move around the neuronal compartments and the net 
effect is that Cdk5 is hyperactivated by p25 leading to 
hyper phosphorylation of the substrates. To confound 
the misery of the neuron, p25 has a very strong affinity 
to Cdk5 but also has a longer half-life than its parent 
p35 protein, which leads to an aberrant hyperactivation 
of Cdk5 (Kesavapany et al., 2007). The result of this is 
an abnormal phosphorylation of cytoskeletal proteins, 
such as the microtubule-associated protein tau and 
neurofilaments (NFs) and the hyperphosphorylation 
of these cytoskeletal proteins are found in pathological 
hallmarks of a number of neurodegenerative diseases 
including Alzheimer’s disease (AD), Parkinson’s disease 
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(PD) and amyotrophic lateral sclerosis (ALS). One type 
of such lesion in AD is the neurofibrillary tangles (NFTs) 
where the epitopes found to be phosphorylated in these 
inclusions are readily hyperphosphorylated by Cdk5/
p25. Lewy bodies, the inclusions found in PD brain, con-
tain deposits of α-synuclein and phosphor NF-H (Hill et 
al., 1991; Spillantini et al., 1997) and Cdk5 (Brion et al., 
1995; Nakamura et al., 1997; Smith et al., 2003), while 
inclusions in the spinal cord contain hyperphosphory-
lated aggregated NF-H (Bajaj et al., 1998, 1999). In PD, 
early involvement of Cdk5 in the disease pointed to its 
presence in Lewy bodies (Nakamura et al., 1997). Since 
then, experiments using MPTP to induce dopaminergic 
neuronal loss showed that the downstream effector of 
this is Cdk5 (Smith et al., 2003; Alvira et al., 2006). Upon 
MPTP treatment, calpains produces p25 and hyperac-
tive Cdk5 (Cdk5/p25) phosphorylates the transcription 
factor myocyte enhancer factor 2 (MEF2) to inactivate 
it. The inactivation of MEF2 causes neuronal loss (Smith 
et al., 2006). In a recent report, Cdk5 has been shown to 
interact with and phosphorylate Parkin, a protein that 
contains E3-ubiquitin ligase activity. Mutations in Parkin 
are responsible for a large percent of autosomal recessive 
juvenile parkinsonism cases. Cdk5 phosphorylation of 
Parkin decreased its auto-ubiquitination activity and a 
phospho-deficient mutant of Parkin displayed increased 
ubiquitination towards itself as well as its substrates syn-
philin and α-synuclein, both constituents of Lewy body 
inclusions in PD. The results showed that Cdk5 activity 
is important in regulating inclusion formation and ac-
cumulations of toxic Parkin substrates in a PD paradigm 
(Avraham et al., 2007).

Evolution of CIP, P5 and TFP5/TP5
Current strategies to produce inhibitors of kinase activity 
target ATP binding regions of the kinases. However, since 
all kinases depend on these regions as a mode of action, the 
specificity of this approach has often been called into ques-
tion. ‘Normal’ p35-mediated Cdk5 activity, as mentioned 
before, is required for the proper formation and function 
of the nervous system and thus, only aberrant p25-mediat-
ed Cdk5 hyperactivity must be targeted and ATP analogues 
would not be useful in this paradigm. Indeed, known in-
hibitors such as butyralactone, olomoucine and roscovitine 
all inhibit normal as well as aberrant Cdk5 activity. While 
attempting to fully characterize the behavior of p25 and 
its subsequent hyperactivation of Cdk5, we identified CIP 
(126a.a. residues), a truncated fragment of the Cdk5 reg-
ulator, p35, which specifically inhibited hyperactive Cdk5/
p25 (Amin et al., 2002; Sundaram et al., 2013), presumed 
to contribute to the pathology of AD (Patrick et al., 1999; 
Smith and Tsai, 2002; Tsai et al., 2004).

A further fine-tuning of these studies has identified a 
smaller, 24-aa peptide (termed P5) derived by serial trun-
cation of CIP. This 24-aa peptide (termed P5) has been 
shown to inhibit Cdk5/p25 activity in transfected human 
embryonic kidney 293 (HEK) cells and primary neurons 

without affecting normal Cdk5/p35 or other Cdks (Zheng 
et al., 2002, 2005, 2007, 2010; Kesavapany et al., 2007). 
Subsequently, P5, modified as TFP5 so as to penetrate the 
blood-brain barrier after intraperitoneal injections in AD 
model mice, inhibited abnormal Cdk5/p25 hyperactivi-
ty and significantly rescued AD pathology in AD model 
mice (Shukla et al., 2013). Moreover, TFP5 also reduced 
toxicity in cortical neurons exposed to high glucose (Bi-
nukumar et al., 2014).

TFP5 Treatment Inhibits MPP+-induced
Inflammation and Apoptosis in Mesencephalic 
Primary Cultures
Encouraged by our previous results and Cdk5 involve-
ment in PD, Cdk5/p25 has been identified as a prime 
therapeutic target for PD. In a recent study the efficacy of 
the TFP5 peptide was tested in a PD model (Binukumr et 
al., 2015). Consistent with previous studies, we observed 
24 hours of MPP+ incubation induces Cdk5 hyperactiva-
tion in mesencephalic primary cultures. Pretreatment and 
coincubation with TFP5, however, was sufficient to sig-
nificantly reduce the elevated activity. Because the Cdk5/
p25 inhibitor TFP5 was effective at blocking deregulated 
kinase activity, we further tested whether the effect can 
be replicated in primary dopaminergic neurons from 
mesencephalic cultures. The number of tyrosine hydrox-
ylase (TH) positive neurons and the length of TH-pos-
itive neurites were significantly reduced after MPP+ 
treatment. In contrast, treatment with TFP5 effectively 
attenuated MPP+ induced toxicity in dopaminergic neu-
rons. Scrambled peptide control however, had no pro-
tective effect on these cells. Taken together, those results 
demonstrate that TFP5 has a neuroprotective effect in 
cell culture models of dopaminergic neurodegeneration. 
We also investigated the anti inflammatory action of 
TFP5, primary neuron-glia cultures from mouse mid-
brains with TFP5 or scrambled peptide. It is evident 
that treatment with MPP+ increased the expression of 
both F4/F8 and GFAP, astocytic marker compared with 
the control, whereas treatment with TFP5 ameliorates 
these effects. Scrambled peptide had no effect compared 
with MPP+ treatment. Further we examined the effect 
of TFP5 on MPP+ induced apoptosis by measuring 
caspase-3 activation and cytochrome c release in the 
mixed cultures. Treatment of mesencephalic primary 
cultures with MPP+ for 24 hours resulted in robust ac-
tivation of caspase-3 and cytochrome c release. TFP5 
significantly inhibited the increased levels of caspase-3 
and cytochrome c. To confirm further the antiapoptotic 
function of TFP5, we determined the expression levels 
of Bcl-2. MPP+ treatment significantly decreased the 
protein level of Bcl-2. This result is in line with previous 
reports (Liu et al., 2010). Treatments with TFP5 signifi-
cantly increased Bcl-2 expression. Together, these results 
showed that TFP5 treatment has antiapoptotic effects in 
mesencephalic primary culture.
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Dopaminergic Neurons are Protected from 
Cell Death by TP5 after MPTP Induction
As a more effective test of the efficacy of TFP5 as a ther-
apy for PD, we used an in vivo model system. For the 
initial sets of experiments, animals were injected intra-
peritoneally (i.p.) with a single TFP5 injection, 40 mg/
kg every day for 9 days. On day 2, TFP5-treated animals 
received four doses of MPTP. We found that the dose 
of TFP5 was inadequate; TFP5-treated animals did not 
show significant inhibition of Cdk5/p25-deregulated ac-
tivity compared with the MPTP group accordingly, we 
increased the dose to a single, 80 mg/kg i.p. injection ev-
ery day for 9 days. We used the peptide without the FITC 
tag (TP5) since TFP5 aggregates at higher concentration. 
In this case, TP5 pretreatment produced significant in-
hibition of Cdk5/p25 kinase activity. MPTP treatment 
also reduced the number of TH-positive neurons by 77% 
compared with saline-treated controls. Mice that received 
daily treatments of TP5 at 80 mg/kg showed an increase 
of TH-positive neurons in the SNpc. The neuroprotective 
effect of TP5 was dose dependent, as a 40 mg/kg dose of 
TP5 failed to protect dopamine neurons due to MPTP 
toxicity. Moreover, scrambled peptide did not show any 
dopaminergic neuroprotection compared with the MPTP 
group. MPTP injections also caused significant decreases 
in the level of dopamine and its metabolites in the striatal 
region of MPTP-injected mice. MPTP-induced dopamine 
and homovanillic acid (HVA) depletion was attenuated 
almost to control levels in mice treated with TP5. Taken 
together, these results suggest that TP5 can improve neu-
rochemical deficits in the MPTP mouse model of PD.

TP5 Suppresses MPTP-induced Astroglial and 
Microglial Activation in vivo
Microglial activation has been implicated in the propa-
gation of SNpc neurotoxicity in multiple animal models 
of PD. Post-mortem analysis of idiopathic PD patients 
revealed strong immunoreactivity for CD68, a marker of 
phagocytic microglia (Croisier et al., 2005; Vroon et al., 
2007). Administration of MPTP has been reliably shown to 
induce this phagocytic microglia phenotype in the SNpc of 
mice (Vroon et al., 2007; Chung et al., 2010, 2011). Previous 
studies reported in addition the presence of reactive mi-
croglia in MPTP-treated SN exhibiting nigral DA neuronal 
degeneration (Wu et al., 2003; Block et al., 2007). Accord-
ingly, we investigated whether a TP5 injection regimen can 
inhibit MPTP-induced glial activation in the SNpc in vivo. 
Consistent with earlier reports (Wu et al., 2003), numer-
ous GFAP-positive reactive astrocytes and CD11b-positive 
(activated) microglia were observed in MPTP-treated SNpc 
compared with saline and scrambled peptide controls. TP5 
treatment mitigated these effects of MPTP. Scrambled pep-
tide had no effects on glial activation compared with the 

MPTP group. Post-mortem analysis of human PD tissue 
showed that microglia are immunoreactive for multiple 
proinflammatory cytokines, including tumor necrosis 
factor α (TNF-α) and interleukin-1β (IL-1β; McGeer and 
McGeer, 2004). Further, mice that are genetically altered to 
inhibit cytokine production or are deficient in receptors for 
these cytokines provide neuroprotection in the SNpc after 
MPTP exposure (Klevenyi et al., 1999; Sriram et al., 2002). 
Thus we examined whether MPTP-induced expression of 
IL-1β and TNF-α in the SN was affected by TP5. The results 
showed that the levels of TNF-α protein and IL-1β were 
significantly increased in the midbrain of MPTP-treated 
mice compared with saline controls. Treatment with TP5 
inhibited these MPTP-induced effects, reducing levels of 
TNF-α and IL-1β ~50%. Here, too, scrambled peptide had 
no effects. Further we examined whether TFP5 protects 
against neurobehavioral deficits caused by MPTP. We ob-
served a marked decrease in total distance traveled after 
MPTP treatment (85%), which was restored ~30% after 
TP5 treatment. We see that TP5 significantly improved 
MPTP-induced hypolocomotion.

Our recent data for the first time identify that intraperi-
toneal injection of peptide, TP5 into MPTP-induced mice 
effectively blocks degeneration of dopamine neurons in 
the SNpc and prevents the loss of striatal dopamine and 
its metabolites. The peptide treatment also ameliorates 
the MPTP-induced behavioral deficits, inhibits neuroin-
flammation in vivo, and protects against MPP+ neurotox-
icity in vitro. These results suggest that TFP5/ TP5 may be 
effective in the treatment of Parkinson’s disease.
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