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MMASleepNet: A multimodal
attention network based on
electrophysiological signals for
automatic sleep staging

Zheng Yubo, Luo Yingying, Zou Bing, Zhang Lin and Li Lei*

School of Artificial Intelligence, University of Posts and Telecommunications, Beijing, China

Pandemic-related sleep disorders a�ect human physical and mental

health. The artificial intelligence (AI) based sleep staging with multimodal

electrophysiological signals help people diagnose and treat sleep disorders.

However, the existing AI-based methods could not capture more

discriminative modalities and adaptively correlate these multimodal

features. This paper introduces a multimodal attention network

(MMASleepNet) to e�ciently extract, perceive and fuse multimodal features

of electrophysiological signals. The MMASleepNet has a multi-branch feature

extraction (MBFE) module followed by an attention-based feature fusing (AFF)

module. In the MBFE module, branches are designed to extract multimodal

signals’ temporal and spectral features. Each branch has two-stream

convolutional networks with a unique kernel to perceive features of di�erent

time scales. The AFF module contains a modal-wise squeeze and excitation

(SE) block to adjust the weights of modalities with more discriminative features

and a Transformer encoder (TE) to generate attention matrices and extract

the inter-dependencies among multimodal features. Our MMASleepNet

outperforms state-of-the-art models in terms of di�erent evaluation matrices

on the datasets of Sleep-EDF and ISRUC-Sleep. The implementation code is

available at: https://github.com/buptantEEG/MMASleepNet/.

KEYWORDS

multimodal, attention network, automatic sleep staging, electrophysiological signals,

features fusion

1. Introduction

Sleep is an essential natural behavior for humans to maintain mental and physical

health. Surveys show that ordinary people worldwide also have insomnia attributed to

pandemic-related stress, anxiety, depression, and other mental health conditions during

the new coronavirus pandemic (Semyachkina-Glushkovskaya et al., 2021). Survivors of

COVID-19 are still bothered by insomnia (Taquet et al., 2021). The research found that

adequate and effective sleep helps people improve the efficacy of COVID-19 vaccines

(Benedict and Cedernaes, 2021), and sleeping in the rapid eye movement (REM) stage

helps restore the brain’s ability and remove waste from the brain (Van Alphen et al.,

2021). Sleep staging helps ordinary people better understand their sleep quality and helps
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patients with insomnia or other related diseases to obtain better

diagnoses and treatment (Pan et al., 2020).

Polysomnography (PSG) is the primary tool for

assessing sleep in the laboratory and can be used for

clinical and research purposes (Rundo and Downey, 2019).

During polysomnography, EEG, EOG, EMG, and other

electrophysiological signals are recorded as multimodal data

and then used by professional doctors to divide sleep into

distinct stages. The American Academy of Sleep Medicine

(AASM) classifies each 30 s sleep epoch into five different stages

(W, N1, N2, N3, and REM) (Chriskos et al., 2021). However,

manual sleep staging requires professional knowledge and is

highly time-consuming. Artificial intelligence technology helps

to improve efficiency and has become a research hot spot of

sleep staging in recent years.

There have been two main approaches widely adopted in

sleep staging studies. Some researchers employed conventional

machine learning methods, which mainly contained feature

extraction algorithms and fed features into conventional

classifiers (Awais et al., 2021). Due to the need for prior

professional knowledge for feature extraction, these models

have poor transfer ability, and non-end-to-end learning

is significantly subject to subjective influence. For other

researchers, deep learning methods were adopted due to their

superior performance and less need for prior knowledge. Some

studies designed convolutional neural networks (CNNs) for

sleep staging (Supratak et al., 2017; Phan et al., 2018; Perslev

et al., 2019; Jia et al., 2020). Some studies employed long short-

term memory (LSTM) to capture the temporal context from

the representative features in forward and backward directions

(Supratak et al., 2017; Supratak and Guo, 2020; Neng et al.,

2021). Recurrent Neural Networks (RNNS) were proposed to

capture the temporal correlation of electrophysiological signals

(Michielli et al., 2019). Attention mechanism and attention-

based feature fusion have been widely used in multimodal

representation learning (Huang et al., 2019, 2020; Lu et al., 2019;

Wei et al., 2020; Zhang et al., 2020a,b,c; Desai and Johnson,

2021; Yu et al., 2021; Ma et al., 2022). The existing studies based

on attention mechanisms usually used single-modal data such

as EEG or EOG, which only focused on the inter-relationship

among single modality features rather than cross-modal features

(Eldele et al., 2021).

The waveforms of EEG, EOG, and EMG in each sleep

stage are shown in Figure 1. The signal characteristics of each

modality among the five sleep stages are different, whether

in the time domain or frequency domain. Observed from

the time domain, signal amplitudes and cycles of different

modalities signals are also various. Using EEG alone for sleep

staging has been a feasible solution since EEG is the main

basis of artificial sleep staging. It can also be observed that

there are significant differences between the W stage and N1

stage in EOG waveforms, and the EMG waveforms are also

helpful in identifying REM. Most studies chose EEG as the

primary modality (Supratak et al., 2017). Some studies selected

EOG signals which could be more convenient to acquire than

EEG signals (Fan et al., 2021). Other studies also adopted EMG

signals with more distinguishable features between the W and

REM stages (Li et al., 2022). Further, it can be verified that

the electrophysiological signals of the three modalities have

complementary characteristics to sleep staging. By designing a

neural network method of modality fusion, the accuracy of sleep

staging can be improved. The existing multimodal sleep staging

methods usually took EEG and EOG as the input of the model,

and the fusion of multimodal features was mainly based on

concatenation (Jia et al., 2020, 2021) without focusing on parts

of the features.

To efficiently extract multimodal features of EEG, EOG,

and EMG, use the attention mechanism for feature fusion,

and improve the accuracy of sleep staging, the multimodal

attention network (MMASleepNet) is proposed, which has a

multi-branch feature extractionmodule followed by an attention

fusing module, as shown in Figure 2. The contributions of this

paper are as follows.

(1) The multi-branch feature extraction (MBFE) module is

proposed, and unique kernels are specially designed based on

the effective frequency band of three modalities.

(2) The attention-based Feature Fusion (AFF) module is

proposed, and modal-wise squeeze and excitation block are

combined with Transformer Encoder to fuse the features of

EEG, EOG, and EMG.

(3) Experiments on four public datasets validate the effectiveness

of the MMASleepNet. The results demonstrate that

MMASleepNet outperforms all the baseline models in

automatic sleep staging.

The context of this paper is as follows. Section 2 introduces

data and methodology. The experiment design is described in

the Section 3. Section 4 presents the results of experiments, and

Section 5 analyses the results.

2. Materials and methods

2.1. Data description

Publicly available datasets were used for method evaluation,

whose summary is shown in Table 1.

2.1.1. Sleep-EDF

The Sleep-EDF dataset contains two sub-datasets, namely,

Sleep-EDF-20 and Sleep-EDF-78 (Goldberger et al., 2000). The

Sleep-EDF-20 dataset contains 42308 epochs in 39 sleep cassette

files collected from 20 subjects aged 25–34. The Sleep-EDF-78

dataset contains 195479 epochs in 153 sleep cassette files of 78

subjects aged 25–101. Each subject of the Sleep-EDF database

contains 2 day-night PSG recordings except subjects 13, 36,
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FIGURE 1

The waveforms of EEG, EOG, and EMG in each sleep stage. The data is randomly selected from the Sleep-EDF-78 dataset, and each epoch is

30 s.

FIGURE 2

The architecture of the proposed network. It consists of a multi-branch feature extraction module, an attention based feature fusion module

and a classification module. ⊕ is the point-wise addition and ⊗ is the point-wise multiplication. Conv is the convolutional layer, Pool is the

pooling layer, FC is the fully connection layer, Norm is the normalization layer.

TABLE 1 Summary of the datasets and selected channels.

Dataset Subjects Samples W (%) N1 (%) N2 (%) N3 (%) REM (%) Score method k for k-fold

Sleep-EDF-20 20 42,308 19.58 6.63 42.07 13.48 18.24 R&K 20

Sleep-EDF-78 78 195,479 33.74 11.01 35.37 6.67 13.22 R&K 10

ISRUC-Sleep-1 100 87,187 22.95 12.85 31.51 19.45 13.23 AASM 5

ISRUC-Sleep-3 10 8,589 20.44 14.04 30.12 22.90 12.50 AASM 10

and 52, whose one recording is lost due to device failure. The

duration of each epoch is 30 s, and it has been labeled as {Wake,

REM, N1, N2, N3, N4, MOVEMENT, UNKNOWN } by experts

according to the R&K standard.

2.1.2. ISRUC-sleep

ISRUC-Sleep-1 and ISRUC-Sleep-3 are the sub-datasets of

the ISRUC-Sleep (Khalighi et al., 2016). The ISRUC-Sleep-1

dataset contains 69,671 epochs in 100 PSG data files collected

from 100 subjects aged 20–85. The ISRUC-Sleep-3 dataset

contains 8,589 epochs in 10 PSG data files collected from 10

subjects aged 30–58. Each recording contains 6 EEG channels

(F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, and O2-A1), 2 EOG

channels (LOC-A2 and ROC-A1), 3 EMG channels (Chin EMG,

left leg movements and right leg movements), and 1 ECG

channel, and all signals were sampled at 200 Hz. The duration

of each epoch is 30 s, and it has been labeled as {Wake, REM,

N1, N2, N3 } by experts according to AASM standard.
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For a fair comparison with baseline models, the following

data preprocessing steps have been applied to the Sleep-EDF

and ISRUC-Sleep datasets. The N3 and N4 are merged into N3

according to the AASM standard for the Sleep-EDF dataset.

Then, MOVEMENT and UNKNOWN epochs are excluded.

The signals of EEG (Fpz-Cz and Pz-Oz), EOG (ROC-LOC),

and EMG (CHIN1-CHIN2) are adopted. For the ISRUC-Sleep

dataset, the signals of EEG ( F3-A2, C3-A2, O1-A2, F3-A1,

C4-A1, O2-A1), EOG (ROC-A1), and EMG (CHin-EMG) are

adopted. For the four datasets, 30 min of wake epochs before

and after sleep epochs are maintained to focus more on the sleep

stages. In this study, all these signals are resampled at 100 Hz.

2.2. Method

Figure 2 illustrates the overall framework of MMASleepNet.

The MMASleepNet consists of three main modules: multi-

branch feature extraction (MBFE), attention-based feature

fusion (AFF), and classification. The network can be trained

and optimized using multimodal electrophysiological signals.

Firstly, raw signals of eachmodality are processed into high-level

features by the specially designed branches in theMBFEmodule.

This module has several two-stream convolutional networks,

which consist of a small kernel fully convolutional network

(FCN) and a large kernel FCN to perceive features of different

time scales. The AFF module includes a modal-wise squeeze and

excitation (SE) block to adjust the weights of modalities with

more discriminative features and TE layers to generate attention

matrices and extract the inter-dependencies among multimodal

features. Finally, the staging results can be obtained through the

classification layer.

2.2.1. Multi-branch feature extraction

In order to extract the features from the original multimodal

data (EEG, EOG, and EMG), two-stream convolutional network

branches are designed in the MBFE module. Each branch in

the MBFE module consists of two FCN streams with four

convolutional layers and two Max-Pooling layers. Referring to

previous studies, the different sizes of convolutional kernels

capture different scale features, making the feature matrix more

comprehensive (Supratak et al., 2017). One FCN stream adopts

a large kernel, and the other adopts a small kernel at the

first convolutional layer. As the electrophysiological signals are

sampled at 100 Hz, the convolutional layer with a kernel size of

500 extracts low-frequency information using 5-s windows. On

the contrary, the small convolutional layer with a kernel size of

50 extracts the high-frequency information and detailed features

using half-second windows. As the modalities have different

interesting frequency ranges, the size of the convolutional kernel

in the EEG branch is twice that of EOG and EMG. Due to

EEG having higher classification accuracy in most cases, the T
A
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number of convolutional kernels dEEG for the EEG branch is

also larger than dEOG and dEMG for EOG and EMG branches.

The parameters of the MBFE module are given in Table 2. The

leaky rectified linear unit (Leaky-ReLU) is employed as the

activation function of each convolutional layer, which can be

defined as follows:

LeakyReLU(x) =







x, x ≥ 0

αx, x < 0
(1)

The Leaky-ReLU can solve the zero gradient vanishing problems

for negative values, which are essential for the following

modules. Dropout layers are applied after the first Max-Pooling

in both streams and after the concatenation of both streams to

reduce overfitting. The input XM ∈ R
3×CM×N are fed into

the MBFE module for extracting the multimodal features where

M ∈ {EEG,EOG,EMG} represent modalities, and CM is the

number of channels for modalM,N = SampleRate×EpochTime

is the samples for a single channel in one epoch. The operation

is formalized as follows:

FM = FCNs
M(XM)‖FCNl

M(XM) ∈ R
dM×l (2)

where FCNs and FCNl represent FCN stream with the small and

large convolutional kernel and ‖ is the concatenate operation.

FEEG ∈ R
dEEG×l is divided into FiEEG ∈ R

d×l, where d =
1
2dEEG, i ∈ {1, 2} to align with the FEOG and FEMG for the

following concatenate operation. A new dimension is created

on each modalities’ features, and the concatenate operation is

formalized as follows:

F = [F1EEG, F
2
EEG, FEOG, FEMG] ∈ R

4×d×l (3)

where [·] is the concatenate operation on the newly created

modal dimension. A feature map F that contains different

modalities of information is obtained through above operations.

2.2.2. Attention-based feature fusion

The AFF module is designed for fusing features extracted

by the MBFE module. The architecture shown in Figure 2 is

designed based on attention methods. AFF module consists of

a modal-wise SE block and TE layers.

2.2.2.1. Modal-wise SE

The modal-wise SE block is proposed based on the

SENet (Hu et al., 2020). Different from the SENet using 1D

convolutional and Max-Pooling layers, as shown in Figure 2,

2D convolutional and Max-Pooling layers are implemented

to reconstruct the input features. Given a feature map F ∈
R
4×d×l, two convolution operations are applied to F such that

F′ = Conv2(Conv1(F)) and F′ has the exact dimensions as

the input feature map. Global Average Pooling is performed

along the spatial dimensions, and F′ is turned into S =

{S1, S2, S3, S4}. Two additional 2D convolutional layers replace

the full connection layers in SENet to reconstruct S further. The

first layer followed with ReLU activation function designed to

reduce the dimensions of F, and the second layer followed with

Sigmoid layer aims to increase the dimensions. The operation is

formalized as follows:

E = Sigmoid(Conv2(ReLU(Conv1(S)))) ∈ R
4×d×l (4)

where Conv1 and Conv2 are the 2D convolution operations,

sigmoid and ReLU are the activation functions and ReLU(x) =
max(0, x). The output dimension matches the number of input

modalities. It characterizes the global distribution of responses

over features. Then, the feature map F is scaled by E:

OSE = F ⊕ (F ⊗ E) ∈ R
4×d×l (5)

where ⊕ is the point-wise addition and ⊗ is the point-wise

multiplication, OSE is the output of the modal-wise SE block.

Modal-wise SE block adaptively learns the correlation among

multiple modalities and the attention of different modalities.

2.2.2.2. Transformer encoder

As shown in Figure 1, each TE layer comprises two core

modules: multi-head attention and position-wise feed-forward

network. Multi-head attention consists of H attention modules.

Firstly, H different linear projections are applied to the input,

and the result is mapped to parallel queries, keys, and values.

Secondly, dot-product is performed on Qi and Ki to calculate a

similarity score. A normalization operation is applied to stabilize

the gradient. Then, the Softmax operation calculates the weight

for Vi, and another dot-product is applied. Finally, all the Ai

are concatenated together to produce the final output. The

operations can be formulated as follows:

Qi = ZW
Q
i ,Ki = ZWK

i ,Vi = ZWV
i , 0 < i ≤ H (6)

Ai = Softmax(
Qi · KT

i√
d

) · Vi (7)

MA = A1‖A2‖...‖AH (8)

where Z ∈ R
4l×d is the input of the TE layer. W

Q
i , W

K
i ,

WV
i ∈ R

d× d
H are learnable weights of linear projections, d is

the column length of Z, and ‖ is the concatenate operation.

Residual layers are applied as Equation 9. The position-wise

feed-forward network consists of two linear transformations

with ReLU activation as follows:

O1 = LayerNorm(MA+ Z) (9)

O2 = ReLU(O1W1 + b1)W2 + b2 (10)
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where W1 ∈ R
d×dFF , W2 ∈ R

dFF×d are learnable weight

matrices b1 ∈ R
dFF , b2 ∈ R

d is learnable biases. dFF is

the middle dimension of the feed-forward network. Then the

output of the attention-based feature fusion module OAF can be

obtained as follow:

OTE = LayerNorm(O1 ⊕ O2) (11)

OAF = Z ⊗ OTE (12)

where Z is the flattened output of modal-wise SE block, andOTE

is the output of the TE layer. Then the OAF is fed into two linear

layers for the final classification.

3. Experiment

3.1. Baseline methods

Our method has been compared with the three baseline

models: AttnSleepNet, SleepPrintNet, and SalientSleepNet. The

publicly available codes have been used for AttnSleepNet,

whereas SleepPrintNet and SalientSleepNet were re-

implemented. For a fair comparison, all models were trained

and tested on the same data partition with the same random

seeds. Brief descriptions for models are as follows:

• AttnSleepNet (Eldele et al., 2021): AttnSleepNet deploys

a custom CNN architecture followed by a multi-head

attention mechanism and causal convolutions.

• SleepPrintNet (Jia et al., 2020): An EEG temporal

feature extraction module, an EEG spectral-spatial feature

extraction module, and two multimodal feature extraction

modules are combined and classified.

• SalientSleepNet (Jia et al., 2021): A fully convolutional

network based on the U2-Net architecture. Two

independent U2-like streams are composed to extract

the features from multimodal data.

3.2. Experiment settings

To evaluate the performance of models, subjects in each

dataset were divided into several groups using k-fold cross-

validation. For each fold, one group of subjects was selected

as validation data. The remaining k-1 groups were selected as

training data. Finally, four performancematrices were calculated

by combining the predicted sleep stages of all k test groups. For

the MMASleepNet, the Adam optimizer with the learning rate

of 1e-4 was applied. The weight decay of Adam was set to 1e-3,

the betas (b1, b2) were used as (0.9, 0.999), respectively, and the

epsilon value was 1e-08. The parameters of the MBFE module

are introduced in Table 1. The TE block has only one encoder

layer with four heads. The training epoch is 150. Weighted

cross-entropy loss was adopted as follows:

L = −
1

N

N
∑

i=1

C
∑

c=1

ωcy
c
i log(p

c
i ) (13)

where N is the batch size, C is the number of classes, yci is the

true label, and pci is the predicted label of i-th samples for class c.

ωc ∈ {1.0, 1.80, 1.0, 1.25, 1.20} is the weight of class c.

TABLE 3 Comparison among MMASleepNet and baseline models.

Dataset Method
Per-class F1-score Overall matrices

W N1 N2 N3 REM ACC MF1 κ MGm

Sleep-EDF-20

AttnSleepNet 79.02 32.70 87.03 85.67 72.36 79.10 71.35 71.43 66.34

SleepPrintNet 88.77 47.99 86.72 86.21 80.26 83.08 77.99 76.67 76.34

SalientSleepNet 90.79 49.86 89.03 84.77 88.44 86.28 80.58 81.02 77.32

MMASleepNet 92.20 54.75 89.70 90.20 86.41 87.30 82.65 82.63 81.67

Sleep-EDF-78

AttnSleepNet 92.08 36.98 84.70 81.63 73.61 81.12 73.80 73.75 68.64

SleepPtintNet 92.65 47.39 83.59 79.97 78.75 81.64 76.47 74.70 74.27

SalientSleepNet 92.28 50.52 84.37 71.17 84.19 82.61 76.51 75.92 73.42

MMASleepNet 92.85 49.05 84.94 81.26 79.75 82.67 77.60 76.12 76.06

ISRUC-SLEEP-1

AttnSleepNet 84.19 43.80 71.52 81.93 61.12 71.65 68.53 63.70 67.43

SleepPtintNet 79.12 40.12 58.22 68.80 73.67 65.40 63.99 56.02 62.47

SalientSleepNet 85.24 51.34 76.41 83.50 79.25 76.95 75.15 70.31 74.25

MMASleepNet 87.83 54.03 77.05 85.29 83.31 79.02 77.51 73.02 76.79

ISRUC-SLEEP-3

AttnSleepNet 67.58 26.91 66.31 84.08 54.33 64.24 59.85 54.88 55.83

SleepPrintNet 85.15 52.53 74.95 87.28 74.84 76.88 74.95 70.29 73.69

SalientSleepNet 78.37 50.64 77.33 87.99 75.47 76.11 73.96 69.39 73.20

MMASleepNet 88.87 59.57 82.00 87.00 86.87 81.92 80.64 76.79 80.00

The best values on each dataset are highlighted in bold.
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FIGURE 3

The confusion matrices of MMASleepNet, (A) is the confusion matrix valuated on SleepEDF-20 dataset, (B) is the confusion matrix valuated on

SleepEDF-78 dataset, (C) is the confusion matrix valuated on ISRUC-Sleep-1 dataset, (D) is the confusion matrix valuated on ISRUC-Sleep-3

dataset.

For a fair comparison, all baseline models and

proposed methods used the same dataset partitioning

during training and evaluation. A number of experiments

were conducted to find the best hyperparameters of the

proposed MMASleepNet. The hyper-parameters of baseline

models were set as introduced best in their article or open

source codes. The train and validation codes are available at

https://github.com/buptantEEG/MMASleepNet/.

3.3. Evaluation matrices

Four matrices were adopted to evaluate the performance of

sleep staging models, namely, accuracy (ACC), macro-averaged

F1-score (MF1), Cohen Kappa (κ), and the macro-averaged G-

mean (MGm). Given True Positives (TPi), False Positives (FPi),

True Negatives (TNi), and False Negatives (FNi) for the i-th

class, the overall accuracy of ACC,MF1, κ , andMGmare defined

as follows:

ACC =
∑C

c=1 TPc

N
(14)

κ =
ACC − pe

1− pe
(15)

MF1 =
1

C

C
∑

c=1

2× Precisionc × Recallc

Precisionc + Recallc
(16)

MGm =
1

C

C
∑

c=1

√

Specificityc × RecallC (17)

where pe =
∑C

c=1 ac×bc
N×N , Precisionc = TPc

TPc+FPc
, Recallc =

TPc
TPc+FNc

and Specificityc = TNc
TNc+FPc

, ac is the number of

samples of class c, bc is the number of samples predicted as the

class c. C is the number of classes, and N is the total number

of samples.

4. Results

4.1. Results comparison with baselines

Table 3 shows the comparison among AttnSleepNet,

SleepPrintNet, SalientSleepNet, and our MMASleepNet.

The single-modal method AttnSleepNet obtained the lowest

accuracy of the four models. The multimodal approaches,

SleepPrintNet and SalientSleepNet, achieve higher accuracy

than the single-modal method. The multimodal model can

capture different electrophysiological signal features diversity

compared to single-modal signals. In addition, the accuracy of

the proposed MMASleepNet reaches 87.30, 82.67, 79.02, and

81.92%, which is higher than all the baseline models. The MF1,

κ , and MGm of MMASleepNet outperform all baseline models

on the four datasets, which means that the MMASleepNet is

better at adapting to unbalanced data and should get better

accuracy when the classes are balanced.

According to the confusion matrix in Figure 3, the

classification accuracy of W, N2, N3, and REM is relatively

high both on the Sleep-EDF dataset and ISRUC dataset. The

accuracy of recognizing stage N1 is lower than in other stages,

which is related to the insufficient N1 samples in the sleep

records. Table 3 shows that the MMASleepNet obtained a higher

F1 score for stage N1 on the smaller datasets Sleep-EDF-

20, ISRUC-Sleep-1, and ISRUC-Sleep-3, indicating that the

MMASleepNet performs better than the baseline methods for

imbalanced categories. The results demonstrate the advantages

of MMASleepNet in automatic sleep staging with the proposed

feature extracting and fusion operations applied to multimodal

electrophysiological signals.

4.2. Ablation experiments

The MMASleepNet consists of an MBFE module, modal-

wise SE block, and Transformer Encoder layers. To analyze the
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FIGURE 4

The results of ablation experiments, panel (A) is for the module ablation, panel (B) is for the modalities ablation.

influence of each module and to prove the effectiveness of each

modality used in MMASleepNet, the ablation experiment was

designed on the Sleep-EDF-20 dataset as follows:

• MBFE(basic): This model is only MBFE module input

with EEG, EOG, and EMG signals. The features obtained

from MBFE are fed into a linear classification module for

sleep staging.

• MBFE+TE: This model adds TE layers based on the basic

model input with EEG, EOG, and EMG signals.

• MMASleepNet1: The completely MMASleepNet with

MBFE, modal-wise SE block, and TE layers, only input with

EEG signals.

• MMASleepNet2: MMASleepNet input with EEG and

EOG signals.

• MMASleepNet3: MMASleepNet input with EEG, EOG,

and EMG signals.

Figure 4 presents the results of ablation experiments.

Figure 4A shows that the attention-based feature fusion module

improves the performance of the basic model. The modal-

wise SE block helps the MMASleepNet achieve higher accuracy

than only using TE layers. Figure 4B shows that MMASleepNet

input with more modalities achieves higher accuracy. Themodel

training with EOG and EMG performed better than with

EEG alone.

5. Discussion

This study proposes a multimodal attention network

for sleep staging using EEG, EOG, and EMG. The basis of

using EEG, EOG, and EMG for sleep staging is that the

PSG data collected in sleep health monitoring commonly

includes multimodal electrophysiological signals. According

to the experimental results, there are complementary features

related to sleep stages among multiple modalities. The result

shows that the proposed MMASleepNet achieves the highest

classification performance on four publicly available datasets.

Compared with the single-modality model AttnSleepNet,

the proposed MMASleepNet can be fed with more data of

multiple modalities, which means more information to extract

and leads to big improvements in four evaluation matrices.

Compared with the multimodal methods SleepPrintNet and

SalinetSleepNet, MMASleepNet contains better-designed

feature extraction methods and feature fusion methods for

multimodal electrophysiological signals. The modal-wise SE

block construct fusion of features adopted 2D convolutional,

which makes it reasonable for complementary modalities.

The SalientSleepNet also achieves high accuracy, but the high

complexity of themodal led to lower training speed. The number

of MMASleepNet parameters is 1.5M. The MMASleepNet has

lower computation complexity and floating-point operations,

improving the training speed. The AttnSleepNet, SleepPrintNet,

SalientSleepNet, and the proposed MMASleepNet cost 0.4, 0.9,

7, and 1 h for 100 training epochs on the NVIDIA GeForce RTX

2080 Ti, respectively. Considering the accuracy and the training

speed, the MMASleepNet performs better.

The ablation experiment results verify each module’s

effectiveness in the proposed MMASleepNet for automatic sleep

staging. The ablation experiments in the first step verified

that MMASleepNet fed with the data of three modalities

achieves better results than a single modality. This preliminary

verifies that the data of different modalities correlate with

sleep stages and can be combined to obtain more time-

frequency information. Features extracted from EOG and EMG

complement those extracted from EEG only.

Figure 5 shows the down-sampled features before and after

the AFFmodule. Themain difference is that the features become

more focused after the AFF module. The features after attention

are easier to be distinguished using the same classifier, and the

classifier is easier to converge. The visualized features show

that the separability of the fused multimodal features can be
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FIGURE 5

The features before and after attention mechanism of MMASleepNet. The data was selected randomly from the Sleep-EDF-20 dataset. Panel (A)

is before the attention module, panel (B) is for the modalities ablation.

enhanced with the attentionmechanism, and the neural network

observes more detailed differences.

Unlike previous studies, the proposed MMASleepNet has

a more effective feature fusion module, especially the modal-

wise SE block, rather than a simple concatenate operation on

different modalities’ features. Although the model complexity

has increased slightly, the model understands the relationship

among different modalities. MMASleepNet can extract effective

information from different modalities and fully use multimodal

information by fusing the features with attention methods.

Experiment results show that MMASleepNet achieves state-

of-the-art performance. A series of ablation experiments have

shown that different modules of the model contribute to the

sleep staging task. MMASleepNet improves the accuracy of

sleep staging, which provides a solution for multimodal sleep

monitoring and is helpful for people to understand sleep status

and improve their sleep quality.

Sleep disturbances increased significantly during the

pandemic (Semyachkina-Glushkovskaya et al., 2021). For

studying whether there has been a change in sleep disturbances,

new sleep data set during the pandemic and new methods

need to be supported, and deeper analysis based on statistical

principles is required. Sleep staging is a fundamental application

that helps study sleep disturbances during a real pandemic.

With the existing standards, the definition of sleep stages will

not be easily changed. Data set during the pandemic will be

collected, and new methods for deeper analysis will be devised

to raise awareness of the pandemic. The interpretability of the

model and transfer learning method will be investigated to

improve generalization across subjects and datasets.
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