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Abstract
The development of a physiologically plausible computational model of a neural controller

that can realize a human-like biped stance is important for a large number of potential appli-

cations, such as assisting device development and designing robotic control systems. In

this paper, we develop a computational model of a neural controller that can maintain a

musculoskeletal model in a standing position, while incorporating a 120-ms neurological

time delay. Unlike previous studies that have used an inverted pendulum model, a musculo-

skeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent

the human anatomy. Our proposed neural controller is composed of both feed-forward and

feedback controls. The feed-forward control corresponds to the constant activation input

necessary for the musculoskeletal model to maintain a standing posture. This compensates

for gravity and regulates stiffness. The developed neural controller model can replicate two

salient features of the human biped stance: (1) physiologically plausible muscle activations

for quiet standing; and (2) selection of a low active stiffness for low energy consumption.

Introduction

Stance postural control (SPC), which allows individuals to maintain an upright stance, is one
of the most important and basic requirements for a comfortable life [1]. The physiologically
inspired neural controller (NC) model for SPC has potential applications in a variety of fields.
For example, the NCmodel could be used to assist device development and design robotic con-
trol systems. To realize such applications, the model must successfully replicate the functional-
ity of the human neural controller (e.g., the ability to maintain a posture via muscle
coordination, while compensating for the neurological time delay). The realizedmodel must
also replicate the salient features (e.g., physiologically plausible muscle activations) of the
human biped stance in computer simulations.
System identification is one approach to developing an NCmodel based on experimentally

measured data [2–13]. Applications of this method aim to develop an NCmodel that can
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simulate human movement that agrees with experimental data. To achieve this, the variables in
the NC model are typically identified by minimizing the discrepancies between the simulation
results and the corresponding experimental data. Using system identification, researchers have
studied the influence on SPC of joint and muscle stiffness [3–6], sensory information [7–10,
12, 13], feedback (fb) gains [14–17], and the muscle torque generation process [11]. Several of
the studies cited above [2–19] have proposed potential NC models, such as the stiffness control
[3], sensory fb control [17], and disturbance estimation and compensation (DEC) [20] models.
An optimal postural control model was proposed by Qu et al. [21] to identify the change of bal-
ance control mechanism due to aging. This model was further adopted to investigate the role
of passive and active toque for maintaining postural balance [22]. A sliding model [23] devel-
oped by Zhang et al., enables the passive and active joint stiffness to be estimated. He also pro-
posed a novel identification approach to estimate passive and active joint stiffness without any
additional perturbations [24]. However, the efficacy of these models is solely determined by
their ability to reproduce experimental data, and it is difficult to confirmwhether they truly
reflect the mechanism behind human postural control. In addition, it is unclear whether these
models can be employed to control a more complex human bodymodel (e.g., a musculoskeletal
model with many muscles).
Forward modeling is another effective approach for developing NCmodels. Different from

system identification, forwardmodeling does not use any experimental data as input. Instead,
the variables in the NCmodel are typically designed by optimizing an assumed performance cri-
terion (e.g., the joint angle displacement) [25]. It is possible to validate an NCmodel developed
using forwardmodeling by examining whether the simulated results reflect the salient features
of human movement, and comparing those results with experimental data. To date, three types
of NCmodel that generate the biped stance have been proposed. The first is based on conven-
tional feed-forward (ff)control in conjunction with fb control [26–30], whereby the neural con-
troller estimates the state of the human body internal model [31] (the joint angle and angular
velocity) using an optimal estimator [32]. Torque is added directly using a proportional-differ-
ential (PD) controller that utilizes the estimated joint kinematics information [26]. For this
model, van der Kooij et al. [26] have reported that the controller can compensate for a delay of
approximately 80 ms, and that it can simulate the salient features of sensation integration
observed in experiments. The secondmodel type is based on fb control only [18, 33–35]. For an
inverted pendulummodel and assuming fb control only, Masani et al. [18] reported that a PD
controller can compensate for a delay of approximately 185 ms, provided the gain is sufficiently
high. The designedmodel can reproduce the position and velocity of the center of mass (CoM),
along with the joint torque data. The third model type employs intermittent control [36–42],
whereby the PD fb controller is activated intermittently based on the status of the joint angle.
To generate a human-like biped stance that reflects the appropriate salient features, an NC

model should: (1) successfullymaintain a musculoskeletalmodel with muscles in a standing
posture; and (2) compensate for the neurological time delay. Many previous studies [4, 5, 7–19,
26, 28–30, 33–38, 40–44] have utilized simplifiedmusculoskeletalmodels with fewer joints and
torque actuators in place of muscle actuators. They have also neglected the human musculo-
skeletal anatomy (e.g., the CoMof each body segment, muscle attachment points, and skeletal
inertial properties). These previous studies have employed one [4, 5, 7–9, 11, 13–16, 18, 30, 36–
38], two [10, 12, 17, 19, 29, 40–42, 44], or three degrees of freedom (DoF) [26, 28, 43] inverted
pendulummodels with no muscles, a one-DoF inverted pendulummodel with one [33] or
three muscles [34], or a three-DoF inverted pendulummodel with nine muscles [35]. However,
Günther et al. [43] and Hsu et al. [45] have suggested that all the joints should contribute to the
biped stance. Further, Horlings et al. [46] identified the importance of muscle strength to pos-
tural stability. Therefore, a musculoskeletalmodel that more accurately represents the human
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anatomy than the above inverted pendulummodels should be developed. For example, Clark
et al. [47] have used a reflex controller to hold a musculoskeletalmodel with 92 muscles in a
standing position; however, neurological time delays similar to those of humans was not con-
sidered, and simulated muscle activations were not evaluated. Further, a DECmodel [10, 20,
48] has been successfully implemented in a robot featuring eight muscles, incorporating a real-
istic time delay. However, a robot with more muscles and more physiologically accurate anat-
omy is needed to approximate the human anatomy. To date, no NCmodel that can
compensate for the neurological time delay in the case of a more human-like, complex muscu-
loskeletal model in a standing posture has been developed.
In this study, we employ a forwardmodelingmethod to develop a computational model of a

neural controller that can simulate a human-like biped stance and yield physiologically plausi-
ble features for this stance.
Specifically, we aim to develop an NCmodel (red block in Fig 1) capable of: (1) realizing

human SPC (Fig 1); and (2) reflecting the features that generate muscle activations within physio-
logically plausible ranges for the human biped stance. In realizing this postural control, we derive
a musculoskeletalmodel (green block in Fig 1) with 70 muscles and seven joints in a standing
position under the influence of a 120-ms neurological time delay (flesh-colored blocks in Fig 1).

Methods

We developed an NCmodel (red area in human SPC (Fig 2)) to simulate the biped stance, con-
sidering a 120-ms neurological time delay (flesh-colored blocks in Fig 2). A musculoskeletal
model was created to approximate the human musculoskeletal system anatomy (green block in
Fig 2). The NCmodel consists of ff and fb controls, and was designed to actuate the muscles in
order to hold the musculoskeletalmodel in an upright standing posture. The ff control output,

Fig 1. Human stance postural control. Red block: neural controller to actuate muscles during quiet standing. Green block: musculoskeletal model.

Flesh-colored blocks: 120-ms neurological time delay. The delay is comprised of a 40-ms feedback delay, 40-ms transmission delay, and (at most) 40-ms

activation dynamics delay. The activation dynamics delay corresponds to a 20-ms activation time delay during the muscle activation process and a 40-ms

deactivation time delay during the muscle deactivation process.

doi:10.1371/journal.pone.0163212.g001
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uff, is a set of predetermined constant muscle activations that are used to maintain an objective
posture. Details are given in the “Feed-forward control” section. Feedback control is modeled
as a PD control incorporating fb information on the muscle length and lengthening velocity.
The large number of variables (53) in the NCmodel poses a challenge. The variable design

process was divided into two stages. The ff control variables were designed in the first stage,
after which various uff candidates were collected.Among them, several uff were selected and
used to design the fb control variables via an optimization process.
Note that the selecteduffmust, in conjunction with fb control, simulate muscle activations

that reflect physiologically plausible features of the biped stance in order to be considered valid.
Therefore, we compared the simulated muscle activations with experimental data to verify
which uff could simulate muscle activations that were within the physiologically plausible range.

Musculoskeletal model

We created a musculoskeletalmodel (Fig 3a) in OpenSim 3.3 (SimTK.org) [49], which is an
open-source biomechanical simulator. The model is based on the Gait2392 Model [50] and
ToyDropLanding Model [51], both of which are provided by the OpenSim 3.3 software, and is
designed to simulate the biped stance. The created model is comprised of eight body segments,
70 muscular-tendon actuators, and seven joints, with seven DoFs, as shown in Fig 3a. In this
study, we primarily focused on the motion of the lower extremities; therefore, the upper
extremities (head, trunk, and arms) are modeled as a single body segment connected to the pel-
vis by the lumbar joint. The lower extremity section is composed of the femur, shank, and foot,
which are connected by the hip, knee, and ankle joints, respectively. As we primarily studied
the stance motion in the sagittal plane, all joints are modeled as 1-DoF rotational joints for flex-
ion and extension. The 70 muscular-tendon actuators in the ToyDropLanding Model [51],
which are assumed to be important for quiet standing, are employed. These muscles are mod-
eled as 70 Millard 2012 Equilibriummuscular-tendon actuators [52]. Each actuator incorpo-
rates a compliant tendon because compliant tendons such as the Achille’s tendon plays an
important role in stance postural control [53]. To apply an accurate human musculoskeletal

Fig 2. Proposed NC model for human stance postural control. u, uff, and ufb are the total, ff, and fb controls, respectively; τfb, τtrans, and τact are the

feedback, transmission, and activation dynamics delay, respectively. LMT and _LMT are the length and lengthening velocity of the muscular-tendon

actuator, respectively. LM and _LM are the length and lengthening velocity of the muscle fiber, respectively. a indicates the muscle activation, kp and kd are

the fb gains, and LMT
0

and _LMT
0

are the muscular-tendon actuator length and lengthening velocity for the objective posture, respectively. Each of the

symbols listed above represents a 70-dimensional vector.

doi:10.1371/journal.pone.0163212.g002
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anatomy to the model, the kinematic (e.g., the body segment lengths, joint positions, and mus-
cle attachment points) and dynamic (e.g., the body segment inertial properties, muscle isomet-
ric forces, and optimal muscle lengths) information of the Gait2392 Model is used. Note that
the Gait2392 Model has rather accurate human anatomy data and has been widely employed
in gait analysis [54–57].
The foot-ground contact is modeled as contact between four compliant balls (heel, toe, and

two metatarsals in Fig 3c) with a plane (Ground in Fig 3a). The Hunt–Crossley Contact Model
[58] defined in the ToyDropLanding Model is employed to calculate the contact force. Specifi-
cally, the contact force (ground reaction force) is calculatedwhen the feet begin to penetrate
the ground, according to

Rx ¼ mðvÞRy; ð1Þ

Ry ¼ Eh3
2 1þ

3

2
b _h

� �

; ð2Þ

Fig 3. Musculoskeletal model. (a) Musculoskeletal model. HAT: head, arms, and torso. The OpenSim musculoskeletal model consists of seven DoFs and

70 muscular-tendon actuators. q1–q7 are the seven joint coordinates, each of which has one DoF for joint flexion and extension. (q1–q7: Lumbar, right hip,

right knee, right ankle, left hip, left knee, and left ankle flexion-extension, respectively.) (b) CoM position and projection at base of support (BoS). The green-

and-black ball is the CoM position, and the green ball is the vertical CoM projection at the BoS. (c) Foot-ground contact. The foot-ground contact is

represented by four compliant spheres (heel, toe, and two metatarsals) on each foot, with Coulomb friction.

doi:10.1371/journal.pone.0163212.g003
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where Rx and Ry are the frictional force and the vertical ground reaction force, respectively, and
μ(v) is the frictional coefficient function related to the relative velocity v between the ground
and foot-ground contact point. Note that μ(v) is defined in terms of μs, μd, μv, and vt, which are
the static, dynamic, and viscous friction coefficients and the speed at which the static friction
reaches its peak value, respectively. The equation for μ(v) was defined by Sherman et al. [59].
Further, E is the contact stiffness, h is the penetration height (the foot soft-tissue deformation
displacement), and b is the dissipation coefficient.More details on implementing the Hunt–
Crossley model in OpenSim are given by Sherman et al. [59].
In this study, μs, μd, and μv are set to 0.9, 0.9, and 0.6, respectively; vt is set to 0.1 (m/s), b is

set to 0.5 (m/s)−1, and E is set to 108 (Nm−1.5). The contact-model variable configuration is
determined to avoid unrealistic contact and maintain a reasonable computation speed [59, 60].

Neurological time delay

In realizing the biped stance, we considered a maximum neurological time delay of 120 ms,
which includes a 40-ms feedback delay τfb, 40-ms transmission delay τtrans, and maximum
40-ms activation dynamics delay τact. Here, τtrans is the delay affecting the neural controller’s
transmission of the neural controls to the muscle-motion neurons, whereas τfb is the delay
affecting the sensory receptors’ receipt of the sensory information. Both delays are modeled
using a pure time delay of 40 ms, in accordance withMasani et al. [18]. The third delay, τact,
affects the muscle activation dynamics, which is the process through which the muscles generate
force following receipt of the control signals. τact is 20 or 40 ms, depending on whichmotion
process influences the neurons. The muscle activation dynamics can be divided into activation
and deactivation processes, as shown in the breakdown of the activation dynamics delay given
in Fig 1. In the activation process, the muscle-motion neurons fire to a higher activation level, as
commanded by the neural controller. In contrast, for the deactivation process, the muscle-
motion neurons deactivate to a lower activation level. In accordance with Eq (4), τact is set to be
equivalent to a 20-ms activation time delay tact during the activation process and a 40-ms deacti-
vation time delay tdact during the deactivation process. Further, tact and tdact are set to 20 and 40
ms, respectively, in accordance with Zajac [61], Winters [62], and Jacobs [63]. The muscle acti-
vation dynamics are modeled as a first-order differential equation in OpenSim,with

_aiðtÞ ¼
uiðt � ttransÞ � aiðtÞ
dðaiðtÞ; uiðt � ttransÞÞ

; ð3Þ

dðaiðtÞ; uiðt � ttransÞÞ ¼
tactð0:5þ 1:5aiðtÞÞ; uiðt � ttransÞ > aiðtÞ

tdact=ð0:5þ 1:5aiðtÞÞ; uiðt � ttransÞ � aiðtÞ

(

; ð4Þ

where ui is the total output from the NCmodel to the ith muscle and ai represents the muscle
activation of the ith muscle (i = 1, 2, 3, . . ., 70). δ is the delay coefficient.
In this paper, the maximum neurological time delay of 120 ms is referred to as the “120-ms

neurological time.”

Neural controller

Both the ff and fb controls are assumed to be necessary for human SPC. It is widely acknowl-
edged that fb sensory information plays a vital role in postural control [20]; therefore, sensory
fb control is indispensable during quiet standing. In addition to fb control, previous physiologi-
cal studies have indicated the possible existence of ff control [64, 65]. For example, Fitzpatrick
et al. [64] suggested that sensory fb control is important, but not sufficient, to stabilize posture
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in the case of perturbations. Further, Gatev et al. [65] reported that muscle contraction occurs
prior to stabilization of the CoMposition, implying that ff control may be employed to predict
the future CoMposition and achieve postural stabilization.
In accordance with the findings of these previous physiological studies [20, 64, 65], our pro-

posed neural controller incorporates ff and fb controls, with outputs labeled uff and ufb, respec-
tively. Thus, the total output of the NC model, u, which is a combination of uff and ufb, excites
the muscle motion neurons to drive the skeletal system, such that

uðtÞ ¼ uff þ ufbðtÞ; ð5Þ

where uff and ufb are the ff and fb output to 70 muscles. Thus, u, uff, and ufb are 70-dimensional
vectors.

Feed-forward control. Unlike the ff control proposed in previous studies [26–30], in this
study, uff is the set of activations needed to keep the musculoskeletalmodel standing in the
defined objective posture, i.e., the upright standing posture shown in Fig 3a.
We determine this upright standing posture by tuning q1, q2, q4, q5, q7 (Fig 3a) using the

CovarianceMatrix Adaptation Evolution Strategy (CMA-ES) optimizer available in OpenSim
3.3 (SimTK.org) [49]. Details of the optimizer are described in the “Variable design” section.
Note that q3 and q6 are fixed to 1°, because we assume that the knees are mildly flexed in the
objective posture. The initial solutions for q1, q2, q4, q5, and q7 are set to q1 = −10, q2 = −5, q4 =
0, q5 = −5, and q7 = 0 for the CMA-ES optimizer. The optimizer generates posture candidates
and evaluates their objective function Jpos for each iteration. The optimization terminates when
the convergence tolerance reaches the default value defined in the optimizer.
The objective function Jpos that is minimized by the CMA-ES optimizer can be expressed as

Jpos ¼ wstaticJstatic þ wOJO; ð6Þ

Jstatic ¼ ðCoM0;x � BoSxÞ
2
þ ðCoP0;x � BoSxÞ

2
; ð7Þ

where CoM0,x is the vertical projection of the body CoM at the base of support (BoS) (green
ball in Fig 3b), CoP0,x is the center of pressure (CoP) position under each candidate posture.
BoSx is the BoS center (yellow ball in Fig 3c).
Jpos is used to evaluate whether the posture satisfies the static stability conditions. The well-

known condition for standing stability in static situations is that the vertical projection of the
CoM should be within the BoS [66]. The CoP should also be within the BoS, to ensure that the
ground reaction force can be transmitted from the ground to the feet [67]. Hence, both
“(CoM0,x − BoSx)2” and “(CoP0,x − BoSx)2” are used to adjust the objective posture, so as to
allow both the vertical projection of the CoM and the CoP to be close to the BoS center. This
adjustment ensures that the objective posture satisfies the stability condition. Note that the
CoP position is not fixed. Rather, the objective-postureCoP position is simply the initial CoP
position, which changes with bodymovement during quiet standing.
There are many posture candidates that satisfy the static condition. To obtain a posture that

can be maintained with minimal torque, the following term is also incorporated:

JO ¼
X7

n¼1

O
2

n; ð8Þ

whereOn is the joint torque necessary for the nth joint to maintain this objective posture.We use
wstatic and wO to represent the weights of the corresponding terms:wstatic is set to 10000, so as to
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reject any postures that do not satisfy the static stability condition, and wO is empirically set to
0.1. The specific values of the coordinates for the obtained objective posture are listed in Table 1.
Once the objective posture has been determined, a specific constant muscle activation, ci,

which is independent of the fb information, is sent directly to the ith muscle. Thus,

uff ;i ¼ ci; ð9Þ

where ci is the ith element of uff, and ensures that the ith muscle maintains balance in the objec-
tive posture (i = 1, 2, 3, . . ., 70).
The uff components compensate for gravity and increase the joint stiffness resulting from

muscle contraction. Note that human joint stiffness contributes to balance during SPC. In this
paper, two sources of joint stiffness are considered: the passive mechanical source (tendons),
which is modeled as a spring-like tendon component in a muscular-tendon actuator [52], and
the active source, called active stiffness, resulting from uff . uff is similar, but not identical, to mus-
cle co-contraction,which stimulates the activation of antagonist muscles around a joint so as to
fixate that joint. Muscle co-contraction increases the joint stiffness only. The net torque gener-
ated by muscle co-contraction is zero; therefore, it does not contribute to gravitational compen-
sation. However, the net torque generated via uff compensates for the gravitational torque.
In a previous muscle co-contraction study [68], the active stiffness level was typically quan-

tified based on the muscle activation level. Similarly, in this paper, the square norm of uff, ||uff||
(jjuff jj ¼ c2

1
þ c2

2
þ c2

3
þ :::þ c2

i ), is used to quantify the active stiffness level.
Feedback control. Sensory information is critical for realizing the biped stance. Human

SPC is realized via an fb mechanism that actuates muscles to generate appropriate corrective
torques, so as to counter the destabilizing torque due to gravity [8]. The corrective torques are
generated through the integration of multisensory inputs, including the visual, vestibular, and
proprioceptive somatosensory inputs.
Proprioceptive somatosensory input is assumed to make the largest contribution to the SPC

during quiet standing.Winter et al. reported that vestibular input may not make a significant
contribution to the control of the upright stance [3], and Sousa et al. argued that, as in normal
conditions, proprioceptive information has more relevance than other sensory sources. Hence,
we employed the proprioceptive sensory input as fb information only, despite the existence of
multisensory inputs [69].
The fb control is approximated by a PD controller (Eq (10)). This controller functions

based on proprioceptive sensory information concerning the muscular-tendon length and
lengthening velocity. Thus,

ufb;iðtÞ ¼ kp;i
Li

MTðt � tfbÞ � LMT0;i

LMT
0;i

 !

þ kd;i
_Li
MT
ðt � tfbÞ �

_LMT
0;i

Vi
max

 !

; ð10Þ

Table 1. Coordinate values for objective posture.

Coordinate Value (deg.)

q1 12

q2 6

q3 1

q4 -2

q5 6

q6 1

q7 -2

doi:10.1371/journal.pone.0163212.t001
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whereVi
max is the maximummuscle lengthening velocity, Li

MTðt � tfbÞ, and _LiMTðt � tfbÞ are
the delayed muscular-tendon length and lengthening velocity, respectively, LMT

0;i is the muscular-
tendon length reference, which is the length for the objective posture, and LMT

0;i is the lengthening
velocity reference. Further, kp,i and kd,i are the PD gains of the ith muscle (i = 1, 2, 3, . . ., 70).
_LMT

0;i is set to 0m/s in order to approach a stable stance. Note that this controller is different
from stretch reflex control which adopts muscle fiber length as feedback information. Instead,
muscular-tendon length, sum of muscle length and tendon length, is adopted as feedback infor-
mation. The muscle fiber length moves in the opposite direction of human body. For example,
whenmusculoskeletalmodel moves forward, soleus muscle fiber length contract to generate the
bias of the tendon and torque to move the musculoskeletalmodel backward. This paradoxical
muscle movement characteristics coincides with that reported in previous study [53].

Variables in neural controller. In total, the neural controller has 210 variables, including
a 70-dimensional uff (70 constant c values in Eq (9)) and 140 PD gains (70 proportional kp and
70 derivative kd gains, Eq (10)). In this paper, we mainly focus on the anterior-posterior body
movement in the sagittal plane during quiet standing (joint displacements are symmetrical: q2
= q5, q3 = q6, and q4 = q7). Further, we assume that muscles can be grouped based on their func-
tion on the joints. Hence, the following assumption-based simplifications are employed:

1. The control laws for the ff and fb control on the muscles are taken to be symmetrical (e.g.,
the left and right soleus have the same c and the same kp and kd);

2. Muscles located around the same joint and having similar functions on the joint are assumed
to have the same PD gains (e.g., the pectineus and psoas are taken to have the same PD gains,
because they are both positioned around the hip and have hip flexion functionality).

Specifically, we divide the 70 muscular-tendon actuators into nine groups in accordance
with the muscle functions and attachment point positions, obtaining the lumbar extensor, lum-
bar flexor, hip extensor, hip flexor, knee extensor, knee flexor, ankle extensor, ankle flexor, and
biarticularmuscle groups. The biarticularmuscle group is introduced because the biarticular
muscles generate torque on two joints and may have different effects on those joints. The kp
and kd of each muscle are not unique, and members of the same muscle group have the same
values for these fb gains. Thus, the gain of each muscle is dependent on its muscle group. For
example, the pectineus and psoas are assigned to the hip extensor group, and both have fb
gains of [kp_l_ex, kd_l_ex]. The following assignments are made:

½kp;i; kd;i� ¼

½kp l ex; kd l ex�; group ¼ lumbar extensor;

½kp h ex; kd h ex�; group ¼ hip extensor;

½kp k ex; kd k ex�; group ¼ knee extensor;

½kp a ex; kd a ex�; group ¼ ankle extensor;

½kp l fl; kd l fl�; group ¼ lumbar flexor;

½kp h fl; kd h fl�; group ¼ hip flexor;

½kp k fl; kd k fl�; group ¼ knee flexor;

½kp a fl; kd a fl�; group ¼ hip flexor;

½kp bi; kd bi�; group ¼ biarticular muscle;

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð11Þ

where “group” indicates the muscle group.
The muscle gains are grouped for muscles in the same group, and each member of a given

group has the same PD gains but different c. Note that the uff inputs are not grouped, because
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uff is added to the muscles directly without any fb information. It is difficult to balance the net
torque generated by the extensors and flexors, as each muscle has unique muscle properties.
Muscle elongation can actually differ among muscles of the same group because of their differ-
ent moment arm.We assume that moment arm is approximately constant during quiet stand-
ing. In general, the muscle fiber length and muscle moment arm are positively correlated [70].
Hence, in Eq (10), we use LMT

0;i to normalizemuscular-tendon length feedback information to
reduce the effect of moment arm.We also normalize the velocity information by VM

i T to
obtain dimensionless derivative gains. This normalization allows muscles in the same group to
be controlled by the same gains. As a result of the normalization, [kp,i, kd,i] is dimensionless.
Thus, the number of essential variables for our proposed neural controller design has been

reduced from 210 to 53, including a 35-dimensional uff and 18 PD gains (as listed in Eq (11)).

Variable design

As explained above, 53 variables are required to model the controller. This is very challenging
as regards determining a suitable solution for many variables to keep a musculoskeletalmodel
standing under the influence of the 120-ms neurological time delay. As uff is constant and inde-
pendent of the neurological time delay, the various uff candidates (the 35 constant c values in
Eq 9) are first determined (Fig 4, red area); τtrans and τfb are both 0 ms for these variables.
Details of the calculation are given in the “uff calculation” section. Among the various calcu-
lated uff candidates, several are selected based on the value of ||uff||. Subsequently, for each
selected uff, the PD gains are optimized (Fig 4, blue area) so as to maintain the standing posture
under the influence of the 120-ms neurological time delay.

uff calculation. This section describes the calculation of the many 35-dimensional uff can-
didates (the c values in Eq (9)) needed to hold the musculoskeletalmodel in an objective stand-
ing posture (Table 1).
To calculate uff, which is independent of the neurological time delay, the muscle activations

during a stable biped stance in the objective posture must be obtained, with τtrans and τfb both
set to 0 ms. The obtainedmuscle activations define uff, and can be used as the uff input. A PD
controller receives the same feedback information but different gain types in Eqs (10) and (11)
is used to generate a biped stance in the objective standing posture. The desiredmuscle activa-
tions are then obtained by calculating the integrated muscle activations over the stable stance
period (Eq (15)). These are used as the uff input.
Note that the PD controller above is only used to calculate uff, and is not related to the PD

controller that copes with feed-forward control to compensate for the 120-ms neurological
time delay used in the following “PD gain optimization” section.
To obtain physiologically plausible uff, the gains of the flexors and biarticularmuscles are

scaled with respect to the extensors. We allow all of the flexors and extensors to have identical
gains, and scale the gains of the flexor and biarticularmuscles by factors of 0.5 and 0.2, respec-
tively, with respect to those of the extensors. The scaling of PD gains is based on the physiologi-
cal knowledge that the extensors are the dominant mechanism during quiet standing, whereas
the biarticularmuscles contribute little to this posture [71]. Therefore, we assume that the
extensors have larger gains than the flexors and biarticularmuscles, and that the biarticular
muscles have the lowest gains. Thus, the gains in Eq (11) can be describedby P and D as fol-
lows:

kp l ex ¼ kp h ex ¼ kp k ex ¼ kd a ex ¼ P; kp l ex ¼ kd h ex ¼ kd k ex ¼ kd a ex ¼ D; ð12Þ

kp l fl ¼ kp h fl ¼ kp k fl ¼ kd a fl ¼ 0:5P; kp l fl ¼ kd h fl ¼ kd k fl ¼ kd a fl ¼ 0:5D; ð13Þ
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Fig 4. Variable design algorithm. The red and blue areas indicate the uff calculation algorithm and the PD

gain optimization algorithm, respectively.

doi:10.1371/journal.pone.0163212.g004
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kp bi ¼ 0:2P; kd bi ¼ 0:2D; ð14Þ

where P and D are the values of the extensor proportional gain and derivative gain, respec-
tively. Note that the scaling of gains is only conducted for the uff calculation, and P and D are
the only variables in the uff calculation.
To calculate various uff candidates, as shown in Fig 4 (red area), we conduct an extensive

search for the P and D values needed to maintain a standing posture for 60 s, when τtrans and
τfb are both 0 ms, using a forward dynamics simulation. Note that τact is not neglected, because
the muscle dynamics must be incorporated to obtain physiologically plausible muscle function-
ality. The simulation end time was set to 60 s because this is assumed to be sufficiently long to
allow the musculoskeletalmodel to achieve a stable stance state. The initial posture was set to
the same as the objective posture (Table 1), and the initial muscle activations ai(t)|t = 0 were set
to zero.
We search for P and D in the range 0.0–2.0 at increments of 0.1. The muscle activations are

only recorded if the musculoskeletalmodel is capable of standing (i.e., if the CoMwas higher
than 0.4 m). The integration of the muscle activations when the musculoskeletalmodel
achieves a stable standing posture is adopted as uff. In other words, the ci in Eq (9) are calcu-
lated according to

uff ;i ¼ ci ¼

R t2
t1
aiðtÞdt
t2 � t1

; ð15Þ

where t1–t2 is the period for which the musculoskeletalmodel maintains a stable posture (t1 = 3
s and t2 = 5 s).
||uff|| is then computed to quantify the active stiffness level.
PD gain optimization. Among the various uff candidates obtained as described above, we

select several based on ||uff||. For each selected uff, the PD gain variables are designed based on
an optimization procedure (Fig 4, blue area) to cope with the selected uff and compensate for
the 120-ms neurological time delay. CMA-ES is employed to optimize the 18 PD gain variables
that act to hold the musculoskeletalmodel in a standing posture for 60 s, using a forward
dynamics simulation that incorporates the selected uff along with the 40-ms τtrans and τfb. The
initial posture is updated to the stable posture that can be maintained with the selected uff, and
the initial a values are updated in accordance with uff (ai(t)|t = 0 = uff,i). CMA-ES is an evolution
algorithm for solving nonlinear black-box optimization problems [72, 73], and has been suc-
cessfully app lied by Dorn et al. [60] to optimize a complicated controller for gait generation.
This algorithm does not calculate the gradient of the objective function but, rather, estimates
the covariance matrix. The variables are the population size λ, initial standard deviation σ, and
the initial solution and termination criteria. In this study, the optimizer was initialized by set-
ting λ = 20 and σ = 0.005 for fast convergence. The initial solution was generated from a seed.
In addition to the default termination criteria, a maximum iteration number of 750 was
defined. The simulation was conducted so as to evaluate 20 candidate solutions generated by
the CMA-ES in parallel in each iteration. The number of child threads created for parallel exe-
cution is equivalent to the number of computer cores.
CMA-ES is used to minimize the objective function J, where

J ¼ wfailJfail þ wstability Jstability ; ð16Þ

Jfail ¼
Tsimu � Tfail

Tfail
; ð17Þ
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with Tsimu = 5 s being the simulation end time and Tfail being the time at which the musculo-
skeletal model begins to collapse or the heel or toe leave the ground. This event is monitored by
an event trigger that terminates the simulation when the height of the CoM is less than 0.4 m,
or when the heel or toe contact force is 0 N. Tfail is the time at which this event occurred.Note
that, if the failure event did not occur until Tsimu, then Tfail = Tsimu and Jfail = 0. The event trig-
ger decreases the computation time of the optimization during the early iterations. Jstability is
used to evaluate the stability of the biped stance and the deviation of the posture from the
objective posture. This term is expressed as

Jstability ¼
X7

n¼1

Z Tsimu

0

jqnðtÞ � qnð0Þjdt; ð18Þ

where qn(t) is the nth coordinate value (angle displacement of one joint DoF) and qn(0) is the
nth initial coordinate value.
The failure weight,wfail, was set to 500 000 in order to reject any solutions in which the mus-

culoskeletalmodel failed to stand. The stable weight,wstability, was set to 50 so as to rapidly dis-
cover solutions that hold the musculoskeletalmodel in a stable standing position and in a
posture close to the objective. The values of 500 000 and 50 were determined based on a study
reported by Dorn et al. [60]. In addition, if J2

fail or J
2
stability is smaller than a minimum value

(1.0e−6), they will be set to 0.

Evaluation of simulated results

To evaluate our simulated results, we compared them with experimental data, including the
CoM anterior-posterior (AP) displacement range, CoP AP displacement range, joint correla-
tions and, the muscle activation range for a human biped stance [71, 74].
To investigate which selected uff could functionwith the fb control to generate physiologi-

cally plausible muscle activations, we compared the simulated muscle activations against the
experimentalmuscle activation range [71] to determine whether the simulated activations
were in the range of the experimental data. Further, the deviation of the simulated muscle acti-
vations from the range data was calculated. Experimentalmuscle activation range and mode
value data were reported by Panzer et al. [71], who studied 24 normal subjects, including 12
young subjects (age: 21–57 years; mean age: 38.4 years) and 12 elderly subjects (age: 63–77
years; mean age: 68.1 years). In that study, the subjects stood in an erect posture on a platform
with a fre ely chosen foot position. Electromyographic (EMG) data normalized by the maximal
voluntary contraction (MVC) of eight muscles were collected.
Further, to investigate the physiologically plausibility of postural sway patterns, we evalu-

ated the following two aspects: 1. CoMAP and CoP displacement trajectory, and 2. multi-joint
coordination.We plotted the CoMAP and CoP displacement trajectory. The CoM and CoP
AP range are used as indicators to evaluate the physiological plausibility. The simulated CoM
and CoP AP displacement range were compared against experimental data reported by War-
nica et al. [74], who studied 16 young adults (whose age, height, and bodymass (mean (SD))
were 22.6(1.4) years, 173.3(11.1) cm, and 70.7(12.9) kg, respectively). In that study, CoM and
CoP displacement data for each adult were measured during quiet standing, and then the CoM
and CoP AP displacement range were calculated and analyzed.We calculated the hip-ankle,
hip-knee, and knee-ankle angle correlation coefficient, and compared against experimental
data [43] to evaluate the multiple-joint coordination.
In addition, to evaluate whether the generated biped stance motion was stable, the CoMAP

displacement versus CoMAP velocity was plotted.
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Results

Variable design

We conducted an extensive search for uff candidates, and obtained a total of 402 uff that suc-
cessfully held the musculoskeletalmodel in a standing posture. Among them, we selected nine
uff based on ||uff|| (||uff|| = 0.06, 0.89, 2.07, 3.44, 4.00, 5.04, 6.00, 7.00, and 8.02), and conducted
further PD gain optimization with a neurological time delay of 120 ms. The PD gains were
optimized for each uff using the CMA-ES algorithm. As a result (Table 2), the gains for all uff
(except ||uff|| = 0.06) were found to successfullymaintain the musculoskeletalmodel in a stand-
ing posture (S1 Video).

Evaluation of simulated results

To investigate which uff could functionwith the PD control to generate physiologically plausi-
ble muscle activations, we compared the simulated muscle activations (red dots in Fig 5)
against the experimentalmuscle activation range (gray shaded boxes in Fig 5). The deviations
of the simulated activations from the range data are listed in Table 3. The muscle activations
when ||uff|| = 2.07 were generally within the range of the experimental data. Only the result for
rectus abdominus 2 was slightly higher (0.025) than the higher limit of the experimental data
range. As for the other ||uff||, two muscles fell outside the experimental range for ||uff|| = 0.89,
three muscles fell outside the experimental range for ||uff|| = 4.00, 6.00, 7.00, and 8.02, and four
muscles fell outside the experimental range for ||uff|| = 3.44, and 5.04.
To investigate the physiological plausibility of postural sway patterns during a 60-s simula-

tion, the CoMAP, CoP AP, and CoMheight displacements were plotted, as shown in Figs 6
and 7. The CoMoscillates around a stable state value, and the CoP oscillates around the CoM
trajectory. From the CoMheight displacement, it was determined that all the selected uff
allowed the musculoskeletalmodel to maintain a standing position via a periodical height
sway. In addition, the CoMAP and CoP AP displacement ranges (maximum displacement
minus minimum displacement over 30–60 s, which is the period in which the musculoskeletal
model achieved a stable-stance state) were obtained; see Table 4. We compared the ranges with
those reported by Warnica et al. [74], who reported the mean±SD of CoPAP and CoMAP to
be 20.48±6.97 mm and 17.36±5 mm, respectively. We confirmed that the simulated CoMAP
had a smaller range for all ||uff||, whereas the CoPAP range for all ||uff|| except ||uff|| = 6.00 had
a smaller range than those of a human.
Note that the CoMAP, CoP AP, and CoMheight values for the objective posture (the dot-

ted line in Fig 6) differed for each ||uff||. This is because the objective posture was updated after
each uff calculation. That is, the same objective posture was employed in each uff calculation;
however, the final stable posture (which was used as the objective posture during the PD gain
optimization) was different, because of the muscle force-generation capability. The muscles
worked to realize the objective posture for the musculoskeletalmodel; however, the maximum
isometric force rendered the generation of sufficient force difficult and, as a result, the muscles
could only maintain a reasonably similar posture to the objective.
In addition, joint correlation coefficientswere calculated as shown in Table 5. when ||uff||<

7.00, hip-ankle angle are negatively correlated, whereas the knee-ankle angle are positively cor-
related. This result fits the experimental data that hip and ankle angle are negatively correlated
(-0.91±0.054); Both in-phase (0.88±0.000) and anti-phase (-0.87±0.054) of correlations
between ankle and knee were observed [43]. However, hip-knee correlation are anti-phase
when ||uff|| = 0.89, 3.44, and 6.00, which differs from the experimental data that hip and knee
exhibit a positive correlation (0.89±0.053) [43]. When ||uff|| = 7.00 and 8.02, the hip-ankle
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Fig 5. Simulated muscle activations. The red dots are simulated activations, the black dots are mode values, and the gray shaded boxes

indicate the experimental activation data ranges. The experimental mode values and activation data ranges were reported in [71].

doi:10.1371/journal.pone.0163212.g005
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angle has positive correlation, whereas both the hip-knee and knee-ankle angle are negatively
correlated. In this case, musculoskeletalmodel has high overall joint stiffness and sways like an
inverted pendulum. The rotations of the hip, knee and ankle all contribute to move CoM in the
same direction, i.e., the hip and ankle flex, and the knee extend to move CoMbackward.
To evaluate whether the generated biped stance motion was stable, CoMAP displacement

versus CoMAP velocity was plotted, as shown in Fig 8. As shown in the figure, the attractor of
each ||uff|| is a limit cycle, which indicates that all of the ||uff|| capable of keeping the musculo-
skeletal model standing stably. The CoMoscillationmay result from the non-linear dynamics
of the system (e.g. muscular-tendon dynamics).

Discussion

Our first goal was to develop an NC model capable of compensating for a 120-ms neurological
time delay, so as to allow a musculoskeletalmodel to stand. The postural control model pro-
posed in this study is the first to have been reported to successfullymaintain a musculoskeletal
model in a standing posture for the case of a physiologically plausible human anatomy (multi-
ple joints, 70 muscles, and human-like skeletal inertial and muscle dynamics properties) and a
120-ms neurological time delay. In previous studies, researchers have generally employed an
inverted pendulummodel to investigate the delay compensation mechanism; however, such a
model cannot be used to investigate the muscle activation contributions. Hence, we replaced
this simplified human model with a human-like musculoskeletalmodel. Our simulation results
indicate that the uff, in conjunction with the fb control, can compensate for the neurological
time delay. In this study, the fb control employed proprioceptive sensory information only,
because this was assumed to have more relevance than other sensory data such as visual and
vestibular inputs during quiet standing [69]. However, Peterka has reported that multisensory
inputs are important for humans to perform a task, and the contributions of vestibular sensory
inputs increase with an increase in the level of external disturbance [7]. The present simulation
results indicate that, for an unperturbed stance, a certain ||uff|| functioningwith proprioceptive
sensory feedback can compensate for the loss of visual and vestibular sensory input. For the
case of a perturbed stance, however, we believe that other sensory input should be incorporated
in order to counter the external disturbance. Further, an estimation and anticipation

Table 3. Deviations from value ranges.

||uff||

0.89 2.07 3.44 4.00 5.04 6.00 7.00 8.02

Muscle Biceps femoris 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Medial gastrocnemius 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lateral gastrocnemius 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Soleus -0.020 0.000 -0.016 0.000 -0.005 0.000 0.000 0.000

Tibialis anterior -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Eractor spinae 0.000 0.000 0.005 0.014 0.060 0.228 0.103 0.120

Rectus abdominus 1 0.000 0.000 0.099 0.101 0.149 0.278 0.196 0.216

Rectus abdominus 2 0.000 0.025 0.145 0.137 0.189 0.322 0.217 0.232

Number of muscles falling

outside of range

2 1 4 3 4 3 3 3

The “0.000” values indicate that the simulated activation is within the range of the corresponding

experimental data value. Negative and positive values indicate the deviation of the simulated activation from

the lower and upper limits of the range, respectively.

doi:10.1371/journal.pone.0163212.t003
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Fig 6. CoP AP, CoM AP, and CoM height displacement for ||uff|| = 0.89, 2.07, 3.44, and 4.00. The green, red, and blue solid lines are the CoP AP, CoM

AP, and CoM height displacements, respectively. The green, red, and blue dotted lines are the CoP position, CoM horizontal position, and CoM height

position values for the objective posture, respectively. The positive direction of the “CoP and CoM AP displacement (m)” axis represents the anterior

direction.

doi:10.1371/journal.pone.0163212.g006
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Fig 7. CoP AP, CoM AP, and CoM height displacement for ||uff|| = 5.04, 6.00, 7.00, and 8.02. The green, red, and blue solid lines are the CoP AP, CoM

AP, and CoM height displacements, respectively. The green, red, and blue dotted lines are the CoP position, CoM horizontal position, and CoM height
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mechanism [20, 30], which would estimate the disturbance acting on the human body and “the
internal model” (usually the human body orientation and posture), may also be necessary to
counter such a disturbance.
Our second goal was to develop an NCmodel capable of generating a human-like stance

and exhibiting the salient features of the human biped stance. One feature reflected by our NC
model is physiologically plausible simulated muscle activations. In particular, the muscle acti-
vations for ||uff|| = 2.07 are considered to be physiologically plausible activations for the human
biped stance. That is, the majority of the muscle activations for ||uff|| = 2.07 were within the
physiologically plausible range, based on data obtained via an experimental study, although the
activation result for rectus abdominus 2 was slightly higher than the experimental data range.
Note that rectus abdominus 2 has higher activations because the functions of all the muscles
surrounding the lumbar that contribute to lumbar flexion are condensed into only two lumbar
flexors (rectus abdominus 1 and rectus abdominus 2) in the musculoskeletalmodel. Hence,
rectus abdominus 1 and rectus abdominus 2 require slightly elevated activations to generate
the forces that are actually produced by all of the lumbar flexors. The second feature reflected
by the NC model is that humans employ a strategy involving a low muscle active stiffness dur-
ing quiet standing, so as to achieve low energy consumption. The present simulation results
indicate that human beings may be capable of standing using various active stiffness levels. ||
uff|| = 2.07 is a physiologically plausible active stiffness level, and is low compared with the
highest level (||uff|| = 8.02) among the selected uff. Therefore, for a normal person standing
with a relaxed posture, a low active stiffness level may be sufficient to compensate for the neu-
rological time delay and maintain a standing posture. This coincides with the well-known
physiological result that humans select a low active stiffness level during quiet standing to
reduce energy consumption.
The two features discussed above coincide with current physiological knowledge on the

human biped stance; therefore, our proposed NCmodel and variable design framework suc-
cessfully generated a physiologically plausible human-like biped stance and may be used in var-
ious potential applications, such as to assist with device development and design robotic
control systems.

position value for the objective posture, respectively. The positive direction of the “CoP and CoM AP displacement (m)” axis represents the anterior

direction.

doi:10.1371/journal.pone.0163212.g007

Table 4. CoP and CoM AP displacement ranges.

||uff|| CoP AP range (10−3 m) CoM AP range (10−3 m)

0.89 0.18 0.01

2.07 1.60 0.26

3.44 4.51 0.25

4.00 15.55 2.40

5.04 0.55 0.18

6.00 43.33 1.30

7.00 0.06 0.04

8.02 0.22 0.11

The CoP and CoM displacement ranges are the differences between the maximum and minimum

displacements over the period 30–60 s, which corresponds to the period in which the musculoskeletal model

achieved a stable stance.

doi:10.1371/journal.pone.0163212.t004
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Furthermore, the NC model can also partly represent the characteristics of sway patterns.
The postural sway patterns observedwhenmusculoskeletalmodel stands under physiologically
plausible muscle activations (||uff|| = 2.07) partly resemble the features of that of human beings.
The hip and ankle angle are negatively correlated; Both hip-knee and knee-ankle angle have a
positive correlation (Table 5). This result coincides with the correlation coefficient obtained
from experimental data [43]. However, the simulated CoMAP and CoPAP ranges are smaller
than those indicated by the experimental data. This difference is likely to be because the sen-
sory noise level, which is assumed to be one of the variants accounting for the postural sway
[75], is not incorporated in the fb control. The sensory noise may induce larger CoMAP sway
range, as well as higher anti-phase coupling of the hip and the ankle to maintain the balance. In
addition, the neglect of factors such as age and heart rate may have caused the smaller postural
sway. However, it would be difficult to develop an NCmodel that incorporates all the factors
that influence postural sway. In this study, we primarily focused on whether or not the
employed NC model could generate muscle activations for a stable biped stance. The NC
model utilized in this study provides a foundation for the development of a more complex NC
model, which could reflectmore physiologically plausible features such as postural sway.

Limitations and Future Work

One limitation of our study is that some rational simplifications were made to the PD control-
ler. More gains should be included to achieve a more natural and stable biped stance simula-
tion, which would enable more physiologically plausible muscle activations.
In addition, our current postural control model can only be used to simulate quiet standing;

how it will deal with disturbances should also be investigated. Before that, however, a more
sophisticatedmodel that incorporates more physiologcally plausible components or mecha-
nism should be created. Firstly, the fb controller should incorporate more fb information, such
as visual and vestibular sensory inputs. Secondly, Mergner has noted that sensory inputs may
have a threshold and be affected by noise [20], and a sensory integration and disturbance antic-
ipatory mechanisms may exist. Such a mechanism should therefore be employed in our pos-
tural control model to investigate the ff input response to this mechanism as a means of
maintaining balance. In addition, other important indicators for stance postural control such
as the sway path, sway density, and power spectral density should be investigated in the future
to evaluate the model.
Further, whether the model is overfitting or not should be validated. The NC model coordi-

nates 35 muscles (left and right muscles are controlled symmetrically) to maintain the muscu-
loskeletal model in a stance posture. However, only 8 of 35 simulated muscle activations were
compared to experimental data. More muscle activation data should be measured in the

Table 5. Joint angular correlations.

||uff|| hip-knee hip-ankle knee-ankle

0.89 -0.452 -0.913 0.768

2.07 0.363 -0.579 0.373

3.44 -0.458 -0.902 0.767

4.00 0.617 -0.461 0.061

5.04 0.125 -0.504 0.328

6.00 -0.927 -0.876 0.937

7.00 -0.988 0.992 -0.985

8.02 -0.648 0.609 -0.736

doi:10.1371/journal.pone.0163212.t005
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Fig 8. CoM AP displacement vs. CoM AP velocity.

doi:10.1371/journal.pone.0163212.g008
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experiment, and then be used to validate the NCmodel. Moreover, the complexity of the NC
model and musculoskeletalmodel necessary to study bipedal stance postural control should
also be investigated.
A final limitation is that the comparison between the simulated results and experimental

data was inaccurate, owing to the difference in the weights, heights, and stance posture of the
musculoskeletalmodel and the experimental subjects. The comparison was also affected by the
EMG data normalizationmethod employed by Panzer et al. [71]. In future, experiments on
human quiet standing should be conducted as part of the controller design project, with the
experimental setup matching the simulation conditions.

Conclusion

An NCmodel was developed to generate a human-like biped stance. Rather than an inverted
pendulum, a musculoskeletalmodel was used to approximate the human anatomy. The NC
model utilized in the postural control model consisted of ff and fb controls. Further, a variable
design framework was developed for the NCmodel so as to maintain the musculoskeletal
model in a standing position under the influence of a 120-ms neurological time delay. The NC
model generated physiologically plausible muscle activations for the biped stance. The NC
model also reflected a salient physiological feature, i.e., that humans select a low active stiffness
level during standing so as to achieve low energy consumption.

Supporting Information

S1 Video. Biped stance simulation video.
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45. Hsu WL, Scholz JP, Schöner G, Jeka JJ, Kiemel T. Control and estimation of posture during quiet

stance depends on multijoint coordination. Journal of Neurophysiology. 2007; 97(4):3024–3035. doi:

10.1152/jn.01142.2006 PMID: 17314243

46. Horlings CG, van Engelen BG, Allum JH, Bloem BR. A weak balance: the contribution of muscle weak-

ness to postural instability and falls. Nature Clinical Practice Neurology. 2008; 4(9):504–515. doi: 10.

1038/ncpneuro0886 PMID: 18711425

47. Clark AE. Biarticular Muscles Influence Postural Responses: Implications for Treatment of Stiff-Knee

Gait. Master’s Thesis, University of Tennessee. 2012;.

48. Zebenay M, Lippi V, Mergener T. Human-like humanoid robot posture control. In: Informatics in Con-

trol, Automation and Robotics (ICINCO), 2015 12th International Conference on. IEEE; 2015. p. 304–

309.

49. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software

to create and analyze dynamic simulations of movement. Biomedical Engineering, IEEE Transactions

on. 2007; 54(11):1940–1950. doi: 10.1109/TBME.2007.901024

50. Au C. Gait 2392 and 2354 Models. 2013;Available from: http://simtk-confluence.stanford.edu:8080/

display/OpenSim/Gait+2392+and+2354+Models.

51. Hicks J. Simulation-based design to prevent ankle injuries. 2014;Available from: http://simtk-

confluence.stanford.edu:8080/display/OpenSim/Simulation-Based+Design+to+Prevent+Ankle

+Injuries.

52. Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: Modeling and simulation of mus-

culotendon dynamics. Journal of Biomechanical Engineering. 2013; 135(2):021005. doi: 10.1115/1.

4023390 PMID: 23445050

53. Loram ID, Maganaris CN, Lakie M. Paradoxical muscle movement in human standing. The Journal of

physiology. 2004; 556(3):683–689. doi: 10.1113/jphysiol.2004.062398 PMID: 15047776

54. Liu MQ, Anderson FC, Schwartz MH, Delp SL. Muscle contributions to support and progression over a

range of walking speeds. Journal of Biomechanics. 2008; 41(15):3243–3252. doi: 10.1016/j.jbiomech.

2008.07.031 PMID: 18822415

55. Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body mass center accelerations

over a range of running speeds. Journal of Biomechanics. 2013; 46(4):780–787. doi: 10.1016/j.

jbiomech.2012.11.024 PMID: 23246045

56. Gopalakrishnan A, Modenese L, Phillips AT. A novel computational framework for deducing muscle

synergies from experimental joint moments. Frontiers in Computational Neuroscience. 2014; 8:153.

doi: 10.3389/fncom.2014.00153 PMID: 25520645

57. Skalshøi O, Iversen CH, Nielsen DB, Jacobsen J, Mechlenburg I, Søballe K, et al. Walking patterns

and hip contact forces in patients with hip dysplasia. Gait & Posture. 2015; 42(4):529–533. doi: 10.

1016/j.gaitpost.2015.08.008

58. Hunt K, Crossley F. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied

Mechanics. 1975; 42(2):440–445. doi: 10.1115/1.3423596

59. Sherman MA, Seth A, Delp SL. Simbody: Multibody dynamics for biomedical research. Procedia

Iutam. 2011; 2:241–261. doi: 10.1016/j.piutam.2011.04.023 PMID: 25866705

60. Dorn TW, Wang JM, Hicks JL, Delp SL. Predictive simulation generates human adaptations during

loaded and inclined walking. PLoS ONE. 2015 04; 10(4):e0121407. doi: 10.1371/journal.pone.

0121407 PMID: 25830913

61. Zajac FE. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor

control. Critical Reviews in Biomedical Engineering. 1988; 17(4):359–411.

62. Winters JM. An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models.

Annals of Biomedical Engineering. 1995; 23(4):359–374. doi: 10.1007/BF02584437 PMID: 7486344

63. Jacobs DA. First-order activation dynamics. 2015;Available from: http://simtk-confluence.stanford.

edu:8080/display/OpenSim/First-Order+Activation+Dynamics.

64. Fitzpatrick R, Burke D, Gandevia SC. Loop gain of reflexes controlling human standing measured with

the use of postural and vestibular disturbances. Journal of Neurophysiology. 1996; 76(6):3994–4008.

PMID: 8985895

Generation of the Human Biped Stance

PLOS ONE | DOI:10.1371/journal.pone.0163212 September 21, 2016 26 / 27

http://dx.doi.org/10.1016/j.jbiomech.2009.08.014
http://dx.doi.org/10.1016/j.jbiomech.2009.08.014
http://dx.doi.org/10.1152/jn.01082.2012
http://www.ncbi.nlm.nih.gov/pubmed/24089399
http://dx.doi.org/10.1152/jn.01142.2006
http://www.ncbi.nlm.nih.gov/pubmed/17314243
http://dx.doi.org/10.1038/ncpneuro0886
http://dx.doi.org/10.1038/ncpneuro0886
http://www.ncbi.nlm.nih.gov/pubmed/18711425
http://dx.doi.org/10.1109/TBME.2007.901024
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Gait+2392+and+2354+Models
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation-Based+Design+to+Prevent+Ankle+Injuries
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation-Based+Design+to+Prevent+Ankle+Injuries
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation-Based+Design+to+Prevent+Ankle+Injuries
http://dx.doi.org/10.1115/1.4023390
http://dx.doi.org/10.1115/1.4023390
http://www.ncbi.nlm.nih.gov/pubmed/23445050
http://dx.doi.org/10.1113/jphysiol.2004.062398
http://www.ncbi.nlm.nih.gov/pubmed/15047776
http://dx.doi.org/10.1016/j.jbiomech.2008.07.031
http://dx.doi.org/10.1016/j.jbiomech.2008.07.031
http://www.ncbi.nlm.nih.gov/pubmed/18822415
http://dx.doi.org/10.1016/j.jbiomech.2012.11.024
http://dx.doi.org/10.1016/j.jbiomech.2012.11.024
http://www.ncbi.nlm.nih.gov/pubmed/23246045
http://dx.doi.org/10.3389/fncom.2014.00153
http://www.ncbi.nlm.nih.gov/pubmed/25520645
http://dx.doi.org/10.1016/j.gaitpost.2015.08.008
http://dx.doi.org/10.1016/j.gaitpost.2015.08.008
http://dx.doi.org/10.1115/1.3423596
http://dx.doi.org/10.1016/j.piutam.2011.04.023
http://www.ncbi.nlm.nih.gov/pubmed/25866705
http://dx.doi.org/10.1371/journal.pone.0121407
http://dx.doi.org/10.1371/journal.pone.0121407
http://www.ncbi.nlm.nih.gov/pubmed/25830913
http://dx.doi.org/10.1007/BF02584437
http://www.ncbi.nlm.nih.gov/pubmed/7486344
http://simtk-confluence.stanford.edu:8080/display/OpenSim/First-Order+Activation+Dynamics
http://simtk-confluence.stanford.edu:8080/display/OpenSim/First-Order+Activation+Dynamics
http://www.ncbi.nlm.nih.gov/pubmed/8985895


65. Gatev P, Thomas S, Kepple T, Hallett M. Feedforward ankle strategy of balance during quiet stance in

adults. The Journal of Physiology. 1999; 514(3):915–928. doi: 10.1111/j.1469-7793.1999.915ad.x

PMID: 9882761

66. Hof A, Gazendam M, Sinke W. The condition for dynamic stability. Journal of biomechanics. 2005; 38

(1):1–8. doi: 10.1016/j.jbiomech.2004.03.025 PMID: 15519333

67. Pai YC, Patton J. Center of mass velocity-position predictions for balance control. Journal of biome-

chanics. 1997; 30(4):347–354. doi: 10.1016/S0021-9290(96)00165-0 PMID: 9075002

68. Heitmann S, Ferns N, Breakspear M. Muscle co-contraction modulates damping and joint stability in a

three-link biomechanical limb. Front Neurorobot. 2011; 5(5). doi: 10.3389/fnbot.2011.00005 PMID:

22275897

69. Sousa AS, Silva A, Tavares JMR. Biomechanical and neurophysiological mechanisms related to pos-

tural control and efficiency of movement: A review. Somatosensory & motor research. 2012; 29

(4):131–143. doi: 10.3109/08990220.2012.725680

70. McClearn D. Anatomy of raccoon (Procyon lotor) and coati (Nasua narica and N. nasua) forearm and

leg muscles: Relations between fiber length, moment-arm length, and joint-angle excursion. Journal of

Morphology. 1985; 183(1):87–115. doi: 10.1002/jmor.1051830106 PMID: 3973925

71. Panzer VP, Bandinelli S, Hallett M. Biomechanical assessment of quiet standing and changes associ-

ated with aging. Archives of Physical Medicine and Rehabilitation. 1995; 76(2):151–157. doi: 10.1016/

S0003-9993(95)80024-7 PMID: 7848073

72. Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the derandomized evolution

strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation. 2003; 11(1):1–18.

doi: 10.1162/106365603321828970 PMID: 12804094

73. The CMA Evolution Strategy. 2015;Available from: https://www.lri.fr/*hansen/cmaesintro.html.

74. Warnica MJ, Weaver TB, Prentice SD, Laing AC. The influence of ankle muscle activation on postural

sway during quiet stance. Gait & Posture. 2014; 39(4):1115–1121. doi: 10.1016/j.gaitpost.2014.01.

019

75. Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model

of human postural control. Journal of Neurophysiology. 2005; 93(1):189–200. doi: 10.1152/jn.00221.

2004 PMID: 15331614

Generation of the Human Biped Stance

PLOS ONE | DOI:10.1371/journal.pone.0163212 September 21, 2016 27 / 27

http://dx.doi.org/10.1111/j.1469-7793.1999.915ad.x
http://www.ncbi.nlm.nih.gov/pubmed/9882761
http://dx.doi.org/10.1016/j.jbiomech.2004.03.025
http://www.ncbi.nlm.nih.gov/pubmed/15519333
http://dx.doi.org/10.1016/S0021-9290(96)00165-0
http://www.ncbi.nlm.nih.gov/pubmed/9075002
http://dx.doi.org/10.3389/fnbot.2011.00005
http://www.ncbi.nlm.nih.gov/pubmed/22275897
http://dx.doi.org/10.3109/08990220.2012.725680
http://dx.doi.org/10.1002/jmor.1051830106
http://www.ncbi.nlm.nih.gov/pubmed/3973925
http://dx.doi.org/10.1016/S0003-9993(95)80024-7
http://dx.doi.org/10.1016/S0003-9993(95)80024-7
http://www.ncbi.nlm.nih.gov/pubmed/7848073
http://dx.doi.org/10.1162/106365603321828970
http://www.ncbi.nlm.nih.gov/pubmed/12804094
https://www.lri.fr/&sim;hansen/cmaesintro.html
http://dx.doi.org/10.1016/j.gaitpost.2014.01.019
http://dx.doi.org/10.1016/j.gaitpost.2014.01.019
http://dx.doi.org/10.1152/jn.00221.2004
http://dx.doi.org/10.1152/jn.00221.2004
http://www.ncbi.nlm.nih.gov/pubmed/15331614

